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Abstract

A number of classical theories are interpreted in analogous theories
that are based on intuitionistic logic. The classical theories considered
include subsystems of first- and second-order arithmetic, bounded arith-
metic, and admissible set theory.

1 Introduction

Proof theory was developed, in part, as a way to reconcile classical and con-
structive aspects of mathematical reasoning. Given this historical fact, it is not
surprising that over the years proof theorists have invested a good deal of effort
in reducing classical theories to constructive ones.

Elegant in its simplicity, the Gödel-Gentzen double-negation interpretation
works wonders. For example, it seamlessly reduces classical arithmetic to its
intuitionistic counterpart, and with some additional work it can be used to in-
terpret Zermelo-Fraenkel set theory in a variant based on intuitionistic logic [13].
Under the double-negation interpretation, Π2 sentences of arithmetic, which can
be said to carry a theory’s “computational” content, are not preserved, but in
both these examples a further application of the Friedman-Dragalin interpreta-
tion [14] provides an easy and effective way of recovering the Π2 theorems.

Unfortunately, the double-negation and Friedman-Dragalin translations do
not always have desirable effects. For example, the double-negation transla-
tion of a classical axiom of choice is no longer an axiom of choice, and when
applied to fragments of intuitionistic arithmetic, the Friedman-Dragalin transla-
tion increases the complexity of the formulae in the induction axioms. For more
general purposes, ordinal analysis and functional interpretation are also power-
ful tools in the reductionist’s kit. But though these approaches yield additional
information, from the reductionist point of view the resulting interpretations
are somewhat indirect.

In this paper I will discuss a way of “repairing” axioms that are damaged by
the double-negation translation, using a method developed by Buchholz [7] and
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Coquand and Hofmann [11]. The history is as follows. In [7], Buchholz presented
an interpretation of classical theories of iterated inductive definitions, reducing
them to intuitionistic versions in which the inductive definitions are given by
a strictly positive operator. These can then be further reduced to appropriate
Martin-Löf type theories, as in Palmgren [18], or to theories of “accessibility”
inductive definitions, also in [7]. Recently, Coquand realized that Buchholz’
treatment of a single inductive definition can be adapted to yield a remarkably
straightforward reduction of the fragment of arithmetic IΣ1 to its intuitionistic
version IΣ i

1 . In [11], Coquand and Hofmann also present an interpretation of
Buss’ theory of bounded arithmetic S1

2 , that is independent of (and somewhat
different from) the one given here.

In Section 2, I will describe a general framework for these interpretations,
and in the sections that follow this framework will be instantiated in a num-
ber of different settings. In Section 3, I will use it to give a slightly different
presentation of Coquand’s interpretation, which shows that IΣ1 is conservative
over its intuitionistic version for Π2 formulae. I will then adapt the argument to
S1
2 , yielding ∀Σb

1 conservation over its intuitionistic counterpart IS1
2 . Since IΣ i

1

and IS1
2 have constructive realizability interpretations, the reductions enable

one to extract constructive information from the classical theories as well. The
analysis also extends to full classical arithmetic, PA, and the theory S2 .

In Sections 4 and 5, I will consider the Kripke-Platek theory of admissible
sets. Here the natural analogue of IΣ1 is a variant of KP in which foundation
is restricted to formulae that are Σ1 over the universe of sets. In Section 4, I
will use an idea due to Friedman [13] to interpret this theory in an “intensional”
version that omits the axiom of extensionality, and, in Section 5, I will apply
the framework to interpret the latter in its intuitionistic counterpart.

We will ultimately obtain interpretations for versions of KP with or with-
out the axiom of infinity, and with either full or restricted foundation. The
strongest theory analyzed in this way is KPω, which, by direct interpretation,
encompasses a number of important classical theories. These include a theory
of arithmetic inductive definitions, ID1 , and a subsystem of second-order arith-
metic, Π 1

1 -CA−, which allows Π1
1 comprehension without parameters (for de-

tails, see [8]). On the other hand, the intensional intuitionistic version IKPωint

described below is contained in Aczel’s constructive set theory, CZF ; the latter
can, in turn, be embedded in an appropriate version of Martin-Löf type theory
(see [2, 3]). In sum, the analysis below provides a net reduction of a number of
classical theories to constructive ones.

In Section 6, I will show that the methods can also be applied in the context
of subsystems of second-order arithmetic. In particular, we will see that the
theory Σ1

1 -AC , which includes arithmetic comprehension and an axiom of choice
for arithmetic formulae, is reducible to its intuitionistic counterpart, Σ1

1 -AC i .
Σ1

1 -AC is interesting in its own right, but also interprets ÎD1 , which allows
a weak form of arithmetic inductive definition. On the other hand, one can
interpret Σ1

1 -AC i in an appropriate version of Martin-Löf type theory,1 so once

1More explicitly, Martin-Löf [17] shows that one can interpret Σ1
1 -AC i in a type theory
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again we have a net reduction of the classical theory to a constructive one.
I should emphasize that the proof-theoretic equivalences of the classical and

intuitionistic theories discussed here are well-known. What is notable about this
approach is that it applies uniformly to a wide range of theories, and does not
require external “machinery.” Because the approach involves effective transla-
tions of the classical theories to the constructive ones, we obtain conservation
results in which the increase in the lengths of proofs can be bounded by a poly-
nomial; as far as I know, when it comes to S1

2 and IS1
2 , this sharper form of the

conservation result is new.

2 The framework

One thing that makes intuitionistic logic attractive is that the logical connectives
have a constructive interpretation, commonly attributed to Brouwer, Heyting,
and Kolmogorov. What makes negation, in this context, particularly ornery is
that it obliterates any constructive information that a formula might otherwise
have held: the interpretation of θ → ⊥ tells us nothing beyond the fact that
there cannot possibly be a proof of θ. The remedy offered by the Friedman-
Dragalin translation is to insist that ⊥, along with the other atomic formulae,
carry additional information; but the type of information these formulae carry
is fixed in advance and remains static throughout the proof. The Buchholz-
Coquand methods provide a more dynamic interpretation of⊥, by reinterpreting
implication as well.

For our purposes it is convenient (but not necessary) to take intuitionistic
logic to be given by a system of natural deduction, where derivations yield
assertions of the form Γ ⇒ ϕ, i.e. “ϕ follows from the hypotheses in Γ.” To
describe the method in full generality, let L be any first-order language, and
consider the following two-sorted “forcing language” Lf . One sort of Lf has
variables corresponding to the universe of L, with the associated constants and
functions. The other sort has variables p, q, r, . . . ranging over “conditions,” and
there is a binary relation p � q (“p is stronger than q”) between objects this
sort. Finally, for every n-ary relation symbol R(x1, . . . , xn) of L, there is a
corresponding (n + 1)-ary relation symbol R′(p, x1, . . . , xn) of Lf . Intuitively,
R′(p, x1, . . . , xn) asserts that condition p “forces” R(x1, . . . , xn). Then to every
formula ϕ in the language of L, we can inductively associate a formula p 
 ϕ in

with a single universe, without requiring an elimination rule on the universe. The interpreta-
tion is similar to that of the theory IARI , described in [15, Section 6]. One obtains Σ1

1 -AC i

from IARI by deleting the inductive generation axiom and substituting arithmetic choice for
replacement; the choice schema is interpreted via a straightforward modification of Lemma 6.7
of [15].
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the language of Lf , as follows:

p 
 R(t1, . . . , tn) ≡ R′(p, t1, . . . , tn), for every relation symbol R
p 
 (ϕ ∧ ψ) ≡ p 
 ϕ ∧ p 
 ψ

p 
 (ϕ ∨ ψ) ≡ p 
 ϕ ∨ p 
 ψ

p 
 (ϕ→ ψ) ≡ ∀q � p (q 
 ϕ→ q 
 ψ)
p 
 ∀x ϕ ≡ ∀x p 
 ϕ

p 
 ∃x ϕ ≡ ∃x p 
 ϕ

As usual, ¬ϕ is defined to be ϕ → ⊥, and ∀q � p θ is shorthand for ∀q (q �
p → θ). ⊥ is taken to be a 0-ary relation, thereby covered by the first clause.
If Γ is a set of formulae {ψ1, . . . , ψk}, I will write Γ, ϕ for Γ ∪ {ϕ}, and p 
 Γ
for the set of formulae {p 
 ψ1, . . . , p 
 ψk}. The inscription 
 ϕ is read “ϕ is
forced,” and means that every condition forces ϕ.

Proposition 2.1 (substitution) For every formula ϕ, variable x, and term
t, p 
 ϕ[t/x] is given by (p 
 ϕ)[t/x].

Definition 2.2 A forcing notion is good if it satisfies the following conditions:

1. � is reflexive and transitive

2. The atomic forcing relations are monotone: p 
 θ and p′ � p implies
p′ 
 θ, for θ atomic

3. For every atomic formula θ, if p 
 ⊥ then p 
 θ.

Notice that these conditions are expressible in Lf .

