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Abstract. An approach to ordinal analysis is presented which is finitary, but high-

lights the semantic content of the theories under consideration, rather than the syntactic

structure of their proofs. In this paper the methods are applied to the analysis of the-

ories extending Peano arithmetic with transfinite induction and transfinite arithmetic

hierarchies.

§1. Introduction. As the name implies, in the field of proof theory one
tends to focus on proofs. Nowhere is this emphasis more evident than in
the field of ordinal analysis, where one typically designs procedures for “un-
winding” derivations in appropriate deductive systems. One might wonder,
however, if this emphasis is really necessary; after all, the results of an ordinal
analysis describe a relationship between a system of ordinal notations and a
theory, and it is natural to think of the latter as the set of semantic conse-
quences of some axioms. From this point of view, it may seem disappointing
that we have to choose a specific deductive system before we can begin the
ordinal analysis.

In fact, Hilbert’s epsilon substitution method, historically the first attempt
at finding a finitary consistency proof for arithmetic, has a more semantic char-
acter. With this method one uses so-called epsilon terms to reduce arithmetic
to a quantifier-free calculus, and then one looks for a procedure that assigns
numerical values to any finite set of closed terms, in a manner consistent with
the axioms. The first ordinal analysis of arithmetic using epsilon terms is due
to Ackermann [1]; for further developments see, for example, [20].
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More recently, investigations of nonstandard models of arithmetic due to
Paris and Kirby have given rise to another approach, which incorporates Ke-
tonen and Solovay’s finitary combinatorial notion of an α-large set of natural
numbers. Roughly speaking, to show that the proof-theoretic ordinal of a the-
ory T is bounded by α, one uses an α-large interval in a nonstandard model
of arithmetic to construct a model of T . These methods are surveyed and
extended in [3, 4]; some of the constructions found in the second paper are
derived from model-theoretic methods due to Friedman [12, 13]. Sommer [28]
has shown that one can avoid references to nonstandard models and instead
view the methods as providing a way of building “finite approximations” to
models of arithmetic, an idea which traces its way back to Herbrand [18]. (See
also the introduction to [19].)

Finally, Quinsey has shown that a notion called fulfillment, due to Kripke,
provides yet another way of using more semantic methods to obtain tradi-
tional proof-theoretic results. His Ph.D. thesis [23] is a tour-de-force, offering
a wealth of applications in wide range of areas. Similar ideas have been devel-
oped independently by Carlson [10].

Each of the approaches just described has its own advantages and disadvan-
tages. But with their emphasis on “building models” over “unwinding proofs,”
the similarities between them are more striking than the differences. And the
persistence with which this point of view keeps resurfacing suggests that such
methods may have something to offer to the development of proof theory.

In this paper, I have tried to fashion an approach to ordinal analysis which
is in concord with these themes, incorporating and adapting ideas from all
the sources mentioned above. Since these ideas have appeared in so many
different contexts, often arising independently, trying to sort out the proper
accreditations at each step along the way would be difficult; and so I hope
this broad attribution is enough to acknowledge the general debt that this
work owes to that which has come before. I should mention that I have also
benefited a good deal from Buss’ ordinal analysis of arithmetic, using the
witnessing method, in [7]; from the emphasis on ordinal recursion and its
properties, in Friedman and Sheard [11]; and, of course, from the traditional
Gentzen-Schütte approach to ordinal analysis, surveyed in [21, 22, 24].

One aspect of the approach developed here is that Herbrand’s theorem is
used in a central way. One begins by embedding a classical theory in a uni-
versal one, with symbols describing functions that are nonconstructive in the
intended interpretation. By Herbrand’s theorem, to extract an appropriate
witness from the proof of a Σ1 sentence, one does not need to know the correct
interpretation of the function symbols; one only needs an interpretation that
is consistent with a finite set of axioms relevant to the proof.

Another aspect of the approach is that it is cumulative: once we have ana-
lyzed a theory Tα, dependent on a parameter α, we can work “in” that theory
to analyze the next nonconstructive principle. That way, as we work our way
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up, we can leave behind the low-level combinatorial constructions, and carry
on in a more familiar mathematical and logical framework.

Despite the semantic flavor of the approach, it is entirely finitary, in a sense
that will be made precise in Section 4.

In this article, I will develop semantic analogues of the traditional tools
and methods of predicative proof theory. In [2], I will extend the methods
to analyze Kripke-Platek set theory, KPω. To my knowledge, the latter will
provide the first ordinal analysis of a theory of that strength without the use
of cut-elimination.

The outline of this paper is as follows. The first few sections provide the
necessary background information: Section 2 discusses some weak fragments
of arithmetic; Section 3 introduces a form of ordinal recursion, which we will
use to define the proof-theoretic ordinal of a theory in Section 4; Section 5
describes the systems of ordinal notations that are needed to carry out the
ordinal analysis; and Section 6 reviews Herbrand’s theorem for first-order logic.
The rest of the paper is concerned with bounding the proof-theoretic ordinals
of various theories: primitive recursive arithmetic in Section 7, theories with Π1

transfinite induction in Section 8, theories with arithmetic transfinite induction
in Section 9, and, finally, theories of transfinite arithmetic hierarchies in 10.

§2. Weak theories of arithmetic. To get us off the ground, in this sec-
tion I will introduce some weak theories of arithmetic. The theories, notations,
and facts discussed are fairly standard. More information on the theories dis-
cussed below, including the formal representation of sequences and syntactic
objects, can be found in [8, 17, 30]. More information on the elementary and
primitive recursive functions and their properties can be found in [25].

I will take the language of arithmetic to be the first-order language with
symbols 0, 1, +, ×, and <, and if n is a natural number, I will use n̄ to denote
the corresponding numeral. Peano arithmetic, PA, consists of quantifier-free
defining axioms for +, ×, and <, and the schema of induction,

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))→ ∀x ϕ(x)

for arbitrary formulae ϕ. A formula is said to be ∆0 if every quantifier is
bounded, that is, of the form ∀x < t or ∃x < t, where these are interpreted
in the usual way. A formula is Σ1 (resp. Π1) if it is obtained by prefixing
existential (resp. universal) quantifiers to a ∆0 formula; more generally, with
Σn and Πn formulas one is allowed n alternations of quantifiers. The theory
of arithmetic in which induction is restricted to formulas in a set Γ is denoted
IΓ. Over a weak base theory, Σn and Πn are induction are equivalent: e.g.
given a Σn formula ϕ(x) satisfying the hypotheses of the induction axiom, if
there is a y satisfying ¬ϕ(y), then Πn induction on z implies ∀z ¬ϕ(y .− z);
but then ¬ϕ(0), yielding a contradiction.

Theories like I∆0 are sensitive to the choice of initial functions. The theory
obtained by adding a function symbol exp(x, y) for exponentiation, with the
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usual defining equations, is denoted I∆exp
0 . From a mathematical point of

view, I∆exp
0 is very weak, but from a finitary, computational point of view, it

is fairly strong, as the following discussion will show.
Taking constants to be functions of arity 0, the set of elementary functions

is defined to be the smallest set of functions on the natural numbers con-
taining 0, +, ×, and exp, and projections, and closed under the operations
of composition and bounded recursion. Using ~z to denote a finite sequence of
variables z0, . . . , zk, closure under bounded recursion means that whenever the
functions g(~z), h(x, y, ~z), and b(x, ~z) are elementary, then so is the function
f(x, ~z), defined by the equations

f(0, ~z) = g(~z)

f(x+ 1, ~z) =
{
h(x, f(x, ~z), ~z) if this is less than b(x+ 1, ~z)
0 otherwise.

Since bounded recursion does not allow us to introduce functions that grow
faster than ones that have been previously defined, a moment’s reflection shows
that every elementary function is bounded by some finite iteration of the func-
tion x 7→ 2x. I will say that a relation R(~x) is elementary if its characteristic
function, χR(~x), is elementary, and for notational convenience I will write R(~x)
instead of χR(~x) = 1.

One can show that the set of elementary functions is closed under bounded
sums, f(x, ~z) =

∑
y<x h(y, ~z), and bounded products, g(x, ~z) =

∏
y<x h(y, ~z).

The set of elementary relations is closed under boolean operations and bounded
quantification, and if R(y, ~z) is an elementary relation, then the function
f(x, ~z) = µy < x R(y, ~z) is also elementary, where the right hand side is
defined to be the least y less than x satisfying R(y, ~z) if there is one and zero
otherwise. We can take µy ≤ x R(y, ~z) to abbreviate µy < x+ 1 R(y, ~z). One
can define functions by cases: if R(~x), f(~x), and g(~x) are elementary, then so
is the function

h(~x) =
{
f(~x) if R(~x)
g(~x) otherwise.

One can also code finite sequences of numbers as a single natural number in
such a way that the usual operations on sequences are elementary. I will write
〈x0, . . . , xk〉 to denote (the code for) the sequence with the elements shown;
if s is such a sequence, length(s) to denote the length of s, last(s) to denote
the index of the last element of s, and (s)i to denote the ith element of s (or
0 if i > last(s)). The concatenation of two sequences s and t will be denoted
ŝ t. From the point of view of computational complexity, the set of elementary
functions is quite large: it can be characterized alternatively as the set of
functions Turing computable with time (and/or space) resources bounded by
a finite iteration of an exponential function. For details, see [25].

Elementary recursive arithmetic, denoted ERA, is the “natural” first-order
theory of the elementary functions. The language has a symbol for each such
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function, and its axioms include the corresponding defining equations, as well
as axioms for < and the usual axioms for equality. To these, one adds the
schema of induction for quantifier-free formulas. ERA is essentially a defini-
tional extension of I∆exp

0 , or Friedman’s elementary function arithmetic, EFA.

Proposition 2.1. Every ∆exp
0 relation is equivalent to an elementary one,

provably in ERA.

Proof (sketch). Use the facts that equality and less-than are elementary
relations, and that the elementary relations are closed under boolean opera-
tions and bounded quantification, provably in ERA. a

Proposition 2.2. ERA can be axiomatized by a set of universal sentences,
and is a conservative extension of I∆exp

0 .

Proof (sketch). The defining equations for the function and relation
symbols are universal, and one can replace the schema of induction with ax-
ioms of the form R(x, ~z) → R(µy ≤ x R(y, ~z), ~z), where R is any elementary
relation. (If R(µy ≤ x R(y, ~z), ~z), the defining equations guarantee that either
µy ≤ x R(y, ~z) is 0 or R(·, ~z) does not hold of its predecessor.)

Proposition 2.1 guarantees that ERA includes I∆exp
0 . To show that ERA is

a conservative extension, one shows that every elementary function is definable
by a ∆exp

0 formula, provably in I∆exp
0 . See, for example, [8, 17]. a

Moving on, the primitive recursive functions are obtained by dropping the
bound requirement in the recursion schema; and primitive recursive arithmetic,
or PRA, is the corresponding theory. Here we can omit the special treatment
of +, ×, exp, and <, since these can defined using primitive recursion. Since
bounded recursion can be seen as a special case of primitive recursion, we
can view the language of PRA as including that of ERA. PRA is properly
stronger: in PRA one can define iterated exponential functions, as well as a
function which evaluates closed terms of ERA.

One can relativize the definitions of the elementary recursive and primitive
recursive functions by adding additional functions to the initial set. On the
axiomatic level, we will consider extensions of ERA and PRA, denoted by
ERA(f0 , . . . , fk ) and PRA(f0 , . . . , fk ) respectively, obtained by adding new
unary function symbols f0, . . . , fk to the underlying language. These are taken
as initial functions in the inductively defined set of function symbols, and so
may “appear” in the definitions of other functions; so, for example, there are
symbols for functions defined using composition and bounded recursion (resp.
primitive recursion) from these. Otherwise, however, there are no axioms
governing their behavior. If f is such an uninterpreted function symbol, I will
write t(~x, f) to indicate that the term t depends on f , when f occurs in t or in
the definition of one of the function symbols occurring in t. If g(~x, f) is a k-ary
function, and h(y, ~z) is l-ary, I will use g(~x, λy h(y, ~z)) to denote the k+ l-ary
function obtained by replacing f(y) by h(y, ~z) everywhere in the definition of
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g; and I will adopt a similar convention for terms and formulas. This notation
is somewhat justified by the following:

Lemma 2.3. Suppose ERA(f ) proves ϕ(~x, f), and h(y, ~z) is a function sym-
bol of ERA. Then ERA proves ϕ(~x, λy h(y, ~z)).

