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Abstract

These are some minor notes and observations related to a paper by
Cholak, Jockusch, and Slaman [3]. In particular, if T1 and T2 are theories
in the language of second-order arithmetic and T2 is Π1

1 conservative over
T1, it is not necessarily the case that every countable model of T1 is an
ω-submodel of a countable model of T2; this answers a question posed
in [3]. On the other hand, for n ≥ 1, every countable ω-model of IΣn

(resp. BΣn+1 ) is an ω-submodel of a countable model of WKL0 + IΣn

(resp. WKL0 + BΣn+1 ).

1 Π1
1-conservativity and ω-submodels

If T is a theory in the language of second-order arithmetic, a Henkin model M of
T can be viewed as a structure 〈M,SM , . . .〉, where first-order variables are taken
to range over M , and second-order variables are taken to range over some subset
SM of the power set of M . If M = ω and M has the standard interpretations
of +, ×, etc., then M is said to be an ω-model. If M1 = 〈M1, SM1 , . . .〉 and
M2 = 〈M2, SM2 , . . .〉 are models, then M1 is said to be an ω-submodel of M2

if M1 = M2 and SM1 ⊆ SM2 (note that M1 and M2 need not be ω!).
The theories RCA0 , WKL0 , ACA0 are fragments of second-order arithmetic

in which induction is restricted to Σ0
1 formulae with parameters, and in which

comprehension is replaced by recursive comprehension, a weak version of König’s
lemma, or arithmetic comprehension, respectively. From here on the general
reference for subystems of second-order arithmetic is Simpson [10].

It is not hard to see that if T1 and T2 are theories in the language of second-
order arithmetic and every countable ω-model of T1 is an ω-submodel of a
countable model of T2, then T2 is Π1

1-conservative over T1: if ψ is Π1 and T1

does not prove ψ, let M1 be a countable model of T1 + ¬ψ; find a model M2

of T2 such that M1 is an ω-submodel of M2; then M2 is a model of T2 + ¬ψ.
∗Carnegie Mellon Technical Report CMU-PHIL-125. Section 3 modified slightly, January

8, 2002.
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Question 13.3 of [3] asks if the converse holds, i.e. whether the Π1
1 conserva-

tion of T2 over T1 implies that every countable ω-model of T1 is an ω-submodel
of a model of T2. The following proposition shows that the answer is no.

Proposition 1.1 There is a sentence θ such that

• ACA0 + θ is Π1
1 conservative over ACA0 .

• ACA0 + θ has no ω-model.

Proof. In ACA0 one has a Σ1
1 truth predicate for Σ1

1 sentences. Use this and
the fixed-point lemma to construct a sentence ψ that says

“I am not provable from ACA0 together with any true Σ1
1 sentence.”

Then ¬ψ is a false Σ1
1 sentence, and so has no ω-model. It suffices to show that

ACA0 + ¬ψ is Π1
1 conservative over ACA0 .

Suppose ACA0 + ¬ψ proves η, where η is Π1
1. Then ACA0 + ¬η proves ψ.

But then ACA0 + ¬η proves

“¬η is a true Σ1
1 sentence and there is a proof of ψ from ¬η.”

In other words, ACA0 + ¬η proves ¬ψ as well as ψ. So ACA0 + ¬η is inconsis-
tent, and hence ACA0 proves η. �

Something like the trick above (or, more precisely, the more refined version in
the proof of Proposition 1.2) has been used recently by Arana [1]. The sentence
ψ is equivalent to the assertion “any Π1

1 consequence of ACA0 together with my
negation is true,” and the proof above could equally well have been expressed
with this formulation.

In the proof of Proposition 1.1, arithmetic comprehension was used to obtain
an adequate definition of truth for Σ1

1 formulae. I do not know whether it is
possible to replace ACA0 by RCA0 in Proposition 1.1.

Question 13.4 of [3] asks whether the following holds: if T0 and T1 are Π1
2

theories which are Π1
1 conservative over a theory T , then T0 + T1 is necessarily

Π1
1 conservative over T . I suspect that answer is no, but the best I can come up

with is the following “near miss.”

Proposition 1.2 There is a sentence θ such that

• θ is Π1
2

• ¬θ can be put in the form ∃n ∀X ∃Y η, where η is arithmetic; in other
words, ¬θ can be expressed with an existential number quantifier followed
by a Π1

2 sentence.