Proposition 2.3 (monotonicity) From the assumption that the forcing no-
tion good, in intuitionistic logic one can prove monotonicity for all formulae in
L.

Proof. By induction on formulae η. Monotonicity for atomic formulae takes care
of the base case, and the transitivity of � is used when η is of the form ϕ→ ψ.
�

Proposition 2.4 Let Γ be a set of formulae in L, and ϕ any formula in L. If
ϕ is provable from Γ intuitionistically, then p 
 ϕ is provable from p 
 Γ and
the assumption that the forcing notion is good.

Proof. Use induction on the length of the proof. We can assume that the only
rule governing ⊥ is “ex falso sequitur quodlibet” for atomic formulae; that is,
the rule “From Γ ⇒ ⊥ conclude Γ ⇒ θ” for atomic θ. The case in which this is
the last inference of the proof is covered by clause 3 in Definition 2.2.

Otherwise, the only interesting cases occur when the last inference is either
an introduction or elimination rule for →. To handle →-introduction, suppose
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the last rule of the proof yields Γ ⇒ ϕ → ψ from Γ, ϕ ⇒ ψ. Assume p 
 Γ,
q � p, and q 
 ϕ; we need to show that q 
 ψ. By monotonicity, we have q 
 Γ;
but then q 
 ψ follows from the inductive hypothesis.

Dealing with →-elimination is no more difficult. �

Notes. The forcing clauses above formalize the usual Kripke semantics, pro-
vided ⊥ is treated as a propositional variable and there is a fixed universe for
all the possible worlds. See, for example, [23].

If � is defined from a commutative, idempotent “meet” operation ∧ by

q � p ≡ (q ∧ p = q),

then the clause for implication is equivalent to

∀q (q 
 ϕ→ p ∧ q 
 ψ).

If � has a greatest element ∅, then 
 ϕ is equivalent to ∅ 
 ϕ.
If one focuses one’s attention on the negative fragment of intuitionistic logic,

which involves only the connectives ∧, →, and ∀, the clauses above are consistent
with the intuition that p 
 ϕ means, in some sense, that there is a proof of ϕ
from p. We will see in Section 5 that the forcing relation behaves particularly
well with respect to these connectives.

The Friedman-Dragalin translation arises from the clauses above in the spe-
cial case where the partial order is trivial (i.e. has a single element) and there
is a fixed formula ψ such that for every atomic formula θ, p 
 θ is just θ ∨ ψ.

To apply the framework above one need only find suitable interpretations
for the conditions and atomic forcing relations.

Corollary 2.5 Let T be an intuitionistic theory given by a set of axioms. Sup-
pose one defines a good forcing notion in another theory T ′, in such a way that
T ′ proves that every axiom of T is forced. Then whenever T proves a formula
ϕ, T ′ proves that ϕ is forced.

Proof. If T proves ϕ intuitionistically, then there is a set of axioms Γ of T such
that Γ ⇒ ϕ is provable intuitionistically. If p is any condition, the hypothesis
and Proposition 2.4 imply that T ′ proves p 
 Γ and hence p 
 ϕ. �

3 Arithmetic

In this section I will show that IΣ1 is conservative over its intuitionistic analogue
IΣ i

1 . The interpretation is essentially that of Coquand and Hofmann [11]; the
only difference is that here I will use first-order forcing conditions instead of
second-order ones, and divide the interpretation into two steps. In this form, it
is easy to extend the results to S1

2 .
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IΣ1 denotes the fragment of classical arithmetic in which the schema of
induction is restricted to Σ1 formulae. Because any primitive recursive function
can be introduced in a definitional extension of IΣ1 , we can conveniently blur
the distinction between this theory and IΣ1 (PRA), which has symbols denoting
such functions in its language. Identifying primitive recursive relations with
their characteristic functions, we can then take the Σ1 formulae to be of the
form ∃x A(x), where A is primitive recursive, possibly with free variables other
than x. The axioms of IΣ1 consist of

1. Quantifier-free defining equations for the primitive recursive functions

2. Σ1 induction: ϕ(0)∧ ∀x (ϕ(x) → ϕ(x′)) → ∀x ϕ(x), where ϕ is Σ1 and x′

denotes the successor of x

IΣ i
1 denotes the corresponding theory based on intuitionistic logic.
In IΣi

1 one can use induction to prove that equality is decidable, and hence
that the law of the excluded middle holds for quantifier-free formulae. Markov’s
principle for primitive recursive predicates is given by

¬∀x A(x) → ∃x ¬A(x) (MPpr )

where A is primitive recursive. The interpretation of IΣ1 in IΣ i
1 will proceed

in two steps: first we will interpret IΣ1 in IΣ i
1 + (MPpr ), and then we will

interpret the latter theory in IΣ i
1 .

For the first interpretation, the double-negation interpretation suffices. In
this context, the interpretation takes (ϕ∨ψ)N to ¬(¬ϕN ∧¬ψN ), takes (∃x ϕ)N

to ¬∀x ¬ϕN , fixes atomic formulae, and commutes with ∧, →, and ∀.

Lemma 3.1 IΣ i
1 + (MPpr ) proves the double-negation translation of each ax-

iom of IΣ1 .

Proof. Using (MPpr ) and the law of the excluded middle for atomic formu-
lae, IΣ i

1 proves that quantifier-free and Σ1 formulae are equivalent to their
N-translations. As a result, the doubly-negated axioms of IΣ1 are equivalent to
themselves in IΣ i

1 + (MPpr ). �

For the remainder of this paper I will say that a formula is “negative” if
it is part of the negative fragment of intuitionistic logic, that is, it does not
contain any instances of the connectives ∨ or ∃.2 Let Cpr denote the set of
“almost negative” formulae, that is, the smallest set containing the Σ1 formulae
and closed under conjunction, implication, and universal quantification. Since
IΣ i

1 + (MPpr ) proves that any formula in Cpr is equivalent to its N-translation,
we have

Theorem 3.2 IΣ1 is conservative over IΣ i
1 + (MPpr ) for formulae in Cpr .

2The word “negative” is, unfortunately, overburdened in the literature; in particular, the
usage here differs from that of [7].
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Let us now apply the framework of Section 2 to interpret IΣ i
1 + (MPpr ) in

IΣ i
1 . It turns out that the appropriate conditions are finite sets

{∀x A1(x), . . . ,∀x Ak(x)} (1)

of Π1 sentences with parameters, i.e. Π1 formulae together with assignments to
their free variables.3 The ordering � between conditions is defined to be the
set containment relation, ⊇. Fixing some reasonable encoding, if ∀x A(x) is a
Π1 formula with free variables ~y, let p∀x A(x)q denote the function of ~y that
returns the code of the corresponding sentence with parameters, and let the
variables p, q, r . . . range over finite (coded) sets of such sentences. I will usually
write p, q instead of p ∪ q and p, ϕ instead of p ∪ {ϕ}. Since q ⊇ p is equivalent
to q ∪ p = q, p 
 (ϕ→ ψ) is equivalent to

∀q (q 
 ϕ→ p, q 
 ψ),

which is the characterization I will use to verify the interpretations.
Given any proof in IΣ i

1 + (MPpr ), choose m large enough so that all the
primitive recursive relations mentioned have complexity less than m, and let
Trm

pr denote a primitive recursive truth predicate for such relations. (I will
come back to this issue below.) If p codes a set of the form (1), define

Tr(p, u) ≡
k∧

i=1

Ai(u),

where Trm
pr is used to express the right-hand-side; this asserts that the formulae

in p are true at least as far as u is concerned. Define

p ` ϕ ≡ ∃u (Tr(p, u) → ϕ) (2)

for arbitrary formulae ϕ. Intuitively, the witness u in (2) can be interpreted as a
“proof” that ϕ follows from the conjunction of the universal sentences in p, since
(2) asserts that ϕ follows more specifically from their instantiations at u. As
one might expect, this “provability” relation is monotone in the first argument:
if q and p are conditions such that q ⊇ p, then Tr(q, u) implies Tr(p, u) and
hence p ` ϕ implies q ` ϕ.

Define p 
 θ to be p ` θ when θ is atomic, and extend the forcing relation
to arbitrary formulae in the language of arithmetic as in Section 2. It is not
difficult to verify that the forcing notion is a good one, according to Definition
2.2. The following lemma shows that when it comes to quantifier-free formulae,
the relations 
 and ` coincide.