Proof. A straightforward induction on derivations. a

Primitive recursive arithmetic is often taken as a reasonable representation
of Hilbert and Bernays’ informal notion of “finitary” mathematical reasoning.
For this purpose, it is better to view PRA as a quantifier-free theory, obtained
by dropping the universal quantifiers from the axioms and replacing quantifier
rules with a substitution rule, namely, from ϕ(x) conclude ϕ(t) for any term
t free for x in ϕ. Herbrand’s theorem, discussed in Section 6, implies that
the first-order version of PRA is a conservative extension of the quantifier-free
one. In fact, if the first-order version of PRA proves a sentence of the form
∀x ∃y R(x, y), where R(x, y) is a primitive recursive relation, then there is a
function symbol g such that the quantifier-free version proves R(x, g(x)); and
similarly for ERA. In much the same way, the versions of these theories with
extra function symbols may be better understood in terms of conservative
second-order extensions, but developing the details for such a presentation
would take us too far afield.

§3. Computations with ordinal bounds. To get a sense for the kinds of
theorems we are after, consider the first ordinal analyses of arithmetic, due to
Gentzen [14, 15]. Roughly speaking, Gentzen devised a means of “unwinding”
proofs in arithmetic, using iterative procedures that “count down” through the
ordinals below ε0. In particular, given a proof of a Σ1 sentence ∃y ϕ(x, y, f)
in Peano arithmetic (in a language augmented with a function symbol f), his
analysis provides a procedure which, for any x and f , finds a suitable value
for y.

In the next section, I will use this informal characterization to provide a
formal definition of the proof-theoretic ordinal of a theory. But first, we need
to make the notion of an “iterative procedure which counts down through the
ordinals” more precise.

Fix an elementary relation ≺ that happens to be a well ordering of an
elementary subset of the natural numbers. Let variables α, β, γ, . . . range over
the field of ≺; think of these as notations for ordinals. A ≺α-iterative algorithm
is given by a notation β less than α and elementary functions start(~x), next(q),
norm(q), and result(q). These data define a function F (~x), whose value at an
input x is computed by starting in a state given by start(~x); assuming the
norm of this state is less than β, iterating the next function until the norm
of the resulting state fails to decrease; and then returning the value of result ,
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applied to the final state. This algorithm can be summarized as follows:

clock ← β

state ← start(~x)
while norm(state) ≺ clock do

clock ← norm(state)
state ← next(state)

return result(state)

The fact that ≺ is a well ordering guarantees that the while loop always termi-
nates.1 To describe F more formally, say that s is a computation sequence for
F at ~x, written CompSeqF (s, ~x), if s is a sequence 〈s0, s1, s2, . . . , sk〉 satisfying
the following:
• s0 = start(~x)
• for every i < k, si+1 = next(si)
• either

k = 0 and norm(s0) � β, or
k > 0, norm(s0) ≺ β, norm(si+1) ≺ norm(si) for every i < k − 1,
and norm(sk) � norm(sk−1)

Then F (~x) = y means there is a sequence s satisfying CompSeqF (s, ~x), and
result(slast(s)) = y. I will say that a function F (~x) is ≺α-recursive if it is
defined by a ≺α-iterative algorithm.

We can refer to specific ≺α-recursive functions within ERA, by identifying
such a function with the numeral β̄ and function symbols start , norm, next ,
and result that define it. We have to be careful, since in ERA the relation
≺ may not be provably well ordered. In that case, we can use the notation
F (~x) ↓ to abbreviate ∃s CompSeqF (s, ~x), indicating that F is “defined” at
~x. One can show, in ERA, that there is at most one computation sequence
for F at ~x, so F (~x) = y is equivalent to saying that F is defined at ~x and
y is the result of the corresponding computation sequence. More generally,
we can use the notation F (~x) ' G(~x) to abbreviate the assertion that if
either side is defined, then both sides are defined and equal. It is not hard
to see that, again in ERA, ' has the properties of an equivalence relation.
As far as composition is concerned, we can take F (G0(~x), . . . , Gk(~x)) ↓ to
denote the assertion that there are computation sequences for G0, . . . , Gk at
~x, and a computation sequence for F at the results of these computation
sequences. Then F (G0(~x), . . . , Gk(~x)) = y means that F (G0(~x), . . . , Gk(~x))
is defined, and y is the result of the corresponding computation sequence for F .
Inscriptions like F (G0(~x), . . . , Gk(~x)) ' H(~x) are to be interpreted similarly.

We also want a notion of iterative computation relative to a function f .
The easiest thing to do would be to allow start , norm, next , and result to

1It is not hard to extend these notions to cases where ≺ is, more generally, a well-founded
relation; assuming ≺ is a linear ordering simplifies the exposition.
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be elementary functions relative to f , but we will need a slightly finer notion.
This is obtained by requiring the basic functions to be purely elementary, as
before, but allowing the computation to query a single value of f at each
step. That is, a relativized ≺α-iterative algorithm is given by a notation β
less than α and elementary functions start(~x), query(q), next(q, z), norm(q),
and result(q); values of the corresponding function F (~x, f) are computed by
replacing the second line of the while loop above with

state ← next(state, f(query(state))).

Let CompSeqF (s, ~x, f) denote the resulting modification of CompSeq(s, x),
and then proceed as before. From now on I will say that a function F (~x, f) is
≺α-recursive if there is a ≺α-iterative algorithm, relative to f , which computes
it. More generally, F (~x, f0, . . . , fk) is ≺α-recursive if it can be computed by
an algorithm which, at each step, is allowed to pose a single query to each of
the fi.

Having set forth these definitions, I should warn the reader that there are,
in fact, a number competing definitions of ordinal recursion in the literature:
see, for example, the schematic presentation in [26], the ≺α-descent recursive
functions of [11], or the various characterizations in [7] and [25]. The good news
is that the various definitions of the ≺α-recursive functions usually coincide,
with minimal assumptions on the system of notations and α. (See, for example,
[11, Proposition 1.9], [7, Section 3.2], [25], and Lemma 7.3 below.) I have
chosen the presentation above because it is easy to work with, and convenient
for our applications.

§4. The proof-theoretic ordinal of a theory. Following Gentzen’s lead,
we would like to say that the proof theoretic ordinal of T is bounded by α when
there is a finitary proof of the following:

Whenever T proves a Σ1(f) formula ∃y ϕ(x, y, f), there is a ≺α-
recursive function F , such that for any x, y, and f , if F (x, f) = y
then ϕ(x, y, f) is true.

Call this informal statement (*). Note that (*) only makes sense for theories in
a language that includes the language of arithmetic and a function symbol f ,
or, more generally, theories for which we can interpret a notion of provability
for Σ1(f) formulae. Note also that (*) does not imply that F (x, f) is defined
at every value of x and f ; only that when it is defined, it produces a suitable
witness.

The rest of this paper is dedicated to proving (*) in a finitary way, for
various theories T and notations α. This section is devoted to making the
notion of “proving (*) in a finitary way” more precise, and explaining why
this is a desirable goal. The reader that is already satisfied with the informal
characterization should feel free to skip to Section 5.

To turn the informal statement into a mathematical one, we need a formal
notion of “finitary proof,” and an appropriate formalization of (*). For the
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former, let us take primitive recursive arithmetic relative to a function sym-
bol f ; below we will see that weaker theories will do. In PRA(f ), we can
develop a theory of syntax, representing terms and formulae as numbers in
an appropriate way; we can define the set of Σ1(f) formulas as well as names
for the elementary functions; and we can identify ≺α-recursive functions with
the iterative algorithms that define them. In PRA(f ) we can also refer to the
“value” of an elementary function at a given set of inputs, using an appropri-
ate primitive recursive evaluation function for the set of elementary recursive
functions, and we can refer to the truth value of a ∆0(f) formula at a given
set of parameters, using a truth predicate for ∆0(f) formulas that is primitive
recursive in f .

Expressed in greater detail, (*) asserts the following:
For every proof d of a Σ1(f) sentence e, there is a ≺α-recursive
function F , such that for every x, y, f , and computation sequence
s for F at x and f , if the result of the computation is y, then y
witnesses the truth of e at x and f .

We can get rid of the existential quantifier by requiring, more stringently, that
we have a primitive recursive function F(d) which extracts F from the proof
d; and then we can leave the universal quantification over d, e, x, y, f , and
s implicit. Given a primitive recursive relation Proof T (d, e), an elementary
well ordering ≺, and a notation α, we can then take the statement “the proof-
theoretic ordinal of T is at most α” to mean that there is a function symbol F ,
and a PRA(f )-proof of an appropriate formalization of the following assertion:

For every d, F(d) is a ≺α-recursive function, and whenever
• e is a Σ1(f) formula with free variable x,
• Proof T (d, e),
• CompSeqF(d)(s, x , f ), and
• result(slast(s)) = y

then y witnesses the truth of e at x and f .
There is, no doubt, much to criticize in this choice of a definition, but let us

consider some of the things one can say in its favor. To start with, it is strong,
which is to say, it implies all the usual results of an ordinal analysis. Suppose
the proof-theoretic ordinal of T is at most α, according to our definition. Then
we have

1. A consistency proof for T
2. A characterization of T ’s provably total computable functions
3. A characterization of T ’s provably well-ordered computable relations

For the first, ignoring x and f and taking e to be the sentence “0 = 1,”
we can conclude that the consistency of T is provable in PRA together with
any principle that implies that every ≺α-iterative procedure terminates. For
the second, we can ignore f and conclude that any Π2 statement provable
in T has a ≺α-recursive Skolem function. For the third, suppose ≺′ is a
Σ1-definable well ordering such that T proves ∃y (f(y + 1) 6≺′ f(y)). If the



10 JEREMY AVIGAD

order type of ≺′ is greater than α, there is an order-preserving embedding g
of notations less than α into the field of ≺′. We can use the conclusion of (*)
to obtain a ≺α-recursive function H(g, h), which for any h returns a value y
such that that h(y + 1) 6≺ h(y). With minor assumptions on α, one can use
this to define a ≺α-recursive function J(g, x) that diagonalizes the functions
that are ≺α-recursive in g, yielding a contradiction. (See [11] for additional
information.) Incidentally, Rathjen [24] notes that for second-order theories
that include arithmetic comprehension (or first-order theories that have such
conservative extensions), 3 extends to arithmetically definable orderings; and
for second-order theories that include the Σ1

1 axiom of choice, 3 extends to the
hyperarithmetically definable orderings as well.

The formalization of (*) is unpalatable, and it is tempting to take the as-
sertion that the proof-theoretic ordinal of T is at most α to mean that (*)
is simply true. But this has the undesired consequence that adding arbitrary
true Π1 statements to T (like consistency statements) does not increase the
proof-theoretic ordinal. Similarly, defining the proof-theoretic ordinal in terms
of provable well orderings means that the ordinal does not change when one
adds arbitrary true Σ1

1 sentences to the theory; see [24] for a discussion. This
points to a second advantage of the definition above: it is immune to these
objections.

Our formalized version of (*) expresses a relationship between a primitive
recursive representation of T , and a system of notations for ordinals. It is well
known that one can always cook up representations of theories and ordinals
which render the ordinal analysis trivial, or meaningless; in this respect the
definition above is honest, since it is really the “natural” representations that
we care about. Some logicians are disturbed by the absence of a formal defini-
tion of naturality, and so prefer to characterize the proof-theoretic ordinal as
the least upper bound to the theory’s provable well orderings; this characteri-
zation is independent of the representations, but has the drawbacks mentioned
above. But the absence of such a formal definition should not concern us much.
The natural representations of theories and ordinals are just those for which
the provability of (*) is interesting; and very few mathematicians have formal
criteria which tell them which theorems of their subject have this property.2

Bounding the proof-theoretic ordinal of a theory has two aspects: proving
(*), and doing so in a finitary way. In the sections that follow, I will focus on
the first; but I will proceed with the implicit understanding that once we have
specified an appropriate ordinal notation system (with properties described in
the next section), every definition, theorem, and proof can be formalized in
PRA(f ). The exception is this: when I state as a theorem that “the proof-
theoretic ordinal of T is at most α,” I mean simply that (*) holds, again with

2Another approach to dealing with the various definitions of “proof theoretic ordinal” in
the literature is to embrace the multiplicity, and explore the relationships between them.