• ACA0 + θ is Π1
1 conservative over ACA0

• ACA0 + ¬θ is Π1
1 conservative over ACA0
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Proof. Do the Rosser trick: let θ say

“If I am provable from ACA0 plus a true Σ1
1 sentence, then there is

a shorter proof of my negation from ACA0 plus a true Σ1
1 sentence.”

Here “shorter” really means “with smaller Gödel number.” Then θ is of the
form ∀n(∃X α → ∃Y β) with α and β arithmetic, and bringing quantifiers
to the front in different orders allows one to put θ and ¬θ in the required
forms. An argument similar to the one above shows that both ACA0 + θ and
ACA0 + ¬θ are Π1

1 conservative over ACA0 . For example, suppose d is a proof
of a Π1

1 sentence η in ACA0 + θ. Let d′ be the corresponding proof of ¬θ in
ACA0 + ¬η, and let e0, . . . , ek enumerate all proofs of length less than d′ of θ
from Σ1

1 sentences, say η0, . . . , ηk respectively.
Now argue in ACA0 to show η. First, if θ holds, we are done, using d.

Otherwise, suppose ¬θ. Then

There is a proof of θ in ACA0 together with a true Σ1
1 sentence, and

no shorter proof of of ¬θ in ACA0 together with a true Σ1
1 sentence.

If one of the ηi is true, then the corresponding proof, ei, shows that θ is true,
contradicting the assumption ¬θ. So there is no proof of θ from a ACA0 together
with a true Σ1

1 sentence with a proof shorter than d′. By the displayed assertion
above, d′ cannot be a proof of ¬θ from a true Σ1

1 sentence; in other words, ¬η
is false, as required. �

Note that in the presence of the Σ1
2 axiom of choice, the number quantifier

can be moved inwards, and ¬θ is equivalent to a Π1
2 sentence. The problem

is that Σ1
1-AC is not a Π1

2 axiom. But if the question above is rephrased so
that T is not required to be Π1

2 (i.e T0 and T1 are required to prove the same
Π1

2 sentences as T , but not necessarily extend T ), this last observation yields a
negative answer.

I do not know the answer to question 13.4 of [3] if one requires the theories
involved to be true (in the standard model). In particular, for the θ used in the
proof of Proposition 1.2, is it the case that every countable model of ACA0 is
an ω-submodel of a countable model of ACA0 + θ?

2 ω-models of Weak König’s Lemma

In the 1980’s, Harvey Friedman proved

Theorem 2.1 WKL0 is conservative over PRA for Π2 sentences.

Harrington later used a forcing argument, based on Jockusch and Soare’s low
basis theorem, to strengthen this to

Theorem 2.2 WKL0 is conservative over RCA0 for Π1
1 sentences.
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Friedman’s theorem follows from this, since RCA0 is easily interpreted in the
fragment of first-order arithmetic IΣ1 , and an old theorem due to Mints, Par-
sons, and Takeuti independently shows that IΣ1 is Π2 conservative over PRA.

In [5], Hájek provides the following strengthening:

Theorem 2.3 For all n ≥ 1, WKL0 + IΣn is Π1
1 conservative over RCA0 + IΣn .

In fact, Hájek obtains an interpretation of WKL0 + IΣn , by formalizing the a
recursion-theoretic construction of an ω-model of WKL0 in IΣn. Avigad [2]
independently internalized Harrington’s forcing argument to obtain such an in-
terpretation, for n = 1; Theorem 2.2 can then be obtained by relativizing the
argument to the recursive sets (in which case, for n ≥ 2, forcing for Π0

n sentences
is Π0

n, and strong forcing for Σ0
n sentences is Σ0

n).
The authors of [3] note that methods of both Hájek [5] or Avigad [2] can be

used to strengthen this result as follows:

Theorem 2.4 For all n ≥ 1, every countable ω-model of RCA0 + IΣn is an
ω-submodel of a countable ω-model of WKL0 + IΣn .

This is correct, but a few more words of explanation are needed. Roughly, the
problem is that Hájek’s argument relativizes to a single set, but, on the surface,
does not allow one to recapture the entire universe; my argument allows one to
recapture the entire universe, but does not immediately work for n ≥ 1 unless
one restricts set quantifiers to the recursive sets.

The solution is to combine the two arguments. One fairly straightforward
way to do this is to use a generic iteration as in [2] to capture all the sets of
the original model, but restrict the forcing to recursive subsets of a single set
in each step of the iteration. I will describe another method, which provides,
in addition, Theorem 2.7 below. The idea is that Hájek’s argument would work
if one had a function explicitly enumerating the universe of sets; but one can
simply force to add such a function.