Lemma 3.3 If ϕ is any quantifier-free formula, then IΣ i
1 proves

p 
 ϕ iff p ` ϕ.
3Alternatively one can take these to be Π1 sentences in an expanded language that has a

name for every element of the universe. Of course, in the context of arithmetic these names
are not necessary, since every number is denoted by the corresponding numeral; but we will
need this more general formulation in Sections 5 and 6 below.
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Proof. The proof of this lemma relies heavily on the fact that IΣ i
1 proves the law

of the excluded middle for quantifier-free formulae. In particular, this implies
that for such formulae ϕ, p ` ϕ is equivalent to ∃u (¬Tr(p, u) ∨ ϕ), as well as
∃u ¬Tr(p, u) ∨ ϕ.

The proof proceeds by induction on the complexity of ϕ. The cases in which
ϕ is atomic, of the form θ ∧ψ, or of the form θ ∨ψ are readily dealt with, using
the observations in the preceeding paragraph. When ϕ is of the form θ → ψ we
have

p 
 (θ → ψ) ↔ ∀q (q 
 θ → p, q 
 ψ)
↔ ∀q (q ` θ → p, q ` ψ).

We need to show that this is equivalent to p ` (θ → ψ). In the forwards
direction, assume the last line of the equivalence holds. Since θ implies ∅ ` θ,
we have θ → p ` ψ. This is equivalent to

¬θ ∨ ∃u ¬Tr(p, u) ∨ ψ,

which is equivalent to p ` (θ → ψ). For the other direction, suppose p ` (θ → ψ)
and q ` θ; we need to show p, q ` ψ. From the assumption, we have

∃u ¬Tr(p, u) ∨ (θ → ψ) and ∃v ¬Tr(q, v) ∨ θ.

Arguing by cases yields
∃w ¬Tr(p ∪ q, w) ∨ ψ,

as desired. �

Lemma 3.4 For every primitive recursive relation A, IΣ i
1 proves the following:

1. ∀x A(x) 
 ∀x A(x)

2. If p 
 ¬∀x A(x), then p 
 ∃x ¬A(x).

Proof. For 1, we have by definition

∀x A(x) 
 ∀x A(x) iff ∀z (∀x A(x) 
 A(z))
iff ∀z (∀x A(x) ` A(z))
iff ∀z ∃u (Trm

pr ({p∀x A(x)q}, u) → A(z)).

Given z, simply take u = z.
For 2, suppose p 
 ¬∀x A(x). Then we have

∀q (q 
 ∀x A(x) → p, q 
 ⊥).

In particular, 1 implies p,∀x A(x) 
 ⊥. In other words, there is an element u
such that

Tr(p, u) ∧A(u) → ⊥
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and hence
Tr(p, u) → ¬A(u).

Taking x = u we have

∃x ∃u (Tr(p, u) → ¬A(x)),

which is, by definition,
∃x p ` ¬A(x).

By Lemma 3.3 this is equivalent to

∃x p 
 ¬A(x),

which is, by definition, p 
 ∃x ¬A(x). �

Lemma 3.5 IΣ i
1 proves that each axiom of IΣ i

1 + (MPpr ) is forced.

Proof. By Lemma 3.3, a quantifier-free formula is forced iff it is true, so the
quantifier-free axioms are reduced to themselves. Lemma 3.4 shows that if p
forces the antecedent of (MPpr ), then it forces the conclusion as well; so (MPpr )
is forced.

Finally, to handle induction, suppose

p 
 ψ(0) and p 
 ∀x (ψ(x) → ψ(x′)).

where ψ(x) is Σ1. The second assumption implies that for every x, if p forces
ψ(x), then p forces ψ(x′) as well. Since p 
 ψ(x) is equivalent to a Σ1 formula,
we can use induction to show that for every x, p forces ψ(x); in other words
p 
 ∀x ψ(x). This shows that the induction axiom for ψ is forced. �

Let Dpr be the smallest set of formulae containing the quantifier-free ones
and closed under conjunction, disjunction, and universal and existential quan-
tification. For formulae ϕ in Dpr , IΣ i

1 proves that 
 ϕ is equivalent to ϕ. So
we have

Theorem 3.6 IΣ i
1 + (MPpr ) is conservative over IΣ i

1 for formulae in Dpr .

This yields

Theorem 3.7 IΣ1 is conservative over IΣ i
1 for Π2 formulae.

Proof. Every Π2 formula is contained in Cpr ∩ Dpr . �

Since more general instances of induction translate to instances of induction,
we have

Theorem 3.8 PA and HA + (MPpr ) are conservative over HA for Π2 formu-
lae.
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There is correspondence between intermediate theories as well. Suppose we
start with a Πn formula ∀x1 ∃x2 . . . Qxn ϕ, where n ≥ 2 and ϕ is quantifier-
free. Then its double-negation translation is intuitionistically equivalent to
∀x1 ¬∃x2 . . . Q′xn ¬ϕN , where Q′ is ∃ if Q is ∀, and vice-versa. By defi-
nition, the assertion that p forces this latter formula is equivalent to

∀x1, q (q 
 ∃x2 . . . Q′xn ¬ϕN → p ∪ q 
 ⊥),

and this formula is equivalent (over, say IΣi
1) to one of the form ∀(Σn →

Σ1). For each n ≥ 2, Cn be the set of formulas of this form. Since from a
classical point of view formulas in Cn are Πn, and since Πn and Σn induction
are equivalent in the classical setting, we have

Theorem 3.9 For n ≥ 2, IΣn is a Π2 conservative extension of IC i
n .

More satisfying results involving the correspondence between classical and in-
tuitionistic fragments of arithmetic are available; see Burr [9].

The argument we have just carried out required a primitive recursive truth
predicate Trm

pr for primitive recursive relations of complexity less than or equal to
m. If we measure the complexity of a primitive recursive function by the number
of instances of composition and primitive recursion employed in its definition,
we can obtain such a predicate as follows. For each m, we define a primitive
recursive function Evalm(f, s), which evaluates a function of complexity at most
m, coded by f , at the list of parameters coded by s. Eval0 is defined so that
it computes the result of applying either a constant, successor, or projection
function to its arguments, and then for each m, Evalm+1 is defined by cases
using Evalm. (A similar construction can be found in [22, Section 1.5].) We can
use Evalm to define Trm

pr , and derive the necessary properties in IΣ i
1 .

Alternatively, we can use a Σ1 evaluation predicate for the primitive recursive
functions (also described in [22]) and take p ` θ to assert that “there is a u and
a computation sequence c for A1(u), . . . , Ak(u), such that if the computation
determines that these are all true, then θ.” Choosing this method means that
we no longer need to use a separate interpretation for each fixed complexity
level m.

For the simplest method of all, note that in any given proof only finitely
many relations A1, . . . , Ak are mentioned, in which case the “truth predicate”
need only work for Π1 sentences involving these relations. We can represent
every such sentence as a pair 〈i, s〉, where i is a value between 1 and k and s
codes an assignment to the free variables of ∀x Ai(x). With this representation,
Trm

pr can be defined as a straightforward disjunction of length k, and to carry
out the interpretation we only need a minimal theory of finite sets and sequences
in IΣ i

1 .
In the applications that follow, one may be able to use variations of each

of these three options. Since the last one requires the least effort and is the
most clearly applicable in all cases, let us, for concreteness, adopt this way of
interpreting the various forms of Trm referred to in the sequel. Though I will
neglect to qualify the statements of the lemmata below with the condition that
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certain formulae mentioned must have complexity less than m, the reader can
readily supply the additional details.

With these considerations in hand the interpretation above can be adapted
to Buss’ theory of bounded arithmetic S1

2 , and its constructive counterpart, IS1
2 .

I will rely on the presentation in Cook and Urquhart [10], which provides a nice
account of these two theories and their properties. In fact, it will be more conve-
nient to work with the theories CPV and IPV , which are definitional extensions
of S1

2 and IS1
2 respectively; these extensions include the terms of Cook’s theory

PV , which denote polynomial time computable functions. Bounded quantifica-
tion is defined by

∀x ≤ t ϕ ≡ ∀x (t′ ≤ x ∨ ϕ)

and
∃x ≤ t ϕ ≡ ∃x (x ≤ t ∧ ϕ).

In analogy to the Σ1 formulae above, a formula is said to be NP if it is of the
form ∃x ≤ t A(x), where A is a PV relation and t is a PV term.

CPV is the classical first-order theory given by

1. Quantifier-free axioms defining the basic symbols of the language

2. NP induction:

ϕ(0) ∧ ∀x (ϕ(bx/2c) → ϕ(x)) → ∀x ϕ(x)

where ϕ is NP .

IPV is simply CPV based on intuitionistic logic. From [10, Theorem 4.5] we
know that IPV proves the law of the excluded middle for quantifier-free for-
mulae (and, in fact, formulae in which every quantifier is sharply bounded). In
particular, we can take the double-negation translation to fix atomic formulae,
and show that the translation of a bounded formula is equivalent to a bounded
formula.