See [6] for a development along these lines, as well as the discussion in [24].
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the implicit understanding that the formalized version of (*) can be proved in
PRA(f ).

Let me close this section with two notes. First, the choice of PRA(f ) is not
crucial. We need a metatheory that is strong enough to formalize syntax and
quantify over elementary functions, and is strong enough to prove Herbrand’s
theorem. For these purposes, I∆0 (f ) together with the assertion that an
iterated exponential function is total will suffice. If one uses a weaker class
of functions in defining the ordinal-iterative algorithms, one can get by with
even weaker theories, by “pushing” the work involved in satisfying Herbrand’s
theorem into the computation of the ≺α-recursive function. The possibility
of using a weaker metatheory is interesting from a foundational point of view,
but it does not seem to help with the analysis of weaker theories. (For evidence
of this, see [29]. For a more fruitful approach to the analysis of weak theories,
see the use of “dynamic ordinals” in [5].)

The second note has to do with lower bounds. One can take the statement
“the proof-theoretic ordinal of T is exactly α” to mean that the proof-theoretic
ordinal of T is at most α, but it is not at most β for any β less than α. This
takes us outside our finitary metatheory, since it requires us to show that for
any such β there is no proof of the formalized version of (*) in PRA(f ). But, on
the assumption that PRA(f ) is consistent, one obtains the desired conclusion
by giving a finitary proof that for every β less than α, there is a provable Σ1(f)
formula that is not witnessed by any ≺β-recursive function; and one typically
achieves this goal by developing a theory of transfinite recursion below α in
T . In this paper I will focus on the upper bounds, but, in fact, all the upper
bounds I provide will be sharp in this sense. (See [21, 22] for more information
on establishing the lower bounds.)

§5. Systems of ordinal notations. As noted in the last section, ordinal
analysis, as understood here, involves calibrating the strength of various the-
ories relative to an elementary recursive system of ordinal notations. In this
section I will discuss the properties that our system of notations, ≺, needs to
satisfy, provably in ERA(f ). For more information on ordinal notations, see,
for example, [3, 21, 22, 24].

For most of the results below, we only need to assume that ≺ is a linear
ordering, with elementary functions +, ·, and α 7→ ωα, for which the “usual
properties” hold. In other words, I will assume that ≺ is an elementary recur-
sive ordinal notation system (ERONS) in the terminology of [11], such that
the given functions are everywhere defined; a list of the “usual properties”
they are to satisfy appears in [11, Section 1]. In particular, we will need to use
the fact that any α can be written in Cantor normal form, α = ωβ1 + . . .+ωβk

with β1 � . . . � βk. If α′ = ωβ′1 +. . .+ωβ′
k′ is also in Cantor normal form, then

the symmetric sum of α and α′, written α#α′, is equal to ωγ1 + . . .+ ωγk+k′ ,
where the γi’s list the βi’s and the β′i’s in decreasing order. Unlike ordinary
ordinal addition, the symmetric sum is strictly monotone in both arguments.
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Classically, ε0 is defined to be the least fixed-point of the function α 7→ ωα;
equivalently, it is the limit of the sequence 〈ωn〉n∈ω, where ω0 = 1 and ωn+1 =
ωωn . The statement of Theorem 9.7 assumes that there is a notation with
these properties.

More generally, the sequence of Veblen functions on any regular cardinal
is defined by letting ϕ0(β) = ωβ , and otherwise letting ϕα enumerate the
simultaneous fixed points of {ϕγ | γ < α}. In Section 10, we need to assume
that there is a binary elementary function ϕ(α, β), defined on the system of
notations, representing the Veblen functions. Writing ϕα(β) instead of ϕ(α, β),
we will assume that for every α, β, γ, and δ, ϕα(β) is less than ϕγ(δ) if and
only if either
• α ≺ γ and β ≺ ϕγ(δ),
• α = γ and β ≺ δ, or
• α � γ and ϕα(β) ≺ δ.
I will say that an ordinal notation α is infinite if it is greater than or equal

to ω. Many of the lemmata and theorems below are stated most cleanly by
assuming closure properties on a notation α. For reference, here are some
equivalent characterizations.

Proposition 5.1. Let α be infinite. Then
1. α is closed under addition if and only if it is equal to ωγ , for some γ.
2. α is closed under the function β 7→ ω ·β if and only if it is equal to ωω ·γ,

for some γ.
3. α is closed under multiplication if and only if it is equal to ω(ωγ), for

some γ.
4. α is closed under the function β 7→ ωβ if and only if it is equal to εγ (that

is, ϕ1(γ)), for some γ.

The proof is an exercise in ordinal arithmetic (see [21]).

§6. Herbrand’s theorem. Herbrand’s theorem can be stated as follows:

Theorem 6.1. Let L be a language with at least one constant symbol, let
ϕ(~x) be a quantifier-free formula in L, and suppose ∃~x ϕ(~x) is provable in
classical first-order logic with equality. Then there are sequences of terms
~t0, . . . ,~tk, whose free variables are among those of ∃~x ϕ(~x), such that ϕ(~t1) ∨
ϕ(~t2)∨ . . .∨ϕ(~tk) is provable in propositional logic from substitution instances
of the equality axioms.

This theorem, which effectively enables us to extract additional information
from proofs of existential sentences, will form a cornerstone to our investiga-
tions. There are model-theoretic proofs of Herbrand’s theorem: if the con-
clusion fails, the set {¬ϕ(t) | t is a closed term} is propositionally consistent
with the set of all substitution instances of the equality axioms; and from a
satisfying truth assignment, one can build a model of ∀x ¬ϕ(x). But Her-
brand’s theorem is also an easy consequence of the cut-elimination theorem
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(see [8, 26]), and hence provable in our finitary metatheory. See also [27, 23]
for alternative syntactic proofs, and [19] for Herbrand’s original proof.

I will say that a theory T is universal if it can be axiomatized by a universal
set of sentences (or, equivalently, a quantifier-free set of formulae, since ∀~y ψ(~y)
follows from an axiom ψ(~y)).

Corollary 6.2. Let L and ϕ(~x) be as above, and let T be a universal theory
in L. If T proves ∃~x ϕ(~x), then there are sequences of terms ~t0, . . . ,~tk, whose
free variables are among those of ∃~x ϕ(~x), such that T proves ϕ(~t1) ∨ ϕ(~t2) ∨
. . .∨ϕ(~tk). Moreover, we can assume this formula is provable in propositional
logic from substitution instances of axioms of T and equality axioms.

Proof. Suppose T proves ∃~x ϕ(~x). Then there are (universal closures of)
axioms of T , ψ1, . . . , ψk, such that ∃~x ϕ(~x) is provable from ψ1, . . . , ψk. By
the deduction theorem, ψ1∧ . . .∧ψk → ∃~x ϕ(~x) is provable in first-order logic.
Bring all the quantifiers to the front, and apply Herbrand’s theorem. a

In many cases (but not all the ones we will consider), the theory T will be
rich enough so that for every sequence of terms t1(~x), . . . , tk(~x) and quantifier-
free formulae ϕ1(~x), . . . , ϕk−1(~x), there is a function symbol f(~x) such that T
proves

f(~x) =


t1(~x) if ϕ1(~x)
t2(~x) if ¬ϕ1(~x) ∧ ϕ2(~x)
...
tk(~x) otherwise.

In cases like this, we can replace the sequence of terms t1, . . . , tk in the Corol-
lary 6.2 with a single function symbol f .

Recall that if G(x, f) is a ≺α-recursive function, we will interpret references
to G in the context of ERA(f ) as references to the elements β, start , norm,
next , query , and result that define the iterative algorithms that computes it.
As an application of Herbrand’s theorem, we have the following:

Theorem 6.3. Suppose θ(x, y, f) is a ∆0(f) formula with the free variables
shown, and suppose there is an α-recursive function G(x, f) such that ERA(f )
proves G(x, f) = y → θ(x, y, f). For any x and y, if G(x, f) is defined and
equal to y, then θ(x, y, f) is true.

Proof. The conclusion follows from the soundness of ERA(f ), but we have
to take care to make sure that our proof is finitary. The following proof uses
an evaluation function for the set of functions that are elementary recursive in
f , and a truth predicate for ∆0(f) sentences.

Suppose ERA(f ) proves G(x, f) = y → θ(x, y, f). From the definition of
G(x, f) = y, we see that it also proves CompSeqG(s, x, f)∧ result((s)last(s)) =
y → θ(x, y, f). Now, suppose G(x, f) is defined and equal to y, so that in ad-
dition, there is an s satisfying CompSeqG(s, x, f) and result((s)last(s)) = y.
Then for this particular s, x, and y, ERA(f ) proves CompSeqG(s̄, x̄, f) ∧
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result((s̄)last(s̄)) = ȳ → θ(x̄, ȳ, f). By Herbrand’s theorem, there is a proposi-
tional proof of this fact from closed instances of equality axioms and axioms of
ERA(f ). The axioms of ERA(f ) are true; so, by induction on the length of the
proof, the conclusion is also true. As a result, we have that CompSeqG(s, x , f )
and result(s)last(s)) = y imply θ(x, y, f). So θ(x, y, f) is true. a

This theorem seems minor, but it will play a central role. It enables us to
show that the ordinal of a theory T is less than or equal to α, by showing
that whenever T proves a statement of the form ∃y θ(x, y, f), then there is a
≺α-recursive function G(x, f) which, provably in ERA(f ), finds a witness. We
will do this repeatedly, providing explicit translations; this is what makes the
account finitary. But we will proceed in steps, successively reducing more “ab-
stract” theories to more “concrete” ones, and working “in” the target theory
as much as possible.

§7. Primitive recursion. In this section we will bound the proof-theoretic
ordinal of primitive recursive arithmetic. To do so, we will first show that
with sufficient conditions on α, the ≺α-recursive functions have nice closure
properties, provably in ERA(f ). In particular, if α is ωω, we will see that one
can use a single ≺α-recursive function to assign “correct” values to a finite set
of terms in PRA(f ), again provably in ERA(f ). Applying Theorem 6.3 will
then yield the desired upper bound.

The first lemma states that for α greater than 1, the ≺α-recursive functions
in f include both the purely elementary functions and f itself.

Lemma 7.1. Suppose α is greater than 0. Then for every elementary func-
tion g(~x) (not involving the function f), there is a ≺α-recursive function
G(~x, f) such that ERA(f ) proves G(~x, f) ' g(~x). Also, if α is greater than 1,
there is a ≺α-recursive function H(x, f) such that ERA(f ) proves H(x, f) '
f(x).

Proof. For the first claim, let the algorithm for H store ~x in the state,
and then return g(~x) immediately. In other words, assuming g is arity k, take
β = 0, start(~x) = 〈~x〉, norm(q) = 0, result(q) = g((q)0, . . . , (q)k).

For the second claim, let the algorithm for H store x in the state, query f ,
and then return the result. That is, take β = 1, start(x) = x, query(q) = q,
next(q, z) = z, norm(q) = 0, result(q) = q. a

The next lemma gives conditions under which the ≺α-recursive functions
are closed under composition, again provably in ERA(f ).

Lemma 7.2. Suppose α is infinite and closed under addition, and suppose
that F0(~x, f), . . . , Fk(~x, f) and G(z0, . . . , zk) are ≺α-recursive functions. Then
there is a ≺α-recursive function H(~x, f) such that ERA(f ) proves H(~x, f) '
G(F0(~x, f), . . . , Fk(~x, f)).