Note that sequences of sets 〈X0, . . . , Xk〉 can be coded as a single set; I
will assume that a reasonable coding has been chosen, so that the length of a
sequence is unambiguous, and relevant properties can be verified in RCA0 . The
notation F (i) ⊇ F (j) in clause 2 of the following proposition should be read as
“the sequence coded by F (i) extends the sequence coded by F (j).”

Proposition 2.5 Let M be any countable structure for the language of second-
order arithmetic. Then one can expand M to a structure for a language with
a new function symbol F denoting a function from M to SM , such that the
expanded structure satisfies the following:

• ∀i (length(F (i)) = i)

• ∀i, j (i > j → F (i) ⊇ F (j))

• ∀X ∃i ∃j < i (F (i)j = X )
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Proof. Take a condition to be a finite sequence of sets 〈X0, . . . , Xk〉, where
“stronger than” means “extends, as a sequence.” Then one can read off a
function F from a suitably generic set. The properties that need to be met are:
given X ∈ SM , there is a condition in the generic that has X as an element;
and given n ∈ M , there is a condition in the generic of length greater than or
equal to n. �

Note that the expanded model need not satisfy induction or comprehension
for formulae involving F ; so the interaction with F is mediated solely by the
axioms above.

Proof of Theorem 2.4. Hájek shows how to construct a formula ψ(x, y) so that
the collection of sets of the form Sx = {x | ψ(x, y)}, as y ranges over N, yields an
omega model of WKL0 + IΣn , provably in IΣn . In other words, IΣn proves that
each axiom of WKL0 + IΣn holds when one interprets second-order quantifiers
as ranging over S = {Sx | x ∈ N}. The construction can be relativized to a set
parameter Z.

With only slight modification, one can obtain a formula ψ′(x, y,W ), such
that whenever W codes a finite sequence of sets, ψ′(x, y,W ) is defines an ω-
model of WKL0 + IΣn containing each of these sets; and with the property that
if W ′ codes a sequence extending W , the ω-model containing W ′ includes the
ω-model containing W . In other words, there is a formula ψ′(x, y,W ) such that
IΣn proves

• each axiom of WKL0 + IΣn holds in the ω-model defined by ψ′(x, y,W );

• ∀〈X0, . . . , Xk−1〉 ∀i < k ∃j ({x | ψ′(x, j, 〈X0, . . . , Xk−1〉)} = Xi);

• 〈X0, . . . , Xk〉 ⊆ 〈Y0, . . . , Yl〉 → ∀i ∃j ({x | ψ′(x, i, 〈X0, . . . , Xk−1)} =
{x | ψ′(x, j, 〈Y0, . . . , Yl−1)}.

Now, given a countable model M of RCA0 + IΣn , expand it to a model
M′ of the three additional axioms in Proposition 2.5. Define θ(x, y) to be the
formula

ψ′(x, (y)0, F ((y)1)).

Intuitively, this represents the union of the ω-models defined by ψ′(x, y, F (z))
as z ranges over N, so it is not hard to see that θ(x, y) defines an ω-model of
WKL0 + IΣn in M′. In other words, letting

M′′ = 〈M, {{a ∈M | M′ |= θ(ā, b̄)} | b ∈M}, . . .〉

yields a countable model of WKL0 + IΣn with the same first-order part as M.
�

In fact, Hájek notes explicitly that for n ≥ 1, the schema of Σn collection,
denoted BΣn, can be used to justify Σn collection in the ω-model defined by ψ.
As a result, his construction also shows
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Theorem 2.6 For all n ≥ 2, WKL0 + BΣn is Π1
1 conservative over RCA0 + BΣn .

Combining this with the argument above yields:

Theorem 2.7 For all n ≥ 2, every countable ω-model of RCA0 + BΣn is an
ω-submodel of a countable ω-model of WKL0 + BΣn .

I should note that I do not know how to obtain these last two theorems using
the methods of [2], or any other way; Hájek’s formalization of the recursion-
theoretic argument seems essential. I should also note that although it requires
more work to obtain the model-theoretic results from the syntactic arguments in
[2] and [5], the latter methods have the advantage of providing explicit transla-
tions between the theories, with polynomial bounds on increase in proof length.
Finally, Simpson and Smith [11] shows that Theorem 2.7 holds for n = 1 if one
adds an axiom asserting that exponentiation is total. For related results in the
context of bounded arithmetic, see Ferreira [4].