A bounded analogue of Markov’s principle is given by

¬∀x ≤ t A(x) → ∃x ≤ t ¬A(x) (MPb)

where A is a PV relation.
Finally, in analogy to the almost negative formulae, define Cb to be the small-

est set of formulae containing the NP formulae and closed under conjunction,
implication, and universal quantification. The double-negation interpretation
yields

Theorem 3.10 CPV is a conservative extension of IPV + (MPb) for formulae
in Cb.

The interpretation of IPV + (MPb) in IPV follows the pattern of the inter-
pretation of IΣ i

1 + (MPpr ) in IΣ i
1 , once we take conditions to be finite sets of

sentences of the form ∀x ≤ b A(x), where A(x) is a relation in PV that may
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have parameters, and b is a parameter. Let Trm
b be a truth predicate for a

sufficiently large set of PV relations with parameters. If p is the set

{∀x ≤ b1 A1(x), . . . ,∀x ≤ bk Ak(x)},

use Trm
b and to define

Tr(p, u) ≡
k∧

i=1

(u ≤ bi → Ai(u))

and
p ` ϕ ≡ ∃u ≤ max(b1, . . . , bk) (Tr(p, u) → ϕ)

for arbitrary ϕ. Finally, define p 
 θ to be p ` θ for atomic θ, and then extend
the forcing relation to the entire language of IPV .

The following lemma asserts that bounded quantification commutes with the

 operator.

Lemma 3.11 For every formula ϕ, IPV proves the following:

1. p 
 ∃x ≤ t ϕ iff ∃x ≤ t p 
 ϕ

2. p 
 ∀x ≤ t ϕ iff ∀x ≤ t p 
 ϕ

Proof. As in the proof of Lemma 3.3, if θ is atomic then p 
 θ is equivalent to
θ ∨ p 
 ⊥. As a result, we have

p 
 ∃x ≤ t ϕ iff ∃x (p 
 x ≤ t ∧ p 
 ϕ)
iff ∃x ((x ≤ t ∨ p 
 ⊥) ∧ p 
 ϕ).

We need to show that this is equivalent to ∃x ≤ t p 
 ϕ. One direction is easy;
for the other direction, suppose the last line of the equivalence above holds.
Given such a value of x, reason by cases: if x ≤ t, we are done. If, on the other
hand, p 
 ⊥, then p 
 ϕ[0/x], since intuitionistic validities are forced; and again
we are done.

The argument for 2 is similar. �

In analogy with Lemmata 3.3–3.5 we have

Lemma 3.12 If ϕ is any quantifier-free formula, then IPV proves

p 
 ϕ iff p ` ϕ.

Lemma 3.13 For any PV predicate A, IPV proves the following:

1. ∀x ≤ t A(x) 
 ∀x ≤ t A(x)

2. If p 
 ¬∀x ≤ t A(x), then p 
 ∃x ≤ t ¬A(x).

Lemma 3.14 IPV proves that each axiom of IPV + (MPb) is forced.
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Let Db be the smallest set of formulae in the language of IPV containing
the quantifier-free ones and closed under conjunction, disjunction, and universal
and existential quantification.

Theorem 3.15 IPV + (MPb) is conservative over IPV for formulae in Db.

Theorem 3.16 CPV is conservative over IPV for ∀NP formulae, that is, for-
mulae of the form ∀x ∃y ≤ t A(x, y), where A is a PV relation.

Using the analysis in [10], which shows that CPV and IPV are definitional
extensions of S1

2 and IS1
2 , respectively, this yields

Theorem 3.17 S1
2 is conservative over IS1

2 for ∀Σb
1 formulae.

Let S2 and IS2 denote the extensions of S1
2 and IS1

2 in which induction
is allowed for arbitrary bounded formulae. Using Lemma 3.11, we see that
Lemma 3.14 still holds for this strengthened form of induction, so we have

Theorem 3.18 S2 is conservative over IS2 for ∀Σb
1 formulae.

In [11], Coquand and Hofmann interpret CPV in a second-order version of
IPV , and then invoke a result from [10] which reduces this to first-order IPV .
Their methods yield a strengthening of Theorem 3.17, where the class of formu-
las conserved include those of the form ∀∃Σb

1. On the other hand, because the
conservation result from [10] uses a normalization argument, there is the possi-
bility of a superexponential increase in the lengths of proofs. Alternatively, one
can derive the stronger conclusion from Theorem 3.17 using Parikh’s theorem
[19], but once again this allows for superexponential growth. As far as I know,
it is still an open question as to whether one can obtain the strengthened ver-
sion of Theorem 3.17 with a polynomial bound on the increase in the lengths of
proofs.

4 Extensionality in admissible set theory

In the context of set theory, the proper analogue of IΣ1 is the Kripke-Platek
theory of admissible sets, without the axiom of infinity, and with foundation
restricted to Σ1 formulae: in addition to the fact that the two theories can be
interpreted in one another, one finds additional structural similarities in the
work of Rathjen [20].

I will take the language of set theory to contain only a single binary relation
symbol ∈, and take equality to be defined by

x = y ≡ ∀z ∈ x (z ∈ y) ∧ ∀z ∈ y (z ∈ x).

Here bounded quantification is given by

∀y ∈ x ϕ ≡ ∀y (y ∈ x→ ϕ)
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and
∃y ∈ x ϕ ≡ ∃y (y ∈ x ∧ ϕ).

A formula is said to be ∆0, or restricted, if every quantifier is bounded; it is
said to be Σ1 (resp. Π1) if it is either ∆0 or of the form ∃y ϕ (resp. ∀y ϕ), where
ϕ is ∆0. The axioms of KP are as follows:

1. Extensionality: x = y → (x ∈ w → y ∈ w)

2. Pair: ∃x (y ∈ x ∧ z ∈ x)

3. Union: ∃x ∀z ∈ y ∀w ∈ z (w ∈ x)

4. ∆0 separation: ∃x (∀z ∈ x (z ∈ y ∧ϕ(z))∧∀z ∈ y (ϕ(z) → z ∈ x)), where
ϕ is ∆0 and x does not occur in ϕ

5. ∆0 collection: ∀x ∈ z ∃y ϕ(x, y) → ∃w ∀x ∈ z ∃y ∈ w ϕ(x, y), where ϕ is
∆0

6. Foundation: ∀x (∀y ∈ x ψ(y) → ψ(x)) → ∀x ψ(x), for arbitrary ψ

I have written ∆0 separation to emphasize that it is Σ1; this axiom can be used
to derive the more usual forms of pair and union. The foundation axiom as
presented here is sometimes also called “set induction,” and is equivalent to the
assertion that every nonempty definable class of sets has an ∈-least element.
I will use KP� to denote the theory in which foundation is restricted to Σ1

formulae.
The definition of equality given above corresponds to the usual notion of ex-

tensional equality between sets. It is easy to prove that this relation is reflexive,
symmetric, and transitive; and from axiom 1 we can derive x = y → (ϕ(x) ↔
ϕ(y)) for every formula ϕ. Alternatively, we could have taken equality to be a
basic logical symbol having these properties, and then replaced axiom 1 with
what was previously the definition. The two approaches are equivalent, and the
first is more convenient for our purposes.

We would like to interpret KP and KP� in intuitionistic versions. One prob-
lem that we will encounter is that extensionality is not well-behaved under the
double-negation translation. So let us take KP int and KP int� to be “inten-
sional” versions, in which the axiom of extensionality is omitted, and let us
consider what life in an intensional universe might be like. One can think of
such a universe as consisting of “names” for sets, where, in particular, there may
be many names for the empty set; i.e. there may be two sets x and y satisfying
∀z (z 6∈ x) and ∀z (z 6∈ y), while for some w we have x ∈ w but y 6∈ w. Also,
taking x = {y, z} to abbreviate

y ∈ x ∧ z ∈ x ∧ ∀w ∈ x (w = y ∨ w = z) (3)

is misleading, since it is consistent that z = {x, y} and z′ = {x, y} while z 6= z′:
z and z′ may contain different names for x and y.

Friedman [13] (see also Chapter VIII of [6]) has found an elegant way of
interpreting extensionality in an intensional universe: declare all the empty sets
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to be “isomorphic” to each other, and, more generally, call two sets isomorphic
if (inductively) they have isomorphic elements; then replace elementhood by
elementhood up to isomorphism. Here I will show that this approach can be
implemented in KP int�.

A formula is said to be ∆1 (relative to a theory) if it is provably equivalent
to both Σ1 and Π1 formulae. The next lemma is standard in admissible set
theory, and does not require extensionality.

Lemma 4.1 KP int� proves collection for Σ1 formulae, and separation for ∆1

formulae. Also, if ϕ(R) is ∆0 in a language with a new relation symbol R, and
one replaces R with a ∆1 formula, the result is ∆1 in KP int�.