Proof. Let the algorithm for G carry out the algorithms for F0 through
Fk on input ~x, and then send the result to the algorithm for G.
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In more detail, suppose the algorithm for each Fi is given by the data βi,
start i, query i, next i, and result i, and suppose the algorithm for G is given by
βk+1, startk+1, queryk+1, nextk+1, and resultk+1. Take the states of H to code
tuples of the form 〈i, c, s, u, v〉, where i indicates the current subalgorithm, c
is the setting of an ordinal “clock,” s is the state in the subalgorithm, u stores
the original input, and v stores the results which have been computed so far.
The algorithm for H then corresponds to the data β, start , query , next , and
result , given as follows. First, set β = βk+1 + βk + . . .+ β0 + 1, and

start(~x) = 〈0, β0, start0(~x), ∅, 〈~x〉〉.

Assuming q is of the form 〈i, c, s, u, v〉, set

norm(q) = βk+1 + . . .+ βi + c

and

query(q) = query i(s).

Then define next(q, z) by cases, again assuming that q is of the form 〈i, c, s, u, v〉:
1. If normi(s) ≺ c, we are in the middle of the computation of the ith

algorithm. In that case, set

next(q, z) = 〈i,normi(s),next i(s, z), u, v〉.

2. If normi(s) � c, we have completed the computation of the ith algorithm.
(a) If i < k, store the result and begin algorithm i+ 1: set

next(q, z) = 〈i+ 1, βi+1, start i+1((u)0, . . . , (u)l), u, v̂ 〈result i(s)〉〉,

where l is the arity of the Fi’s.
(b) If i = k, begin the computation of G: set

next(q, z) = 〈k + 1, βk+1, startk+1((v)0, . . . , (v)k−1, resultk(s)), ∅, ∅〉

(c) If i = k + 1, we are done. Set next(q, z) = q to flag this fact.
Finally, set result(q) = resultk+1(s).

It is not hard to show, in ERA(f ), that from a computation sequence for H
at ~x and f one can extract computation sequences for F1, . . . , Fk at ~x and f ,
and a computation sequence for G at the result of those computations. a

From now on, I will rely on less formal descriptions of the algorithms, and
leave the details of the implementation to the reader. The next lemma shows
that assuming that α is closed under multiplication, the set of ≺α-recursive
functions is closed under a schema of ≺α-recursion, in which the functions
defining the algorithm are themselves ≺α-recursive. Notice that the condition
on s in the statement of the lemma is identical to CompSeqF (s, ~x), except that
the functions defining the algorithm is no longer assumed to be elementary.

Lemma 7.3. Suppose α is infinite and closed under multiplication. Given
β less than α and ≺α-recursive functions Start(~x, f), Norm(q , f ), Next(q , f ),
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and Result(q , f ), there is a ≺α-recursive function F (x, f), such that ERA(f )
proves

F (~x, f) = y ↔ ∃s (
(s)0 = Start(~x, f) ∧
∀i < length(s) ((s)i+1 = Next((s)i, f)) ∧
((length(s) = 1 ∧Norm((s)0, f) � β) ∨

(length(s) > 1 ∧Norm((s)0, f) ≺ β ∧
∀i < (last(s)− 1) (Norm((s)i+1, f) ≺ Norm((s)i, f)) ∧
Norm((s)last(s), f) � Norm((s)last(s)−1, f))) ∧

Result((s)last(s)) = y).

Proof. The proof is similar to the preceding one. The algorithm for F
first computes Start(~x, f); then iteratively computes Norm and Next , until
the norm of the state fails to decrease; and then computes Result . Assuming
the algorithms for Start , Norm, Next , and Result are, respectively, γ-, δ-
, ε-, ζ-recursive, the algorithm for H can be made η-recursive, where η =
ζ + (δ + ε) · β + γ + 1. a

Using ω-recursion, we can simulate ordinary primitive recursion.

Lemma 7.4. Suppose α is infinite and closed under the function γ 7→ γ · ω.
Let F0(~z, f) and F1(x,w, ~z, f) be ≺α-recursive. Then there is is a ≺α-recursive
function G(x, ~z, f) such that ERA(f ) proves G(0, ~z, f) ' F0(~z, f) and

G(x+ 1, ~z, f) ' F1(x,G(x, ~z, f), ~z, f).

Furthermore, we can define G in such a way that ERA(f ) proves that whenever
G(x, ~z, f) is defined, there is a sequence of computation sequences 〈s0, . . . , sx〉,
such that

• s0 is a computation sequence for F0 at ~z, f .
• If x is greater than or equal to 1, s1 is a computation sequence for F1 at

(1, result0((s0)last(s0)), ~z), f .
• For each i such that 0 < i < x, si+1 is a computation sequence for F1 at

(i, result1((si)last(si)), ~z), f .
• G(x, ~z, f) = result1((sx)last(sx)).

Proof. As in the previous proof, with β = ω, we can design an algorithm
that successively computes G(0, ~z, f), G(1, ~z, f), . . . G(x, ~z, f). a

Lemmata 7.1–7.4 imply that we can assign to each function symbol g(~x, f)
of PRA(f ) a ≺ωω-recursive function Fg(~x, f), in such a way that ERA(f )
proves that the axioms of PRA(f ) are satisfied by these functions, at least
at arguments where they are defined. Recall that we can take the language
of PRA(f ) to include that of ERA(f ); below we will need to know that the
translation g 7→ Fg preserves elementary functions, in the following sense.
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Lemma 7.5. Let g(~x, f) be an elementary function in f . Then ERA(f )
proves

Fg(~x, f) ↓ → Fg(~x, f) = g(~x, f).

Proof. By induction on the definition of g, using the additional information
in Lemma 7.4. a

In fact, in ERA(f ) one can prove the existence of suitable computation
sequences, and therefore show ∀~x Fg(~x, f) ↓. We will not, however, need this
fact below.

We can now show that the proof-theoretic ordinal of PRA(f ) is at most ωω.
The observations following Lemma 7.4 show that one can interpret PRA(f ) in
ERA(f ) together the assumptions that each ≺ωω-recursive function is every-
where defined. In order to use Theorem 6.3, however, we need to show that
a single ≺ωω-recursive function suffices. The idea is this: we will show that
given any proof in PRA(f ), one can use a single ≺ωω-recursive function to
assign correct values to all the terms appearing in the proof; and furthermore,
that we can do this “within” ERA(f ).

Say a sequence of terms t0, . . . , tk in PRA(f ) is a formation sequence if each
ti is either a constant or variable, or the result of applying a function symbol
of PRA(f ) to previous terms in the sequence. To each formation sequence
S in which no variable other than x occurs, the following definition assigns
a formula EvalS(e, x, f) in the language of ERA(f ), which asserts that the
sequence e assigns the correct values to the members of S, when the symbols
x and f are interpreted as x and f , respectively.

Definition 7.6. For each formation sequence S in which no variable other
than x occurs, let EvalS(e, x, f) be the formula in the language of ERA(f ),
defined inductively as follows:

• Eval∅(e, x, f) is the sentence 0 = 0
• If tk is the variable x, then Eval 〈t0,... ,tk〉(e, x, f) is defined to be

(e)k̄ = x ∧ Eval 〈t0,... ,tk−1〉(e, x, f).

• If tk is of the form g(ti0 , . . . , til
, f), where g is a function symbol of

PRA(f ), then Eval 〈t0,... ,tk〉(e, x, f) is

(e)k̄ = Fg((e)ī0 , . . . , (e)īl
, f) ∧ Eval 〈t0,... ,tk−1〉(e, x, f).

Lemma 7.7. Let S be a formation sequence of terms in the language of
PRA(f ) in which at most the variable x is free. Then there is a ≺ωω-recursive
function G(x, f) such that ERA(f ) proves G(x, f) = e→ EvalS(e, x, f).

Proof. By induction on the length of S, using Lemmata 7.1–7.4. a
Given a proof in the quantifier-free version of PRA(f ), we can use Lemma 7.7

to find a correct evaluation of the terms appearing in the proof.
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Lemma 7.8. Suppose PRA(f ) proves ∃y θ(x, y, f), where θ is ∆0(f). Then
there is a ≺ωω-recursive function H(x, f) such that ERA(f ) proves H(x, f) =
y → θ(x, y, f).

Proof. Suppose PRA(f ) proves ∃y θ(x, y, f). Then it also proves the for-
mula ∃y (χθ(x, y, f) = 1), where χθ is a an elementary recursive characteristic
function representing θ. By Herbrand’s theorem, there is a function symbol
g(x, f) of primitive recursive arithmetic, and a proof d of χθ(x, g(x, f), f) = 1
in propositional logic, from substitution instances of the equality axioms and
axioms of PRA(f ). For example, we may take d to be a sequence of quantifier-
free formulae in the language of PRA(f ) such that each line either is an instance
of an axiom of PRA(f ), is an instance of an axiom of equality, is an instance
of a propositional tautology, or follows from previous lines by modus ponens
(or other valid propositional inferences).

Let S be a formation sequence that includes all the terms occurring in d.
Each line of d is a boolean combination of atomic formulae of the form t = s,
where t and s are terms occurring in S. If ϕ is such a formula, let ϕe denote
the formula obtained by replacing each term ti by (e)ī. Then by induction,
one can show that for each line ϕ of d, then ERA(f ) proves

EvalS(e, x, f)→ ϕe.

When ϕ is an axiom of equality or PRA(f ), this follows from the definition of
EvalS(e, x, f); otherwise, the propositional axioms and inferences of d can be
mirrored in ERA(f ).

In particular, suppose g(x, f) is the kth term in S and χθ(x, g(x, f), f) is
the lth. Since the conclusion of d is χθ(x, g(x, f), f) = 1, in ERA(f ) one can
prove

EvalS(e, x, f)→ (e)l̄ = 1.

But if e evaluates terms correctly, (e)l̄ is equal to Fχθ
(x, (e)k̄, f); so ERA(f )

proves

EvalS(e, x, f)→ (e)l̄ = Fχθ
(x, (e)k̄, f),

and hence EvalS(e, x, f) → Fχθ
(x, (e)k̄, f) = 1. But by Lemma 7.5, ERA(f )

proves that Fχθ
(x, (e)k̄, f) = 1 is equivalent to θ(x, (e)k̄, f).

In short, in ERA(f ) we can prove

EvalS(e, x, f)→ θ(x, (e)k̄, f).

Using Lemma 7.7, let G(x, f) be a ≺α-recursive function which returns an e
satisfying EvalS(e, x, f). Using Lemmata 7.1 and 7.2 let H(x, f) be a ≺α-
recursive function such that ERA(f ) proves H(x, f) ' (G(x, f))k̄. Putting
it all together, we have that ERA(f ) proves H(x, f) = y → θ(x, y, f), as
desired. a

By Theorem 6.3 this yields

Theorem 7.9. The proof-theoretic ordinal of PRA(f ) is at most ωω.
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At this point, we could extend the analysis to various forms of primitive
recursion on the ordinals, and use similar methods to obtain ordinal analyses
of various extensions of PRA(f ). But instead of pursuing that, let us turn
instead to theories of transfinite induction.

§8. Π1 Transfinite induction. In the last section, we saw that ordinal
recursion can be used to simulate ordinary primitive recursion; but this should
not have been very surprising. In this section we will be somewhat bolder: we
will augment our basic theory with function symbols that are intended to
denote noncomputable functions, allowing us to prove a form of transfinite
induction. A judicious application of Herbrand’s theorem will then enable us
to extract constructive information from proofs in the augmented theory.

By Proposition 2.2, we can represent our system of notations in the language
of I∆exp

0 . If ϕ(x) is any formula in this language and β is any ordinal notation,
then the principle of transfinite induction on β for ϕ is

∀γ ≺ β̄ (∀δ ≺ γ ϕ(δ)→ ϕ(γ))→ ∀γ ≺ β̄ ϕ(γ).