3 Separating Σn+1 collection and Σn induction

In the language of first-order arithmetic, the Σn collection schema, BΣn, is as
follows:

∀a, ~z (∀x < a ∃y θ(x, y, ~z) → ∃b ∀x < a ∃y < b θ(x, y, ~z))

where θ is Σn. Below BΣn is also used to denote the fragment of arithmetic in
which induction is replaced by the schema above.

The following theorem is due to Friedman and Paris, independently:

Theorem 3.1 For each n ≥ 0, Σn+1 collection is Πn+2 conservative over IΣn.

Paris and Wilkie showed in [8]:

Theorem 3.2 For each n ≥ 0, IΣn does not prove Σn+1 collection.

In [7, page 331], Paris notes that one can extract the following from the
proof:

Theorem 3.3 For each n ≥ 0, there is a Σn+2 sentence provable from BΣn+1

but not IΣn.

Finding the Σn+2 sentence takes some digging, however, and seems to require
a trick (used in Chapter IV of [6]), as follows.

First, note by Gödel’s incompleteness theorem, there is a Σ0 formula ψ(x)
such that ∃x ψ(x) is false, but consistent with Peano arithmetic. So, in any
model, an element a satisfying ψ(a) is necessarily nonstandard. We can choose
ψ so that IΣ0 proves ∀x, y (ψ(x) ∧ ψ(y) → x = y).

Let α(e, x) say, roughly, “e is a Σn+1 formula defining x,” using a Σn+1 truth
predicate, as in the Paris-Wilkie proof. Let α(e, x) be equivalent to ∃u θ(e, u, x),
where θ is Πn.
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The sentence I extracted from the Paris-Wilkie proof is

∃b ∀a (ψ(a) ∧ ∀x < (a+ 1) ∃e < a ∃u θ(e, u, x)) →
∀x < (a+ 1) ∃e < a ∃u < b θ(e, u, x))

Notice that if you move the ∃b to the consequence of the implication, this just
says that a certain instance of collection holds for a + 1, where a is the value
satisfying ψ, if there is one. It is false in the Paris-Wilkie model Kn+1 of IΣn,
assuming the nonstandard model has an element satisfying ψ; but it is an easy
consequence of Σn+1 collection.

Bringing the universal quantifier over x out of the antecedent yields

∃b ∀a ∃x (ψ(a) ∧ (x < (a+ 1) → ∃e < a ∃u θ(e, u, x))) →
∀x < (a+ 1) ∃e < a ∃u < b θ(e, u, x))

Using the fact that there is at most one a satisfying ψ(a), we can switch the
order of the second and third quantifiers:

∃b ∃x ∀a (ψ(a) ∧ (x < (a+ 1) → ∃e < a ∃u θ(e, u, x))) →
∀x < (a+ 1) ∃e < a ∃u < b θ(e, u, x))

Using Σn collection, IΣn proves that this statement is Σn+2.
A different construction of a Σn+2 sentence satisfying Theorem 3.2 is de-

scribed in Section 4.1 of Sieg [9].

4 Some thoughts on RT 2
2 and BΣ2

Let RT 2
2 denote the infinitary Ramsey’s theorem for two-colorings of pairs of

integers, as described in [3]. Hirst has shown that the infinitary Ramsey’s
theorem for pairs implies BΣ2; on the other hand, [3] shows that the first-order
consequences of RCA0 + RT 2

2 are included in IΣ2 .
It is still open as to what exactly the first-order consequences of RCA0 + RT 2

2

are, and nothing as of yet precludes the possibility that the first-order conse-
quences of RT 2

2 are exactly those of BΣ2. In other words, one might try to
prove that RCA0 + BΣ2 + RT 2

2 is conservative over BΣ2, by replacing IΣ2 by
BΣ2 in Corollary 8.6, Lemma 9.4, and Lemma 10.4 of [3].

Two observations are encouraging in that regard:

• By the results of the Section 2, every countable model of RCA0 + BΣ2

is an ω-submodel of a countable model of WKL0 + BΣ2 . (This is the
analogue of Corollary 8.6.)

• The use of Σ2 induction in the proof of Lemma 9.9 in [3] is unnecessary;
the choice principle it is used to derive in fact follows from WKL0 alone.
(See [10], Lemma VIII.2.4, page 319.) So one use of BΣ2 in the proof of
Lemma 9.4 can be eliminated.
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But I see no way of modifying the proof of Lemma 9.10 in [3] to obtain the
analogue of Lemma 9.4 for BΣ2, let alone the corresponding version of Lemma
10.4.
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and Jan Krajıček, editors, Arithmetic, Proof Theory, and Computational
Complexity, pages 185–196. Oxford University Press, Oxford, 1993.
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