Proof. One obtains Σ1 collection by pairing the existentially quantified variables.
For ∆1 separation, note that if ϕ(y) is equivalent to a Σ1 formula ∃u ψ(y, u) as
well as to a Π1 formula ∀u θ(y, u), then (classically) we have ∀y ∃u (ψ(y, u) ∨
¬θ(y, u)); one can then reduce separation for ϕ to an instance of ∆0 separation
by first using collection to gather a sufficiently large set of witnesses. The last
claim is proved by induction on formulae, again using collection. For details,
see [5]. �

Ignoring the caveat above and using x = {y, z} to denote (3), I will write
“x is an unordered pair” for ∃y ∈ x, z ∈ x (x = {y, z}), and {y, z} ∈ w for
∃x ∈ w (x = {y, z}). We can think of a symmetric relation R as given by a set
of unordered pairs, allowing {x, x} as a degenerate case. With this in mind, let
us write y ∼R z for {y, z} ∈ R, and y ∈ field(R) for ∃x ∈ R ∃z ∈ x (x = {y, z}).
Call such a relation R an isomorphism relation if, for every y and z in the field
of R, we have

y ∼R z ↔ (∀u ∈ y ∃v ∈ z (u ∼R v) ∧ ∀v ∈ z ∃u ∈ y (v ∼R u)). (4)

The definition implies that the field of any isomorphism relation R is transitively
closed, i.e. y ∈ field(R) and w ∈ y imply w ∈ field(R). Using foundation with
∆0 formulae one can also show that any isomorphism relation is an equivalence
relation on its field.

The global isomorphism relation we are looking for is given by

y ∼ z ≡ ∃R (“R is an isomorphism relation and y ∼R z”).

Each of the following four lemmata is provable in KP int�. The last shows that
y ∼ z has an equivalent Π1 definition, and is hence ∆1.

Lemma 4.2 KP int� proves that for every u and v, there is a set of unordered
pairs of elements from u and v; that is, for every u and v,

∃w ∀y ∈ u, z ∈ v ({y, z} ∈ w).

Proof. Fix u and v. For any given y, we have

∀z ∈ v ∃r (r = {y, z}).
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Use ∆0 collection to obtain

∃s ∀z ∈ v ({y, z} ∈ s).

In particular, this is true for every y in u; use ∆0 collection again to show

∃t ∀y ∈ u ∃s ∈ t ∀z ∈ v ({y, z} ∈ s).

Apply the union axiom to t to get the desired w. �

Say that an isomorphism relation is good for a set x if every element of x is
in the field of R.

Lemma 4.3 For every set x, there is an isomorphism relation that is good for
x.

Proof. Use Σ1 induction on x. Suppose the claim is true for every element of x;
in other words, for every y in x there is an isomorphism relation Ry good for y.
Using collection and union, we can define R̂ to be the union of the Ry. Using
Lemma 4.2 and ∆0 separation, let S contain unordered pairs from x satisfying
the right side of (4), with R̂ in place of R; and let R be R̂ ∪ S. Then R is an
isomorphism relation that is good for x. �

Lemma 4.4 Suppose R and R′ are isomorphism relations. Then for every y
and z in both the fields of R and R′, y ∼R z if and only if y ∼R′ z.

Proof. Fix R and R′. Since the second sentence of the lemma is equivalent to a
∆0 assertion in y and z, the result follows from a double induction on y and z,
and the definition of an isomorphism relation. �

Lemma 4.5 y ∼ z is equivalent to the assertion

∀R ((“R an isomorphism relation” ∧ y ∈ field(R) ∧ z ∈ field(R)) → y ∼R z).

Proof. Fix y and z. The pairing axiom and Lemma 4.3 imply that there is an
isomorphism relation with y and z in its field, and Lemma 4.4 implies that any
two such relations must agree. �

We have established that ∼ is a ∆1 relation. Using the definition and lem-
mata above one can show that ∼ satisfies

y ∼ z ↔ (∀u ∈ y ∃v ∈ z (u ∼ v) ∧ ∀v ∈ z ∃u ∈ y (v ∼ u)). (5)

Now define
y ∈∗ w ≡ ∃z ∈ w (y ∼ z),

and if ϕ is any formula in the language of set theory, let ϕ∗ denote the formula
obtained by replacing ∈ by ∈∗. Observe that (x = y)∗ is given by

∀z ∈∗ x (z ∈∗ y) ∧ ∀z ∈∗ y (z ∈∗ x). (6)
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Lemma 4.6 Let ϕ be any formula. The following are provable in KP int�:

1. x ∈ z → x ∈∗ z

2. x ∼ y → (x ∈∗ z → y ∈∗ z)

3. x ∼ y ↔ (x = y)∗

4. x ∼ y → (ϕ∗(x) ↔ ϕ∗(y))

5. ∀x ∈∗ z ϕ∗ ↔ ∀x ∈ z ϕ∗

6. ∃x ∈∗ z ϕ∗ ↔ ∃x ∈ z ϕ∗

7. x = y → (x = y)∗

Proof. Clause 1 follows from the fact that ∼ is reflexive. Clause 2 follows from
the definition of ∈∗, and 3 follows from 2 together with equivalences (5) and
(6) above. Clause 4 is proved using induction on ϕ, with 3 as the base case.
The forwards direction of 5 is easy, using 1. For the other direction, suppose
∀x ∈ z ϕ∗ and x ∈∗ z. The latter means that there is an x0 ∈ z such that
x0 ∼ x; but then ϕ∗(x0), and hence ϕ∗(x) by 3. The proof of 6 is similar to
that of 5. Clause 7 follows from 5, 1, and the definition of equality. �

Clauses 5 and 6, together with Lemma 4.1, yield

Corollary 4.7 The ∗-translation of any ∆0 formula is ∆1 in KP int�.

Lemma 4.8 The ∗-translation of each axiom of KP� is provable in KP int�.
The same is true for KP and KP int .

Proof. The fact that the ∗-translation of extensionality is provable in the inten-
sional theory follows from clauses 2 and 3 of Lemma 4.6, and the ∗-translations
of pairing and union follow from the corresponding axioms in the intensional
theory, using clauses 1 and 5. Translations of instances of ∆0 separation and
collection, as well as Σ1 or full foundation, are handled using clauses 5 and 6 of
Lemma 4.6, Corollary 4.7, and Lemma 4.1. �

This yields

Theorem 4.9 If KP� proves a formula ϕ, then KP int� proves ϕ∗; and similarly
for KP and KP int .

In the next section we will consider versions of admissible set theory with an
axiom of infinity; we can use Lemma 4.6 to show that Theorem 4.9 still holds
with this addition. One may also wish to consider versions of Kripke-Platek set
theory in which one has a set N containing the natural numbers as urelements,
as well as the primitive recursive functions and a built-in notion of equality on
that set. Once again, Theorem 4.9 still holds for these theories, provided that
in the intensional versions we have the usual axioms governing equality on N.
The modifications necessary for this interpretation are well described in [13, 6],
and pose no additional problems in the present setting.
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5 Interpreting intensional KP

Having dealt with extensionality, we can now restrict our attention to the inter-
pretation of KP int and KP int�. Let IKP int and IKP int� denote the correspond-
ing theories where the underlying logic is intuitionistic. Our goal is to show that
the classical theories are conservative over the intuitionistic ones for a certain
class of formulae; for the moment, we will focus our attention on KP int�. The
argument below is modeled after the one in Section 3, but is more delicate be-
cause in IKP int� one can not, in general, prove the law of the excluded middle
for ∆0 formulae. Nonetheless, we will again proceed in two steps, and make use
of an intermediate theory based on intuitionistic logic. Many of the lemmata
below are patterned after similar ones in [7].

In this setting it turns out that the primitive recursive relations of Section 3
are analogous to negative ∆0 formulae, and the Σ1 formulae of arithmetic are
analogous to what I will call “weak Σ1” formulae in the language of set theory.
These are defined to be formulae of the form

∃w ¬∀x ∈ w ϕ (7)

where ϕ is negative and ∆0, and w does not appear in ϕ. Being weak Σ1 is
more restrictive than being Σ1; formula (7) does not quite assert that there is
an x satisfying ¬ϕ, but rather that there is a set w of candidates, not all of
which satisfy ϕ.

The intermediate theory IKP int#� is defined to be the theory based on
intuitionistic logic, given by the following axioms:

1. Pair and union: as in KP

2. ∆0 separation#: as in KP , except restricted to negative ∆0 formulae

3. ∆0 collection#: ∀x ∈ z ∃y ϕ(x, y) → ∃w ∀x ∈ z ¬∀y ∈ w ¬ϕ(x, y) where
ϕ is ∆0 and negative

4. Σ1 foundation#: as in KP , except restricted to weak Σ1 formulae

Define the axiom schema

¬∀x ϕ→ ∃w ¬∀x ∈ w ϕ(x) (MPres)

where ϕ is negative and ∆0. Since the converse direction is intuitionistically
valid, (MPres) implies that the negation of any Π1 formula is equivalent to
something that is weak Σ1.