In words, this reads “if ϕ(x) is progressive on β, then it holds for every ordinal
less than β.” Its contrapositive,

∃γ ≺ β̄ ¬ϕ(γ)→ ∃γ ≺ β̄ (¬ϕ(γ) ∧ ∀δ ≺ γ ϕ(δ))

is the least-element principle on β for ¬ϕ. If Γ is any set of formulae, then
TI (β,Γ) and LEP(β,Γ) denote, respectively, the principle of transfinite induc-
tion and the least-element principle on β, restricted to formulae in Γ. Similarly,
TI (≺α,Γ) and LEP(≺α,Γ) denote these principles for arbitrary β less than
α.

Our goal here is to provide ordinal analysis of the theories for the form

I∆exp
0 (f ) + TI (≺α,Π1 (f )).

The following lemma gives some equivalent characterizations.

Lemma 8.1. Assume α is closed under the function β 7→ ω · β. Then over
I∆exp

0 (f), the following schemata are equivalent:
1. TI (≺α,Π1(f))
2. LEP(≺α,Σ1(f))
3. TI (≺α,∆exp

0 (f))
4. LEP(≺α,∆exp

0 (f))

Proof. The contrapositive of any instance of 1 is equivalent to an instance
of 2, and vice-versa; similarly for 3 and 4. Clearly 2 implies 4, so it suffices to
show that 4 implies 2.

Let θ(γ, x) be ∆exp
0 and let β be a notation less than α. Arguing in

I∆exp
0 (f ) + LEP(≺α,∆exp

0 (f)), let us prove the least-element principle on β
for ∃x θ(γ, x). Let θ′(δ) be a formula which asserts that, if δ is written in the
form ω · δ′ + y, then θ(δ′, y). Now suppose θ(γ, x). Then θ′(ω · γ + x). By the
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least-element principle on ω · β for θ′, there is a least δ satisfying θ′(δ). But if
δ = ω · δ′ + y, then δ′ is the least element satisfying ∃x θ(δ′, x). a

Now let us add function symbols to ERA(f ) that enable us to interpret
the new axioms. Using the last characterization in Lemma 8.1, it is sufficient
to have, for each notation β less than α and elementary relation R(~x, y, f),
a function g(~x, f) which returns the least γ less than β satisfying R(~x, γ, f),
whenever such a γ exists. The approach we will take is slightly more general,
but not more difficult.

Given an elementary function norm(~x, z, f), let “z minimizes norm(~x, ·, f)
below β” denote the following formula:

∀w (norm(~x,w, f) ≺ β → norm(~x, z, f) � norm(~z, w, f)).

In words, if anything has a norm less than β, then z has the smallest possible
norm. Let

ERA(f ) + min(≺α, E(f))

be the theory obtained by adding, for each elementary function norm(~x, z, f)
and β less than α, a new function symbol, minnorm,β(~x, f), to the language,
and an axiom

“minnorm,β(~x, f) minimizes norm(~x, ·, f) below β̄.”

In the name of the theory, the “E(f)” indicates that the norm functions are
required to be elementary in f ; note that that the theory does not have sym-
bols, say, for elementary functions or minimization functions defined from the
ones we have just added.

Even for β = 1, a function minnorm,β may be nonconstructive. For example,
let T (x, y, f) be an elementary relation such that ∃y T (x, y, f) is a complete
Σ1(f) formula; more precisely, assume T has the property that for any Σ1(f)
formula ϕ(~w, f) there is a natural number n, such that ϕ(~w, f) is equivalent,
in ERA(f ), to the formula ∃y T (〈n̄, ~w〉, y, f). (Think of T (〈n̄, ~w〉, y, f) as
asserting that y witnesses the truth of the Σ1(f) formula coded by n, at the
parameters ~w; or T may be a version of Kleene’s T predicate, asserting that
y is a halting computation of the nth Turing machine with oracle f , on input
~w. Below, we will also assume that n can be computed in an elementary way
from a Gödel number of ϕ.) Let β = 1, and let

norm(x, z, f) =
{

0 if T (x, z, f)
1 otherwise.

Then minnorm,β(~x) is guaranteed to return a witness y to T (x, y, f), if there
is one; this enables us, for example, to solve the halting problem.

Lemma 8.2. For each α, ERA(f ) + min(≺α, E(f)) is a universal theory
containing I∆exp

0 (f ) + TI (≺α,Π1 (f )).

Proof. The formula “minnorm,β(~x, f) minimizes norm(~x, ·, f) below β̄” is
universal, so it suffices to show that instances of the Σ1 least-element principle
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are derivable from these axioms. Given a ∆exp
0 formula θ(y, γ, ~x, f) with the

free variables shown and a notation β, let

norm(~x, z, f) =
{

(z)1 if (z)1≺β and θ((z)0, (z)1, ~x, f)
β otherwise

Arguing in ERA(f )+min(≺α, E(f)), if there is any γ satisfying ∃y θ(y, γ, ~x, f),
then (minnorm,β(~x))1 is a least such one. a

We will carry out the ordinal analysis of ERA(f ) + min(≺α, E(f)) in two
steps. First, we will show that one can reduce the problem of assigning the
correct values to a set of terms in this theory to the problem of finding a
value minimizing an appropriate norm, provably in ERA(f ). Then we will
use Herbrand’s theorem to replace the latter problem with a ≺α-recursive
calculation.

If ϕ(~x, z) is any formula in the language of ERA(f ) and β is any notation, let
us say that ERA(f ) proves that ϕ(~x, y) is solvable (for y) by β-minimization
if there are elementary functions norm(~x, z, f) and result(~x, z, f) such that
ERA(f ) proves

“z minimizes norm(~x, ·) below β̄”→ ϕ(~x, result(~x, z, f)).

Say that ERA(f ) proves that ϕ(~x, y) is solvable by≺α-minimization if it proves
that ϕ(~x, y) is solvable by β-minimization for some β less than α. Note that
the “solution” to ϕ(~x, z) may not be unique. If ERA(f ) also proves ϕ(~x, z) ∧
ϕ(~x, z′)→ z = z′ it makes sense to say that ERA(f ) proves that ϕ(~x, z) defines
a function that is computable by ≺α-minimization; but for our purposes the
more general notion is more useful.

The next few lemmata provide closure properties on the kinds of problems
that are solvable by ≺α-minimization.

Lemma 8.3. For any α, if g(~x, f) is an elementary function, then ERA(f )
proves that the relation g(~x, f) = y is solvable by ≺α-minimization.

Proof. Let norm(~x, z, f) be arbitrary, and let result(~x, z, f) = g(~x, f). a
Lemma 8.4. Suppose β is less than α, and norm(~x, y, f) is an elementary

function in f . Then ERA(f ) proves that the relation “z minimizes norm(~x, ·, f)
below β” is solvable by ≺α-minimization.

Proof. Leave β and norm alone, and let result(~x, z, f) = z. a
Lemma 8.5. Let α be closed under addition. If ϕ0(~x, y, f), . . . , ϕk(~x, y, f)

are all solvable by ≺α-minimization, provably in ERA(f ), then so is the for-
mula ϕ0(~x, (y)0, f) ∧ . . . ∧ ϕk(~x, (y)k, f).

Proof. Suppose each ϕi is solvable by βi, normi(~x, z, f), and result i(~x, z, f).
We can assume without loss of generality that ERA(f ) proves that for every
~x and z, normi(~x, z, f) is less than or equal to βi, by replacing normi(~x, z, f)
with min(βi,normi(~x, z, f)) if necessary. Let β = β0# . . .#βk, let

norm(~x, z, f) = norm0(~x, (z)0, f)# . . .#normk(~x, (z)k, f),
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and let

result(~x, z, f) = 〈result0(~x, (z)0, f), . . . , resultk(~x, (z)k, f)〉.

It is not hard to see that if z minimizes norm(~x, ·, f) below β, then each (z)i

minimizes normi(~x, ·, f) below βi. a

Lemma 8.6. Let α be infinite and closed under multiplication. Suppose
ϕ0(~x,w, f) and ϕ1(~x,w, y, f) are solvable by ≺α-minimization, for w and y
respectively, provably in ERA(f ). Then the formula

ϕ0(~x, (y)0) ∧ ϕ1(~x, (y)0, (y)1),

and the formula

∃w (ϕ0(~x,w) ∧ ϕ1(~x,w, y)),

are solvable for y by ≺α minimization, provably in ERA(f ).

Proof. Suppose ϕ0 is solved by β0, norm0(~x, z, f), and result0(~x, z, f), and
ϕ1 is solved by β1, norm1(~x,w, z), and result1(~x,w, f). As in the previous
lemma, we can assume that norm0 and norm1 are bounded by β0 and β1

respectively. Let β = (β1 + 1)(β0 + 1) and let

norm(~x, z, f) = (β1 + 1) · norm0(~x, (z)0, f) +

norm1(~x, result0(~x, (z)0, f), (z)1).

Suppose z minimizes norm(~x, ·, f) below β. Then (z)0 minimizes norm0(~x, ·, f)
below β0; otherwise we could change (z)0 and decrease the value of sum above,
independent of the behavior of the second term. Fixing (z)0, we also see that
(z)1 minimizes norm1(~x, result0(~x, (z)0, f), ·, f) below β1, because otherwise
we could change (z)1 and decrease the value of the sum above. To solve the
first formula, take

result(~x, z, f) = 〈result0(~x, (z)0, f), result1(~x, result0(~x, (z)0, f), (z)1, f)〉.

To solve the second formula, take

result(~x, z, f) = result1(~x, result0(~x, (z)0, f), (z)1, f).

This completes the proof. a
Taken together, the lemmata above imply that for infinite α closed under

multiplication, the functions that are computable by ≺α-minimization are
closed under composition. As an exercise, the reader can try to prove that if
F (~x, f) is a ≺α-recursive function, then it is computable by ≺α-minimization.
(See also the first proof of Lemma 9.2 below.)

The next step is to show that given any formation sequence S for terms in
ERA(f ) + min(≺α, E(f )), the problem of finding an appropriate evaluation of
the terms in S is solvable by ≺α-minimization. We have to be careful, since,
in general, there may be more than one value that we can assign to a term of
the form minnorm,β(t1, . . . , tk, f); so when more than one term of this form
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appears in the formation sequence, we have to make sure that the evaluation
assigns values to these terms consistently.

Definition 8.7. For each formulation sequence S for terms in the theory
ERA(f ) + min(≺α, E(f )) with no variable other than x, let EvalS(e, x, f) be
the formula in the language of ERA(f ), defined inductively as follows:
• Eval∅(e, x, f) is the sentence 0 = 0
• If tk is the variable x, then Eval 〈t0,... ,tk〉(e, x, f) is

(e)k̄ = x ∧ Eval 〈t0,... ,tk−1〉(e, x, f).

• If tk is of the form g(ti0 , . . . , til
, f), where g is a function symbol of

ERA(f ), then Eval 〈t0,... ,tk〉(e, x, f) is

(e)k̄ = g((e)ī0 , . . . , (e)īl
, f) ∧ Eval 〈t0,... ,tk−1〉(e, x, f).

• If tk is of the form minnorm,β(ti0 , . . . , til
, f), let tj0 , . . . , tjm enumer-

ate all the terms before tk in S that are also of this form; and for
u = 0, . . . ,m, suppose tju

is the term minnorm,β(tiu,0 , . . . , tiu,l
, f). Then

Eval 〈t0,... ,tk〉(e, x, f) is the conjunction of the following:
– “(e)k̄ minimizes norm((e)ī0 , . . . , (e)īl

, ·, f) below β̄”
– Eval 〈t0,... ,tk−1〉(e, x, f)
–

∧m
u=0((e)ī0 = (e)īu,0

∧ . . . ∧ (e)īl
= (e)īu,l

)→ (e)k̄ = (e)j̄u
).

Lemma 8.8. Let α be infinite and closed under multiplication, and let S be
a formation sequence of terms in the language of ERA(f ) + min(≺α, E(f )).
Then ERA(f ) proves that the relation EvalS(e, x, f) is solvable for e by ≺α-
minimization.

Proof. By induction on the length of S, using Lemmata 8.3–8.6. Con-
sider the case where S is the sequence 〈t0, . . . , tk〉 and tk is of the form
minnorm,β(ti0 , . . . , til

, f). By the induction hypothesis, ERA(f ) proves that
the relation Eval 〈t0,... ,tk−1〉(e

′, x, f) is solvable for e′ by ≺α-minimization. By
Lemma 8.4, ERA(f ) also proves that the problem of finding a value v minimiz-
ing norm((e)ī0 , . . . , (e)īl

, ·, f) below β is solvable by ≺α-minimization. There
is an elementary function which, given e′ and v, checks the values that e′ as-
signs to previous terms in S, decides whether to assign one of these values or
v to tk, and returns the resulting assignment. By Lemmata 8.3 and 8.6, this
provides a solution to EvalS(e, x, f). a

Lemma 8.9. Let α be infinite and closed under multiplication. If θ(x, y, f)
is a ∆0(f) formula such that ERA(f ) + min(≺α, E(f )) proves ∃y θ(x, y, f),
then ERA(f ) proves that θ(x, y, f) is solvable for y by ≺α-minimization.

Proof. Just as in the proof of Lemma 7.8. If ERA(f ) + min(≺α, E(f ))
proves ∃y θ(x, y, f), then there is a sequence of terms r0, . . . , rm and a propo-
sitional proof of χθ(x, r0, f) = 1 ∨ . . . ∨ χθ(x, rm, f) = 1 from substitution in-
stances of equality axioms and axioms of ERA(f ) + min(≺α, E(f )). In ERA(f ),
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given x we can use ≺α-minimization to evaluate all the terms occurring in the
proof and choose one satisfying θ. a

The key use of Herbrand’s theorem is in the proof of the following lemma.

Lemma 8.10. Suppose α is infinite and closed under multiplication, and let
θ(x, y, f) be a ∆0 formula such that ERA(f ) proves θ(x, y, f) is solvable by
≺α-minimization. Then there is a ≺α-recursive function F (x, f) such that
ERA(f ) proves F (x, f) = y → θ(x, y, f).

Proof. The hypothesis of the lemma means that there is a β less than α,
and functions norm and result , such that ERA(f ) proves

∀z (∀w (norm(x,w, f) ≺ β̄ → norm(x, z, f) � norm(x,w, f))→
θ(x, result(x, z, f), f)).

Leaving the universal quantification over z implicit, bringing the universal
quantification over w to the front (where it becomes existential), and rewriting
the formula slightly, we have that ERA(f ) proves

∃w (norm(x,w, f) 6≺ β ∨ norm(x,w, f) 6≺ norm(x, z, f)→
θ(x, result(x, z, f), f)).

By Herbrand’s theorem, there is a an elementary function g(x, z, f) such that
ERA(f ) proves

norm(x, g(x, z, f), f) 6≺ β ∨ norm(x, g(x, z, f), f) 6≺ norm(x, z, f)→
θ(x, result(x, z, f), f).

In other words, if the norm of g(x, z, f) is not less than both β and the norm
of z, then result(x, z, f) is the witness we are after. Our job, then, is to
find a z satisfying the antecedent of this implication. An obvious iterative
algorithm suggests itself: First set z0 = 0. If norm(x, g(x, z0, f), f) 6≺ β or
norm(x, g(x, z0, f), f) 6≺ norm(x, z0, f), we are done. Otherwise, iteratively
set zi+1 equal to g(x, zi, f), until norm(x, zi+1, f) 6≺ norm(x, zi, f). Then
result(x, zi, f) is the value we are after.

By Lemma 7.5, norm(x, z, f) and result(x, z, f) are ≺α-recursive. The algo-
rithm just described is a ≺α-iterative algorithm using ≺α-recursive functions;
by Lemma 7.3, it can be carried out by a single ≺α-recursive function, provably
in ERA(f ). a

Putting the last two lemmata together yield the following

Lemma 8.11. Let α be infinite and closed under multiplication. If θ(x, y, f)
is a ∆0(f) formula such that ERA(f ) + min(≺α, E(f )) proves ∃y θ(x, y, f),
then there is a ≺α-recursive function F (x, f) such that ERA(f ) proves F (x, f) =
y → θ(x, y, f).

Below we will need to know that Lemma 8.11 still holds with additional
function symbols, f0, . . . , fk. To see this, note that every proof in this section
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can easily be generalized in this respect; alternatively, one can take f to code
a finite sequence of function symbols f0, . . . , fk, and use variant of Lemma 2.3
to reduce the more general statement to that of Lemma 8.11.

Together with Theorem 6.3, Lemma 8.11 yields

Theorem 8.12. Let α be infinite and closed under multiplication. Then the
proof-theoretic ordinal of I∆0 (f ) + TI (≺α,Π1 (f )) is at most α.

Since induction on the natural numbers corresponds to transfinite induc-
tion on ω, and Π1 and Σ1 induction on the natural numbers are equivalent,
TI (≺ωω,Π1(f)) includes IΣ1 , and we have

Theorem 8.13. The proof-theoretic ordinal of IΣ1 (f ) is at most ωω.

These bounds are sharp, and, more generally, the proof-theoretic ordinal
of I∆0 (f ) + TI (≺α,Π1 (f )) is the least α′ greater than or equal to α that is
closed under multiplication.

§9. Arithmetic transfinite induction. Having dealt with Π1 transfinite
induction, let us now extend the analysis to theories of transfinite induction
for arbitrary arithmetic formulae. Once again, the first step is to express these
principles in a suitable universal theory. We will do this in a straightforward
way: we will use Skolem functions to reduce any arithmetic formula to an
elementary relation, and then use minimization, as in the last section.

To start with, consider Π2 transfinite induction. Let ∃y T (x, y, f) be the
complete Σ1(f) formula introduced in the last section, and let wit1 be a new
function symbol with defining equation

∀y (T (x, y, f)→ T (x,wit1(x), f)).(wit1(f))

In words, if there is any y satisfying T (x, y, f), wit1 returns such a one.3 Let

ERA(f ,wit1 ) + (wit1 (f )) + min(≺α, E(f ,wit1 ))

denote the theory extending ERA(f ,wit1 ) with the defining axiom for wit1,
and minimization for function symbols in the language of ERA(f ,wit1 ).

Lemma 9.1. The theory ERA(f ,wit1 ) + (wit1 (f )) + min(≺α, E(f ,wit1 )) is
a universal theory containing I∆exp

0 (f ) + TI (≺α,Π2 (f )).

Proof. If ϕ(~z, f) is a Σ1(f) formula of the form ∃y θ(y, ~z, f), there is
a numeral n such that ϕ(~z, f) is equivalent in ERA(f ,wit1 ) + (wit1 ) to the
E(f,wit1) relation T (〈n̄, ~z〉,wit1(〈n̄, ~z〉), f). Π2(f) formulae are then equiva-
lent to formulae that are Π1(f,wit1). As in the proof of Lemma 8.2, from
(min(≺α, E(f ,wit1 ))) one can derive instances of transfinite induction for for-
mulae of this kind. a

3We could go further to fix the interpretation of wit1 by requiring it to return the least
such y, if there is one, and 0 otherwise; but the additional generality will be useful in [2].
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The following lemma enables us to bound the ordinal of the theory of
Lemma 9.1.

Lemma 9.2. Let α be infinite and closed under multiplication. If θ(x, y, f)
is a ∆0(f) formula such that ERA(f ,wit1 ) + (wit1 (f )) + min(≺α, E(f ,wit1 ))
proves ∃y θ(x, y, f), then there is a ≺ωα-recursive function H(x, f) such that
ERA(f ) proves H(x, f) = y → θ(x, y, f).

Proof. Suppose the hypothesis of the lemma holds. By the deduction
theorem, the theory ERA(f ,wit1 ) + min(≺α, E(f ,wit1 )) proves

∀u, v (T (u, v, f)→ T (u,wit1(u), f))→ ∃y θ(x, y, f).

Letting y code the pair 〈u, v〉 and rewriting yields

∃y (T ((y)0, (y)1, f) ∧ ¬T ((y)0,wit1((y)0), f)) ∨ ∃y θ(x, y, f).

Bringing the existential quantifiers to the front and combining them yields

∃y ((T ((y)0, (y)1, f)→ T ((y)0,wit1((y)0), f))→ θ(x, y, f)).

By Lemma 8.11, there is a ≺α-recursive function F such that ERA(f ,wit1 )
proves

F (x, f,wit1) = y ∧ (T ((y)0, (y)1, f)→ T ((y)0,wit1((y)0), f))→ θ(x, y, f).

In words, ERA(f ,wit1 ) proves that if F (x, f,wit1) is defined, it returns either
a y showing that wit1 fails to satisfy its defining axiom at (y)0, or a y satisfying
θ(x, y, f).

The rest of the proof hinges on finding a finite interpretation of wit1 that
is robust enough to carry out the computation of F and pass the final test at
the end. Towards that goal, note that one can code a finite partial function
from the natural numbers to the natural numbers with a natural number. For
example, one can take the number m to code the partial function

m̃(x) =
{

(m)x − 1 if x ≤ last(m) and (m)x > 0
undefined otherwise

Let m̂(x) denote the extension of m̃ to the natural numbers, such that m̂(x) =
0 where m̃ is undefined. Finally, let eval(m,x) be the elementary function
which returns m̂(x). If we now take m to be a variable in the language of
ERA(f ), we can interpret references to m̂(x) as eval(m,x). Returning to
the conclusion of the last paragraph, using Lemma 2.3 to replace wit1 by
λx eval(m,x), we see that in ERA(f ) there is a proof of

F (x, f, m̂) = y ∧ (T ((y)0, (y)1, f)→ T ((y)0, m̂((y)0), f))→ θ(x, y, f).

Expanding the definition of F (x, f, m̂) = y, this yields a proof of

(CompSeqF (s, x, f, m̂) ∧ resultF ((s)last(s)) = y ∧
(T ((y)0, (y)1, f)→ T ((y)0, m̂((y)0), f)))→ θ(x, y, f).
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We have therefore reduced the problem to finding a ≺ωα-recursive function
G(x, f) which returns a pair 〈s,m〉 satisfying the antecedent of this last for-
mula, provably in ERA(f ). In other words, we are looking for a ≺ωα-recursive
function that returns a finite interpretation m for wit1 and a computation
sequence s for F at x, f , and m̂, such that if y = resultF ((s)last(s)), then m̂
satisfies the defining equation for wit1 at the pair coded by y. If we then let
H(x, f) ' resultF ((G(x, f)0)last(G(x,f)0)), H(x, f) satisfies the conclusion of
the lemma.

I will now describe two ways of finding such a function G. The first is used
in the proof of [7, Lemma 12]; the second is more explicit.

For the first method, note that by Lemma 8.11 it is sufficient to show that the
existence of the pair s,m is provable in ERA(f ) + min(≺ωα, E(f )). Arguing in
this theory, then, let us show how to find s and m using ordinal minimization.
Without loss of generality, we can assume that if F (x, f) returns y then F
queries m̂ at (y)0 in the last step of its computation, since we can always
replace the β-iterative algorithm for F with a 1 + β-iterative algorithm which
does so. Say that m is a sound interpretation of wit1 if T (x, m̂(x), f) holds for
every x in the domain of m. Let

norm ′(m,x) =
{

1 if m is undefined at x
0 otherwise.

Finally, say that s is a partial computation sequence for F at x, f , and m̂ if s is
a proper initial segment of a computation sequence for F at x, f , and m̂. More
explicitly, this amounts to saying that (s)0 = startF (x), normF ((s)0) ≺ β, and

∀i < k − 1 ((s)i+1 = nextF ((s)i, f(queryF,0((s)i)), m̂(queryF,1((s)i))) ∧
normF ((s)i+1) ≺ normF ((s)i)).

Now define norm(x, z, f) as follows:
• If z codes a pair 〈s,m〉, m is a sound interpretation of wit1, and s is a

partial computation sequence for F at x, f , and m̂, set norm(x, z, f) to

ωnormF ((s)0) · norm ′(m, queryF,1((s)0)) + . . .