In the first step we will use the double-negation translation to interpret
KP int� in IKP int#� + (MPres). Since we no longer have the decidability of
atomic formulae in the latter, here we must take (y ∈ x)N to be ¬¬y ∈ x.

Lemma 5.1 Let ϕ be any formula. Then the following are intuitionistically
valid:
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1. y ∈ x→ ϕN iff ¬¬y ∈ x→ ϕN

2. (∀y ∈ x ϕ)N iff ∀y ∈ x ϕN

3. (∃y ∈ x ϕ)N iff ¬∀y ∈ x ¬ϕN

Hence, the double-negation translation of any ∆0 formula is intuitionistically
equivalent to a ∆0 formula.

Proof. The last claim is proved by induction on formulae, using equivalences 2
and 3.

The right-to-left direction of 1 follows from the fact that y ∈ x implies
¬¬y ∈ x intuitionistically. Conversely, y ∈ x → ϕN implies ¬ϕN → ¬y ∈ x,
and hence ¬¬y ∈ x → ¬¬ϕN . But since ¬¬ϕ → ϕ is classically valid, ¬¬ϕN

implies ϕN intuitionistically.
Regarding 2, we have

(∀y ∈ x ϕ)N ≡ ∀y (y ∈ x→ ϕ)N

≡ ∀y (¬¬y ∈ x→ ϕN )

which is equivalent to ∀y ∈ x ϕN by part 1. Clause 3 is proved by noting that
∃y ∈ x ϕ and ¬∀y ∈ x ¬ϕ are classically equivalent, and applying 2 with ¬ϕ in
place of ϕ. �

Lemma 5.2 IKP int#� + (MPres) proves the double-negation translation of each
axiom of KP int�.

Proof. Pair and union imply their double-negation translations, and the double-
negation translation of any instance of ∆0 separation is implied by an instance
of ∆0 separation#.

To handle ∆0 collection, note that by Lemma 5.1 its double-negation trans-
lation is intuitionistically equivalent to

∀x ∈ z ¬∀y ¬ϕN (x, y) → ¬∀w ¬∀x ∈ z ¬∀y ∈ w ¬ϕN (x, y). (8)

Arguing in IKP int#� + (MPres), suppose the antecedent is true. By (MPres) we
have

∀x ∈ z ∃s ¬∀y ∈ s ¬ϕN (x, y).

By ∆0 collection# we have

∃w1 ∀x ∈ z ¬∀s ∈ w1 ¬¬∀y ∈ s ¬ϕN (x, y). (9)

Given such a set w1, let w be the set containing
⋃
w1 asserted to exist by the

union axiom. Then for every x in z we have

∀y ∈ w ¬ϕN (x, y) → ∀s ∈ w1 ∀y ∈ s ¬ϕN (x, y);
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weakening the conclusion and taking the contrapositive yields

¬∀s ∈ w1 ¬¬∀y ∈ s ¬ϕN (x, y) → ¬∀y ∈ w ¬ϕN (x, y).

Combining this with (9) yields

∃w ∀x ∈ z ¬∀y ∈ w ¬ϕN (x, y),

which implies the conclusion of (8).
Finally, since (MPres) implies that the double-negation of a Σ1 formula is

weak Σ1, the double-negation of an instance of Σ1 foundation is equivalent to
an instance of Σ1 foundation#. �

Let Cres be the smallest set that is closed under conjunction, implication,
and universal quantification, and that contains all weak Σ1 formulae in which
every atomic subformula is preceeded by at least one negation. One can show
inductively that for each formula ϕ in Cres , IKP int#� + (MPres) proves that ϕ
is equivalent to ϕN . Thus we have

Theorem 5.3 KP int� is conservative over IKP int#� + (MPres) for formulae
in Cres .

We are now ready to use the forcing framework of Section 2 to reduce
IKP int#� + (MPres) to IKP int�. Here the appropriate conditions are finite sets
of Π1 sentences with parameters. Using the third method described in Sec-
tion 3, let Trm

res be a ∆0 truth predicate for sufficiently many ∆0 sentences with
parameters, and if p is a set of Π1 formulae {∀x ϕ1(x), . . . ,∀x ϕk(x)}, let

Tr(p, u) ≡
k∧

i=1

∀x ∈ u ϕi(x),

where Trm
res is used to express the right-hand side. For any formula ϕ, define

p ` ϕ ≡ ∃u (Tr(p, u) → ϕ).

Intuitively, u provides a “proof” of ϕ from p by giving a bound on the universal
quantifiers that is sufficiently large to witness the fact that ϕ follows from the
formulae in p.

Lemma 5.4 For any formula ϕ, the following is provable in IKP int�: If u ⊆ v,
then

1. Tr(p, v) implies Tr(p, u), and

2. Tr(p, u) → ϕ implies Tr(p, v) → ϕ.

Lemma 5.5 Let ϕ and ψ be any formulae, and let θ be any ∆0 formula. Then
the following are provable in IKP int�:
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1. If p ` ϕ and q ⊇ p then q ` ϕ.

2. θ ` θ

3. p ` (ϕ ∧ ψ) iff p ` ϕ and p ` ψ.

4. p ` (θ → ψ) iff p, θ ` ψ.

5. If p ` (ϕ→ ψ) and q ` ϕ then p, q ` ψ.

6. The following are equivalent:

(a) p ` ∀x ∈ z θ
(b) ∀x p ` (x ∈ z → θ)

(c) ∀x ∈ z p ` θ.

Proof. Clauses 1 and 2 follow from the definition of Tr(p, u) and the adequacy
of Trm

res.
For the forward direction of 3, if Tr(p, u) → ϕ ∧ ψ then Tr(p, u) → ϕ and

Tr(p, u) → ψ. Conversely, if Tr(p, u) → ϕ and Tr(p, v) → ψ then Tr(p, u∪ v) →
ϕ ∧ ψ by Lemma 5.4.

For 4, we have

Tr(p, u) → (θ → ψ) iff Tr(p, u) ∧ θ → ψ

iff Tr(p ∪ {θ}, u) → ψ.

Regarding 5, if Tr(p, u) → (ϕ → ψ) and Tr(q, v) → ϕ, then, using the
monotonicity of Tr in both arguments, we have Tr(p ∪ q, u ∪ v) → ψ.

Finally, regarding 6, (a) implies (b) intuitionistically, and (b) implies (c)
intuitionistically as well. To show that (c) implies (a), suppose

∀x ∈ z ∃u (Tr(p, u) → θ).

Using ∆0 collection, we have

∃v1 ∀x ∈ z ∃u ∈ v1 (Tr(p, u) → θ).

Given such a set v1 we can let v be
⋃
v1, in which case u ∈ v1 implies u ⊆ v;

by Lemma 5.4 this shows

∃v ∀x ∈ z (Tr(p, v) → θ),

which is equivalent to (a). �

When θ is atomic, define p 
 θ to be p ` θ, and extend the forcing relation
to arbitrary formulae in the language of set theory according to the clauses in
Section 2.
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Lemma 5.6 Let ϕ be any negative ∆0 formula. Then in IKP int� one can prove

p 
 ϕ iff p ` ϕ.

Proof. By induction on the complexity of ϕ. If ϕ is atomic, there is nothing to
do.

If ϕ is of the form θ ∧ ψ, apply the inductive hypothesis and Lemma 5.5.3.
When ϕ is of the form θ → ψ, we have

p 
 (θ → ψ) iff ∀q (q 
 θ → p, q 
 ψ)
iff ∀q (q ` θ → p, q ` ψ).

We need to show that the last line is equivalent to p ` (θ → ψ). In the forwards
direction, if we take q to be {θ}, we have p, θ ` ψ and hence p ` (θ → ψ) by
Lemma 5.5.4. Conversely, assuming p ` (θ → ψ), Lemma 5.5.5 tells us that if q
is any condition and q ` θ, then p, q ` ψ.

Finally, suppose ϕ is of the form ∀x ∈ z θ. Then we have

p 
 ∀x ∈ z θ iff ∀x p 
 (x ∈ z → θ)
iff ∀x p ` (x ∈ z → θ).

By Lemma 5.5.6 this is equivalent to p ` ∀x ∈ z θ. �

We are almost ready to verify that the axioms of the intermediate theory
IKP int#� + (MPres) are forced in IKP int�. The following lemma incorporates
many of the technical details.