+ ωnormF ((s)last(s)−1 ) · norm ′(m, queryF,1((s)last(s)−1 ))

+ ωnormF ((s)last(s)) · 2

(Interpret this as 0 if last(s) = 0.)
• If z codes a pair 〈s,m〉, m is a sound interpretation of wit1, and s is a

computation sequence for F at x, f , and m̂, set norm(z) to

ωnormF ((s)0) · norm ′(m, queryF,1((s)0)) + . . .

+ ωnormF ((s)last(s)−1 ) · norm ′(m, queryF,1((s)last(s)−1 ))

• Otherwise, set norm(x, z, f) = ωβ .
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Let z be a value minimizing norm(x, ·, f) below ωβ . We know that for this
z either the first or second case must hold, since taking s to be the sequence
〈startF (~x)〉 and m to be the partial function that is nowhere defined satisfies
one of these two cases, and hence yields a norm less than ωβ . In fact, z must fall
under the second case: if s is a partial computation sequence, extending it by
appending nextF ((s)last(s), f(query0((s)last(s))), m̂(query1((s)last(s)))) yields ei-
ther a computation sequence or partial computation sequence with a smaller
norm. Finally, let us show that if resultF ((s)last(s)) is equal to y, we have
T ((y)0, (y)1, f)→ T ((y)0, m̂((y)0), f). Suppose otherwise; then T ((y)0, (y)1, f)
holds, but not T ((y)0, m̂((y)0), f). Since m is a sound interpretation of wit1,
this means that (y)0 is not in the domain of m̃. Let i be the least value less
than last(s) such that query1((s)i) = (y)0; there is at least one such i, since we
are assuming that F queries m̂ at this value before the end of its computation.
Note that we then have norm ′(m, queryF,1((s)i)) = 1. Let m′ represent the
partial function extending m̃ with m̃′((y)0) = (y)1, and let s′ be the partial
computation sequence which is an initial segment of s of length i. Then the
norm of the pair 〈s′,m′〉 is less than the norm of the pair 〈s,m〉, contradicting
the fact that 〈s,m〉 is supposed to minimize norm(x, ·, f).

For the second proof, note that we can extract an explicit description of G
from the preceding argument. The iterative algorithm for G starts with the
pair 〈s,m〉, where s is the sequence 〈startF (x)〉 and m is nowhere defined, and
normG is the function norm above. As long as the current state of G is a
pair 〈s,m〉, where s is either a partial computation sequence or a computation
sequence for F at x, m̂, and f , and m is a sound interpretation of wit1, the
argument above provides a recipe nextG for finding a pair 〈s,m〉 with a smaller
norm, unless s is, in fact, a computation sequence and m̂ satisfies the axiom
for wit1 at resultF ((s)last(s)); and in that case, resultG can just return the
pair 〈s,m〉. By Lemma 7.5, T is ≺α-recursive; so startG, normG, nextG, and
resultG are all ≺α-recursive functions. By Lemma 7.3, G is be ≺ωα-recursive,
and the relevant properties can be proved in ERA(f ). a

Putting this all together, we have

Corollary 9.3. Let α be infinite and closed under multiplication. Then
the proof-theoretic ordinal of I∆exp

0 (f ) + TI (≺α,Π2 (f )) is at most ωα.

More generally, let

ERA(wit1 , . . . ,witn , f ) + (witn(f )) + min(≺α, E(wit1 , . . . ,witn , f ))

denote the theory with n witnessing functions, axioms asserting that each
wit i+1 returns witnesses to a complete Σ1(wit1, . . . ,wit i, f) formula, and min-
imization for functions that are elementary in wit1, . . . ,witn, f . Adapting the
proof of Lemma 9.2 yields

Lemma 9.4. Let α be infinite and closed under multiplication. Suppose
θ(x, y,wit1, . . . ,witn, f) is a ∆0(wit1, . . . ,witn, f) formula such that

ERA(wit1 , . . . ,witn+1 , f ) + (witn+1 (f )) + min(≺α, E(wit1 , . . . ,witn+1 , f ))
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proves ∃y θ(x, y,wit1, . . . ,witn, f). Then

ERA(wit1 , . . . ,witn , f ) + (witn(f )) + min(≺ωα, E(wit1 , . . . ,witn , f ))

proves it as well.

Let ωα
0 = α, and ωα

n+1 = ωωα
n . By induction, we have

Theorem 9.5. Let α be infinite and closed under multiplication, and let n
be greater than or equal to 0. Then the proof-theoretic ordinal of the theory
I∆exp

0 (f ) + TI (≺α,Πn+1 (f )) is at most ωα
n .

In particular, for α = ωω, we have

Theorem 9.6. For n greater than or equal to 1, the proof-theoretic ordinal
of IΣn(f ) is at most ωn+1.

Also, since any proof in PA(f ) is a proof in IΣn(f ), for some n, we have

Theorem 9.7. The proof-theoretic ordinal of PA(f ) is at most ε0.

More generally, let PA(f ) + TI (≺α) denote Peano arithmetic together with
transfinite induction principles for arbitrary notations β less than α and arbi-
trary formulae in the language.

Theorem 9.8. Let α be infinite and closed under β 7→ ωβ. Then the proof-
theoretic ordinal of PA(f ) + TI (≺α) is at most α.

In all these theorems, the bounds are sharp.

§10. Transfinite arithmetic hierarchies. In this final section, we will
consider theories with transfinite arithmetic hierarchies. We will continue to
use functions as our basic second-order objects, and interpret references to
a set X of natural numbers as references to its characteristic function, χX .
If X is any set, the Turing jump of X, written X ′, is defined to be the set
{x | ∃y T (x, y, χX)} where ∃y T (x, y, f) is the complete Σ1(f) formula from
Section 8. We can use a set X to code a sequence of such sets, by interpreting
z ∈ Xy as 〈y, z〉 ∈ X. If β is an ordinal notation and 〈Hγ〉γ≺β is a sequence
of sets, then H≺β is a set which codes this sequence (with Hy = ∅ if y is the
notation for the ordinal 0, or y is not a notation less than β). Given an ordinal
notation β, a jump hierarchy on β is defined to be a set H, such that for every
γ less than β, Hγ = (H≺γ)′.

Given a notation for a limit ordinal α, we can extend the language of PA
with new symbols Hβ , for β less than α. Our goal is then to bound the
proof-theoretic ordinal of theories of the form

PA(H) + H (≺α) + TI (≺α),

given by the following set of axioms: the axioms of PA, extended to the lan-
guage with the new symbols; for each β less than α, an axiom asserting that
Hβ is a jump hierarchy on β; and transfinite induction up to α, for arbitrary



30 JEREMY AVIGAD

formulae in new language. For an ordinal analysis, we really need to consider
versions of these theories in which the induction axioms and transfinite hier-
archies are relativized to a function symbol f ; but to simplify the exposition
I will drop the references to f , with the implicit understanding that all the
lemmata and theorems in this section are easily generalized in this way.

We can simplify the theories above in a number of ways. For one thing,
in I∆exp

0 (H) one can show that if Hβ is a jump hierarchy on β, then for
each γ less than β, Hβ

≺γ is a transfinite hierarchy on γ. This means that
for any particular proof of an arithmetic statement, it suffices to use only a
single new symbol Hβ , for a sufficiently large β less than α. Also, if ϕ(Hβ)
is an arithmetic formula relative to one of these hierarchies, there is a natural
number n such that I∆exp

0 (H) proves that ϕ(Hβ) is equivalent to a formula
that is ∆0(Hβ+n). This means that nothing is lost of we restrict the transfinite
induction principles to formulae that are ∆0 in the new symbols. Finally, since
the transfinite induction axioms include ordinary induction, one can replace
PA(H) by I∆exp

0 (H).
In carrying out the ordinal analysis we will need to make use of Kleene’s

recursion theorem. Let R0, R1, R2, . . . denote a standard enumeration of the
partial computable functions (of various arities). The recursion theorem says
that for any partial computable function f(x, e), there is an index e for a unary
partial computable function Re, satisfying Re(x) ' f(e, x) for every e and x.
Since there is a universal partial computable function, this allows us to define a
partial computable function Re in terms of itself, and its own index. A theory
of computable functions strong enough to prove the recursion theorem can
be developed in ERA or I∆exp

0 , interpreting references to such functions by
references to their indices. If I say that a function f is “computable” instead
of “partial computable,” I mean, implicitly, that f is total.

Once again, the first step in our ordinal analysis is to embed the theories
we are interested in appropriate universal theories. An obvious strategy is to
extend the Σn witness functions of the previous section to transfinite ones.
We can take a single function f to represent a sequence of functions fx, where
fx(y) = f(〈x, y〉); and given a function f and a notation γ, we can take f �γ

to denote the function

f �γ (z) =
{
f(z) if (z)0 ≺ γ
0 otherwise

Then a transfinite witness function wit on β satisfies the following:

∀γ ≺ β ∀x, y (T (x, y,wit �γ)→ T (x,witγ(x),wit �γ)).

Now, for each β less than α, we can add a function symbol witβ , to denote a
witness function on β. Then

ERA(W) + wit(≺α) + min(≺α, E(W))

denotes the theory that extends elementary computable arithmetic (relative
to the new function symbols) with axioms that assert that the new symbols
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denote transfinite witness functions for each β less than α, and minimization
for functions in the language of ERA(W). In ERA(W) one can show that if
wit is a transfinite witness function up to β and γ is less than β, then wit �γ

is a transfinite witness function up to γ; so for any proof, it suffices to have a
witness function for a single β less than α that is large enough.

In the end, it makes little difference whether one has a transfinite jump
hierarchy or a transfinite hierarchy of witnesses, since each one can be obtained,
effectively, from the other. The following lemma makes use of this fact.

Lemma 10.1. Let α be a limit. Then ERA(W) + wit(≺α) + min(≺α, E(W))
is a universal theory, and proves any arithmetic formula that is provable in
PA(H) + H (≺α) + TI (≺α).

Proof. It is clear that the axioms for the witness functions are universal.
By the observations above, to prove the second statement, we only need to
interpret references to Hβ in the language of ERA(W), for each β less than α.
Fix β, write H for Hβ , and write wit for witβ . We will use the recursion theo-
rem to define a total computable function Re(γ, x), whereby we can interpret
x ∈ Hγ as T (Re(γ, x),witγ(Re(γ, x)),wit �γ). In other words, we aim to find
an index e that allows us to interpret χH as

χH(w) =

 1 if (w)0≺β and
T (Re((w)0, (w)1),wit (w)0(Re((w)0, (w)1)),wit �(w)0)

0 otherwise.

For the moment, consider the right hand side as a function of e, as well as w;
with this interpretation of H, for γ less than β, χH�γ (w) is a function of e, w,
γ, and wit �γ , given by

h(w, e, γ,wit �γ) =

 1 if (w)0≺γ and T (Re((w)0, (w)1),
(wit �γ)(w)0(Re((w)0, (w)1)), (wit �γ) �(w)0)

0 otherwise.

To verify the defining axiom for H, we need to satisfy

T (Re(γ, x),witγ(Re(γ, x)),wit �γ)↔ ∃y T (Re(γ, x), y, λw h(w, e, γ,wit �γ))

whenever γ is less than β. But for each e, the right hand side is Σ1 in wit �γ ;
so there is a code n(e, γ), effectively obtained from e and γ, such that this
formula is equivalent to

∃y T (〈n(e, γ), x〉, y,wit �γ).

By the defining axiom for wit , this is equivalent to

T (〈n(e, γ), x〉,witγ(〈n(e, γ), x〉),wit �γ).

Using the recursion theorem to find an e such that

Re(γ, x) = 〈n(e, γ), x〉
we have the equivalence we are after. a

Most of the rest of this section is devoted to proving the following:
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Lemma 10.2. Let α be infinite and closed under multiplication. If θ(x, y)
is a ∆0 formula and ERA(W) + wit(≺α) + min(≺α, E(W)) proves ∃y θ(x, y),
then PA + TI (≺ϕα(0 )) proves it as well.

From now on, fix α, and let us work in PA + TI (≺ϕα(0 )). In this theory we
can refer to computable functions by identifying them with their indices, and
we can refer to ∆0 formulae by identifying them with their Gödel numbers. The
definitions which follow should be seen as taking place in PA + TI (≺ϕα(0 )),
with these conventions.