Lemma 5.7 Let ϕ be any negative ∆0 formula, let be ψ be any weak Σ1 formula,
and let η be arbitrary. Then the following are provable in IKP int�:

1. 
 ∃x ϕ iff ∃x ϕ

2. ∀x ϕ 
 ∀x ϕ

3. If p 
 ¬∀x ϕ then p 
 ∃w ¬∀x ∈ w ϕ

4. If p 
 ∀x ∈ y η then ∀x ∈ y p 
 η

5. If p 
 ∀x ∈ y ∃z ϕ then p 
 ∃w ∀x ∈ y ¬∀z ∈ w ¬ϕ

6. p 
 ∀x ∈ y ψ iff ∀x ∈ y p 
 ψ

Proof. Clause 1 follows from the definition of 
 and Lemma 5.6.
Regarding 2, we have

∀x ϕ(x) 
 ∀x ϕ(x) iff ∀z (∀x ϕ(x) 
 ϕ(z))
iff ∀z (∀x ϕ(x) ` ϕ(z))
iff ∀z ∃u (Trm

res(p∀x ∈ u ϕ(x)q) → ϕ(z)).
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Given z, take u = {z}.
Regarding 3, suppose p 
 ¬∀x ϕ. Then

∀q (q 
 ∀x ϕ→ p, q 
 ⊥).

In particular, from 2 we have p,∀x ϕ 
 ⊥; that is,

∃u (Tr(p, u) ∧ ∀x ∈ u ϕ→ ⊥)

and therefore
∃u (Tr(p, u) → ¬∀x ∈ u ϕ).

Taking w = u we have
∃w p ` ¬∀x ∈ w ϕ.

By Lemma 5.6 and the definition of 
, this is equivalent to

p 
 ∃w ¬∀x ∈ w ϕ.

Regarding 4, suppose p 
 ∀x ∈ y η. Then

∀x, q (q 
 x ∈ y → p, q 
 η).

In particular, if x ∈ y then 
 x ∈ y, and hence p 
 η.
It should be no surprise that proving 5 requires the use of ∆0 collection.

Suppose p 
 ∀x ∈ z ∃y ϕ(x, y), where ϕ is ∆0 and negative; we need to show
p 
 ∃w ∀x ∈ z ¬∀y ∈ w ¬ϕ(x, y). By 4 and the definition of 
, the assumption
implies

∀x ∈ z ∃y p 
 ϕ(x, y)

which is equivalent to
∀x ∈ z ∃y p ` ϕ(x, y)

by Lemma 5.6. This is, by definition,

∀x ∈ z ∃y, u (Tr(p, u) → ϕ(x, y)).

Pairing y and u and using ∆0 collection, we get

∃w, v1 ∀x ∈ z ∃y ∈ w, u ∈ v1 (Tr(p, u) → ϕ(x, y)).

Letting v be
⋃
v1 we have

∃w, v ∀x ∈ z ∃y ∈ w (Tr(p, v) → ϕ(x, y)),

which intuitionistically implies

∃w, v ∀x ∈ z (Tr(p, v) → ∃y ∈ w ϕ(x, y))

and hence
∃w, v ∀x ∈ z (Tr(p, v) → ¬∀y ∈ w ¬ϕ(x, y)).
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This last formula is intuitionistically equivalent to

∃w, v (Tr(p, v) → ∀x ∈ z ¬∀y ∈ w ¬ϕ(x, y)),

which is, by definition,

∃w p ` ∀x ∈ z ¬∀y ∈ w ¬ϕ(x, y).

By Lemma 5.6 and the definition of 
, this is equivalent to

p 
 ∃w ∀x ∈ z ¬∀y ∈ w ¬ϕ(x, y),

as desired.
Finally, regarding 6, note that 4 takes care of the forwards direction. For

the converse direction, suppose

∀x ∈ y p 
 ∃z ¬∀v ∈ z ϕ

where ϕ is ∆0 and negative. Then by the definition of 
 and Lemma 5.6 we
have

∀x ∈ y ∃z p ` ¬∀v ∈ z ϕ.

Since p ` ¬∀v ∈ z ϕ is Σ1, we can pair existential quantifiers and use ∆0

collection to obtain

∃s1 ∀x ∈ y ∃z ∈ s1 p ` ¬∀v ∈ z ϕ.

If s is
⋃
s1, then z ∈ s1 implies z ⊆ s and so ¬∀v ∈ z ϕ implies ¬∀v ∈ s ϕ. As

a result, the last formula implies

∃s ∀x ∈ y p ` ¬∀v ∈ s ϕ.

By Lemma 5.5.6, this is equivalent to

∃s p ` ∀x ∈ y ¬∀v ∈ s ϕ

and hence
p 
 ∃s ∀x ∈ y ¬∀v ∈ s ϕ.

Since intuitionistic validities are forced, this implies

p 
 ∀x ∈ y ∃s ¬∀v ∈ s ϕ

as desired. �

Lemma 5.8 IKP int� proves that each axiom of IKP int#� + (MPres) is forced.
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Proof. If ϕ is pair, union, or ∆0 separation#, then by Lemma 5.7.1 
 ϕ is
equivalent to ϕ, which follows from the corresponding axiom of IKP int�.

Lemma 5.7.3 implies that (MPres) is forced, and Lemma 5.7.5 takes care of
∆0 collection#. Finally, to handle Σ1 foundation#, suppose

p 
 ∀x (∀y ∈ x ψ(y) → ψ(x)),

where ψ is weak Σ1. By definition this means

∀x, q (q 
 ∀y ∈ x ψ(y) → p, q 
 ψ(x)).

In particular, taking q to be p and applying Lemma 5.7.6, we have that for every
x

∀y ∈ x p 
 ψ(y) implies p 
 ψ(x).

Since p 
 ψ(y) is equivalent to a Σ1 formula, we can use Σ1 foundation in the
target theory to show

∀x p 
 ψ(x)

and hence p 
 ∀x ψ(x), as desired. �

Let Dres be the smallest set that contains the negative ∆0 formulae and is
closed under conjunction, disjunction, and universal and existential quantifica-
tion. For every ϕ in Dres , IKP int� proves that 
 ϕ is equivalent to ϕ. As a
result, we have

Theorem 5.9 IKP int#� + (MPres) is conservative over IKP int� for formulae
in Dres .

Taken together, Theorems 5.3 and 5.9 yield

Theorem 5.10 Suppose KP int� proves ∀x ∃y ϕ(x, y), where ϕ is ∆0. Then
IKP int� proves ∀x ∃w ¬∀y ∈ w ¬ϕN (x, y).

Proof. Classically the two formulae are equivalent, and the latter is in Cres∩Dres .
�

Combining this with Theorem 4.9 yields a reduction of the extensional, clas-
sical theory to the intensional, intuitionistic one:

Theorem 5.11 Suppose KP� proves ∀x ∃y ϕ(x, y), where ϕ is ∆0. Then
IKP int� proves ∀x ∃w ¬∀y ∈ w ¬ϕ∗N (x, y).

Proof. By Corollary 4.7, ϕ∗(x, y) is ∆ in KP int�, and so equivalent to a Σ1

formula ∃u θ(x, y, u). Pairing quantifiers and applying the previous theorem, we
have that IKP int� proves ∀x ∃w ¬∀y ∈ w, u ∈ w ¬θN (x, y, u). The conclusion
follows from the fact that ¬∀u ∈ w ¬θN (x, y, u) implies ϕ∗N (x, y). �

What about adding the full foundation schema to both sides? Interpreting
the Σ1 foundation axiom of IKP int#� made use of Lemma 5.7.6, which asserts
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that p 
 ∀x ∈ y η is equivalent to ∀x ∈ y p 
 η when η is weak Σ1. To interpret
KP int , it suffices to allow foundation for negative formulae in KP int#; and to
interpret that, we need to know that the equivalence given by Lemma 5.7.6
holds for arbitrary negative formulae. This fact is supplied by the following two
lemmata.

Lemma 5.12 Suppose ϕ and ψ are any two ∆0 formulae. Then IKP int� proves

(ϕ→ ∃u ψ) implies ∃v (ϕ→ ∃u ∈ v ψ)

where v is any new variable.

Proof. Arguing in IKP int�, suppose ϕ → ∃u ψ. We can use pairing and ∆0

separation to prove the existence of {∅}, and then the existence of a set z such
that

∀w (w ∈ z ↔ w ∈ {∅} ∧ ϕ).

If there is any w in z, then ϕ holds, and hence so does ∃u ψ. In other words,
we have

∀w ∈ z ∃u ψ.

By ∆0 collection we have

∃v ∀w ∈ z ∃u ∈ v ψ.

But if ϕ holds then ∅ is in z, so we have

∃v (ϕ→ ∃u ∈ v ψ)

as needed. �

Lemma 5.13 If ϕ is negative, IKP int� proves

(x ∈ y → p 
 ϕ) iff p 
 (x ∈ y → ϕ)

and hence
∀x ∈ y p 
 ϕ iff p 
 ∀x ∈ y ϕ.

Proof. The second claim follows easily from the first, and proving the right-to-
left direction of the first claim is straightforward, as in the proof of Lemma 5.7.4.
The left-to-right direction of the first claim is proved by induction on the com-
plexity of ϕ.