In the last section, we saw, roughly speaking, that given a ≺η-computable
function that queries wit1, and, with “adequate” responses, finds a witness
to a Σ1 formula, we can effectively obtain a ≺ωη-computable function that
finds a witness outright. In the current setting, this will let us transform a
≺η-iterative computation that queries a witness hierarchy on µ+1, to a ≺ωη-
iterative computation which queries a witness hierarchy on µ. To extend this
reduction to the transfinite, we need to generalize the notion of an iterative
computation.

A ≺η-computable (rather than recursive) functional F (f) is given by a no-
tation µF≺η, a value startF , and computable (rather than elementary) func-
tions normF (q), nextF (q, z), queryF (q), and resultF (q). Given f , the notions
CompSeqF (s, f), F (f) ↓, F (f) = y, and so on, are defined as in Section 3.

Using sequences, we can express the assertion that f is a witness hierarchy
up to µ with a formula ∀y W (y, µ, f), where W (y, µ, f) is given by

(y)0 ≺ µ ∧ T ((y)1, (y)2, f �(y)0)→ T ((y)1, f((y)1), f �(y)0).

Think ofW (y, µ, f) as asserting that f looks like a transfinite witness hierarchy
on µ, “locally,” at y. Let θ(y, f) be (the code of) a formula that is ∆0(f), let
η, µ, and γ be notations with γ less than µ, and let F (f) be a ≺η-computable
function. By way of notation, take

F `η
µ ∃y θ(y,witγ)

to mean

∀m, y (F (m̂) = y ∧W (y, µ, m̂)→ Tr∆0(pθ(y, m̂ �γ)q)),

where Tr∆0 is a truth predicate for ∆0 formulae. In words, F `η
µ ∃y θ(y,witγ)

means that if F (m̂) is equal to y and, at y, m̂ looks like a witness hierarchy on
µ at y, then θ(y, m̂ �γ) is true. Take `η

µ ∃y θ(y,witγ) to assert the existence
of such an F .

(Stepping outside PA + TI (≺ϕα(0 )) for a moment, we can say that `η
µ

∃y θ(y,witγ) implies that ∃y θ(y,witγ) holds for any transfinite witness func-
tion witγ . Reason as follows: given F satisfying `η

µ ∃y θ(y,witγ) and a trans-
finite witness function witγ , let witµ be a transfinite witness function with
witµ �γ= witγ , and letm be a finite partial function agreeing with witµ, defined
at enough values to carry out the computation of F , satisfy Wµ at the result
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of the computation (call it y), and evaluate the truth of θ(y,witµ �γ). Since
we have assumed F `η

µ ∃y θ(y,witγ), we have θ(y, m̂), and hence θ(y,witγ).)
Still working in PA + TI (≺ϕα(0 )), note that if ε is less than α, then transfi-

nite induction up to ϕε(0) is available to us in this theory; and ϕε(0) is closed
under the functions ϕγ , for γ less than ε. With the notation we have just in-
troduced, the two lemmata below bear a strong resemblance to the elimination
lemmata of [21, Section 18] and [22, Section 2.1.2], as well as to [4, Lemma
3.6].

Lemma 10.3. There is a computable function Rj(η, µ, θ, F ), such that the
following is provable in PA + TI (≺ϕα(0 )): for any η, µ, F , and ∆0(f) for-
mula θ(x, f), if

F `η
µ+1 θ(y,witµ)

then

Rj(η, µ, θ, F ) `ωη

µ θ(y,witµ).

Proof. This is a straightforward adaptation of the proof of Lemma 9.2. a

Lemma 10.4. Let ε be less than α. Then there is a computable function
Re(ρ, η, µ, θ, F ), such that the following is provable in PA + TI (≺ϕα(0 )): for
any η and µ less than ϕε(0), any ρ less than ε, any F , and any ∆0(f) formula
θ(y, f), if

F `η
µ+ωρ ∃y θ(y,witµ)

then

Re(ρ, η, µ, θ, F ) `ϕρ(η)
µ ∃y θ(y,witµ).

Proof. We will use effective transfinite recursion to define Re, with a pri-
mary recursion on ρ and a secondary recursion on η; and then we will use
nested instances of transfinite induction in PA + TI (≺ϕα(0 )) to prove that
Re is total and satisfies the conclusion of the lemma. In other words, we will
use the recursion theorem to define Re(ρ, η, µ, θ, F ) in terms of ρ, η, µ, θ, F ,
and the index e; and then for each ρ and η, we will verify the correctness of
Re at ρ and η, assuming it behaves correctly for arguments ρ′, η′, µ′, θ′, and
F ′ whenever either either ρ′ ≺ ρ or ρ′ = ρ and η′ ≺ η. For expository pur-
poses, I will combine these two steps, defining Re by cases and showing that
in each case, assuming the induction hypotheses are met, we have the desired
conclusion. The proof is adapted from [21, 22].

First, note that if ρ is equal to 0, then we can set Re(ρ, η, µ, θ, F ) equal to
Rj(η, µ, θ, F ), where Rj is as in the previous lemma.

Next, suppose ρ is greater than 0, and

F `η
µ+ωρ ∃y θ(y,witµ)

where F is an η′-computable function and η′ is less than η. Consider the
computation of F at m̂. If normF (startF ) 6≺ η′, then the computation halts
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immediately. In that case, set y = resultF (startF ); then we have

W (y, µ+ ωρ, m̂)→ θ(y, m̂ �µ).

But for this particular y, W (y, µ+ ωρ, m̂) only depends on values of m̂ whose
first component is at most (y)0, assuming (y)0 ≺ µ + ωρ; so there is a ρ′ ≺ ρ

and n such that W (µ+ωρ, y, m̂) holds if and only if W (µ+ωρ′ ·n, y, m̂) does.
In other words, for this F , we have

F `η

µ+ωρ′ ·n ∃y θ(y,witµ).

Applying, successively,

Re(ρ′, η, µ, θ, ·), Re(ρ′, ϕρ′(η), µ, θ, ·), . . . , Re(ρ′, ϕn−1
ρ′ (η), µ, θ, ·)

yields a G satisfying

G `
ϕn

ρ′ (η)
µ ∃y θ(y,witµ).

Since η � ϕρ(η) and ρ′ ≺ ρ we have ϕn
ρ′(η) � ϕρ(η), so

G `ϕρ(η)
µ ∃y θ(y,witµ).

as required.
Finally, consider the case where normF (startF ) ≺ η′. Consider the next step

in the computation of F : if the first state, q0, is startF , and queryF (startF )
is equal to k, then the second state, q1, is nextF (startF , m̂(k)). If (k)0 is
less than µ + ωρ, let n and ρ′ be such that (k)0 is less than µ + ωρ′·n. (If
(k)0 is not less than µ + ωρ, then the value of m̂(k) is irrelevant, and we can
take n and ρ′ to be 0 in the argument which follows.) For each l, let Gl be
the η′-computable function which continues the computation of F , assuming
that m̂(k) returns l; in other words, startGl

is equal to nextF (startF , l), while
normGl

, nextGl
, queryGl

, and resultGl
are just normF , nextF , queryF , and

resultF , respectively. Then it is not hard to see that for each l,

Gl `η′

µ+ωρ ∃y (witµ+ωρ′ ·n(k̄) = l̄→ θ(y,witµ+ωρ′ ·n �µ)).

After all, for any number m, if s is a computation sequence for Gl at m̂,
resultGl

((s)last(s))) = y, W (y, µ + ωρ, m̂), and m̂ �µ+ωρ′ ·n (k) = l, then
prepending startF to s yields a computation sequence for F at m̂ return-
ing the same result; and since F `η

µ+ωρ θ(y,witµ), we have θ(y, m̂ �µ). Now,
note that µ+ ωρ is equal to (µ+ ωρ′ · n) + ωρ, since, in general, α+ ωβ = ωβ

whenever α ≺ ωβ . For each l, let θl be the formula

f(k̄) = l̄→ θ(y, f �µ)

and let

Ĝl = Re(ρ, η′, µ+ ωρ′ · n, θl, Gl).

By the inductive hypothesis we have that for each l,

Ĝl `
ϕρ(η′)

µ+ωρ′ ·n ∃y (witµ+ωρ′ ·n(k̄) = l̄→ θ(y,witµ+ωρ′ ·n �µ)).
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Let G′(f) be the ϕρ(η′)-computable function which, in the first step, evaluates
f at k; and if the result is l, continues with Ĝl. Then we have

G′ `ϕρ(η′)+1

µ+ωρ′ ·n ∃y θ(y,witµ),

since if s is a computation sequence for G′ at m̂ and l = m̂(k), then dropping
the first element of s yields a computation sequence for Ĝl at m̂ with the same
result. Finally, applying Re n times with first argument ρ′, we obtain a G
satisfying

G `
ϕn

ρ′ (ϕρ(η′)+1)
µ ∃y θ(y,witµ).

Since ϕn
ρ′(ϕρ(η′) + 1) is less than ϕρ(η), we have G `ϕρ(η)

µ ∃y θ(y,witµ), as
desired.

To justify the use of the recursion theorem, we only need to verify that in
each of the three paragraphs above, G was obtained effectively from η, µ, ρ, θ,
F , and the index e. This is straightforward. Then, using transfinite induction
up to ε on ρ, with a secondary transfinite induction up to ϕε(0) on η, we need
to verify in PA + TI (≺ϕα(0 )) that for every ρ, η, µ, θ, and F , Re is defined,
and if F satisfies the hypothesis of the lemma, then Re returns a G witnessing
the conclusion. But this is the argument we have just sketched. a

Proof of Lemma 10.2. Suppose the theory PA(H) + H(≺α) + TI(≺α)
proves ∃y θ(x, y). By Lemma 10.1, we have that ∃y θ(x, y) is also provable
in ERA(W) + wit(≺α) + min(≺α). By the observations above, ∃y θ(x, y) is
therefore provable in the theory ERA(witα′) + ∀y W (y , ᾱ′,witα′) + min(≺α),
for an α′ less than α that is large enough. By the deduction theorem and
Lemma 8.11, there is a ≺α-recursive function F such that ERA(witα′) proves

F (x,witα′) = y ∧W (y, ᾱ′,witα′)→ θ(x, y).

Suppose F is α′′-recursive, where α′′ is less than α. Pick ε large enough so
that we have α′, α′′ ≺ ε ≺ α.

Now argue in PA + TI (≺ϕα(0 )). For each x, let Fx(f) be α′′-computable
functional which, for each f , returns F (x, f). Since ERA(f ) is sound, Fx

satisfies

Fx `α′′+1
α′+1 ∃y θ(x̄, y).

Using Lemma 10.4 , we have that for each x there is a function Gx(f) satisfying

Gx `
ϕα′+1(α

′′+1)

0 ∃y θ(x̄, y).

In other words, for any m, if Gx(m̂) is defined then it returns a value y satis-
fying θ(x̄, y) outright. Let m be the partial function that is nowhere defined;
using transfinite induction up to ϕα′+1(α′′ + 1) we can show that Gx(m̂) is
defined, and so ∃y θ(x̄, y) is true. a

Relativizing this theorem to an additional function symbol f , we have
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Theorem 10.5. Let α be infinite and closed under multiplication. Then the
proof-theoretic ordinal of PA(H, f ) + H (≺α) + TI (≺α) is at most ϕ(≺α, 0).

If Γ0 is the least fixed point of the function α 7→ ϕ(α, 0), we have the
following:

Theorem 10.6. PA(H, f ) + H (≺Γ0 ) + TI (≺Γ0 ) has proof-theoretic ordi-
nal at most Γ0.

Also, relativizing the proof of Theorem 10.5 to finite witness functions, and
then interpreting references to these witness functions in PA(f ), yields

Theorem 10.7. Let α be infinite and closed under multiplication. Then any
formula that is arithmetic in f and provable in PA(H, f ) + H (≺α) + TI (≺α)
is also provable in PA(f ) + TI (≺ϕα(0 )).
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