In the atomic case, suppose x ∈ y → p 
 θ. Then we have

x ∈ y → p ` θ

and hence
x ∈ y → ∃u (Tr(p, u) → θ).
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By the previous lemma, there is a v1 such that

x ∈ y → ∃u ∈ v1 (Tr(p, u) → θ).

Letting v be
⋃
v1, we have

x ∈ y → (Tr(p, v) → θ).

Rearranging the antecedents in this last formula yields

∃v (Tr(p, v) → (x ∈ y → θ)),

which is the same as
p ` (x ∈ y → θ).

By Lemma 5.6, this is equivalent to p 
 (x ∈ y → θ).
Handling the cases involving the connectives ∧, →, and ∀ is straightforward,

using the following intuitionistic equivalences:

• (η → (ϕ ∧ ψ)) ↔ ((η → ϕ) ∧ (η → ψ))

• (η → (ϕ→ ψ)) ↔ ((η → ϕ) → (η → ψ))

• (η → ∀x ϕ) ↔ ∀x (η → ϕ), if x is not free in η.

This completes the proof. �

Since we can now interpret foundation for negative formulae as in the proof
of Lemma 5.8, we have

Theorem 5.14 KP is interpretable in IKP int .

Here and for the rest of this section, I will take the wording of Theorem 5.14
as an abbreviation for the assertion that Theorem 5.11 still holds when one
replaces KP� and IKP int� by the theories mentioned.

We can generalize these results. Suppose ϕ, ψ, θ, and η are formulae such
that

• KP int� + ψ proves ϕ∗,

• IKP int#� + (MPres) + θ proves ψN , and

• IKP int� + η proves 
 θ.

Then KP� + ϕ is interpretable in IKP int� + η. For example, suppose we take
the axiom of infinity to be given (as in [3]) by

∃x (∃y ∈ x zero(y) ∧ ∀y ∈ x ∃z ∈ x succ(y, z)), (infinity)

where zero(y) is the formula ∀z ∈ y ⊥ and succ(y, z) is

y ∈ z ∧ ∀u ∈ y (u ∈ z) ∧ ∀u ∈ z (u ∈ y ∨ u = y).
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Then clauses 1 and 7 of Lemma 4.6 guarantee that (infinity∗) follows from
(infinity), and the double-negation translation of (infinity) is intuitionistically
implied by

∃x (¬∀y ∈ x ¬zeroN (y) ∧ ∀y ∈ x ¬∀z ∈ x ¬succN (y, z)). (10)

Since (10) is in Dres , IKP int� proves that it is forced if and only if it is true.
Furthermore, since (10) is implied by (infinity), we have

Theorem 5.15 KPω� is interpretable in IKPωint�, and KPω is interpretable
in IKPωint .

Here the symbol ω in a theory’s name indicates that infinity is to be included
among the axioms.

By analogous reasoning we have, for example,

Theorem 5.16 Let θ(x, y) be any ∆0 formula. Then KPω + ∀x ∃y θ(x , y) is
interpretable in IKPωint + ∀x ∃y θ∗N (x , y).

Suppose that instead of adding an axiom of infinity, we take KPu to be the
theory of [16], with a set N of natural numbers as urelements. Then, according
to the discussion at the end of Section 4, KPu is interpreted in IKPuint . As
a result, if KPu proves ∀x ∈ N ∃y ∈ N A(x, y) for some primitive recursive
predicate A, then IKPuint proves ∀x ∈ N ¬∀y ∈ N ¬A(x, y). Since the latter
theory is closed under the Friedman-Dragalin translation (see [14]), we have

Theorem 5.17 KPu is conservative over IKPuint for Π2 sentences of arith-
metic.

In [16], Jäger also considers theories in which one drops the foundation axiom
and replaces it with various forms of induction over the natural numbers. The
methods discussed in this section apply to these theories as well: the analogues
of Theorem 5.10 hold for the intensional versions of KPu0 + (Σ1 induction) and
KPu0 + (induction). However, the corresponding version of Theorem 5.11 does
not follow, since the interpretation of extensionality in Section 4 requires Σ1

foundation.

6 Subsystems of second-order arithmetic

The theory KPu0 + (induction), discussed at the end of the previous section,
has the same strength as the subsystem of second-order arithmetic, Σ1

1 -AC (see
[16]). In this section I will show that the methods we have been using can be
applied to Σ1

1 -AC directly, reducing it, as well, to its intuitionistic counterpart.4

4The proof-theoretic equivalence of Σ1
1 -AC and Σ1

1 -AC i is due to Aczel [1]; it can also
be obtained via ordinal analysis. The methods described in this section can also be used
to interpret the stronger theory Σ1

1-DC and the weaker theory ∆1
1-CA in their intuitionistic

counterparts. Since Friedman [12] has shown that one can interpret both Σ1
1-DC and Σ1

1-AC
in ∆1

1-CA, the analysis here shows that the proof-theoretic strength of all these theories, taken
in either the classical or intuitionistic versions, are the same.

28



Here the task is somewhat easier than that of interpreting KP , for two reasons:
we do not have to worry about extensionality, and induction is easier to interpret
than foundation.

The language of second-order arithmetic is two-sorted, extending the lan-
guage of first-order arithmetic with variables X,Y, Z, . . . ranging over sets of
natural numbers, and a relation ∈ between terms of the two sorts. Equal-
ity between second-order objects is taken to be defined in terms of first-order
equality, so that X = Y is given by ∀z (z ∈ X ↔ z ∈ Y ). A formula is said to
be arithmetic if it contains no second-order quantifiers, though it may contain
second-order variables; it is said to be Σ1

1 if it is either arithmetic or of the form
∃Y ϕ, where ϕ is arithmetic.

If we let 〈·, ·〉 denote a primitive recursive pairing function on the natural
numbers and read t ∈ Yx as 〈t, x〉 ∈ Y , we can think of the set Y as coding
a countable sequence of sets indexed by x. We can also interpret a single set
Y as coding a countable collection of sets, and introduce bounded second-order
quantification by

∀X ∈ Y ϕ(X) ≡ ∀x ϕ(Yx)
∃X ∈ Y ϕ(X) ≡ ∃x ϕ(Yx)

While this device is suggestive, one should keep in mind that in this context
that apparent second-order quantifiers are, in reality, first-order.

The axioms of Σ1
1 -AC are as follows:

1. Quantifier-free defining equations for the first-order symbols of arithmetic

2. Arithmetic comprehension (ACA): ∃Y ∀x (x ∈ Y ↔ ϕ(x)), where ϕ is
arithmetic and Y does not appear in ϕ

3. Arithmetic choice (Σ1
1 -AC ): ∀x ∃Y ϕ(x, Y ) → ∃Y ∀x ϕ(x, Yx), where ϕ

is arithmetic

4. Induction for arbitrary formulae in the language

By coding pairs of sets as a single set, one can easily extend the choice principle
to Σ1

1 formulae, which explains the name. Σ1
1 -AC0 denotes the theory in which

induction is restricted to sets of natural numbers; in the presence of arithmetic
comprehension, this set induction axiom implies the schema of induction for
arbitrary arithmetic formulae. Σ1

1 -AC i and Σ1
1 -AC i

0 denote the corresponding
intuitionistic theories.

The following lemma makes the analogy to KP more salient.

Lemma 6.1 Over the other axioms of Σ1
1 -AC0 , (Σ1

1 -AC ) is equivalent to

∀x ∃Y ϕ(x, Y ) → ∃W ∀x ∃Y ∈W ϕ(x, Y ). (Σ1
1 -AC ′)

Proof. The conclusion of (Σ1
1 -AC ) clearly implies the conclusion of (Σ1

1 -AC ′):
if ∀x ϕ(x, Yx), we can just take W to be Y .
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Conversely, suppose ∀x ∃Y ∈ W ϕ(x, Y ); that is, ∀x ∃y ϕ(x,Wy). By
arithmetic induction, we can show that for every x there is a least number ux

satisfying ϕ(x,Wux
). Using arithmetic comprehension to set

Y = {〈x, v〉 | v ∈Wux
},

we have ∀x ϕ(x, Yx), as desired. �

If U is construed as a countable collection of countable collections of sets,
let

⋃
U be given by

{〈x, 〈y, z〉〉 | 〈〈x, y〉, z〉 ∈ U}.

If we define the subset relation for countable collections of sets by

X v Y ≡ ∀w ∃z (Xw = Yz),

we then have that for every x, Ux v
⋃
U .

Having seen the developments of the previous section, the reader can an-
ticipate the translation to the current setting. First we need to define an in-
termediate theory Σ1

1 -AC#, in which negative arithmetic formulae replace the
negative ∆0 formulae of Section 5. The appropriate axioms are:

1. The quantifier-free defining equations for the first-order symbols of arith-
metic

2. (ACA#): ∃Y ∀x (x ∈ Y ↔ ϕ(x)), where ϕ is negative and arithmetic and
Y does not occur in ϕ

3. (Σ1
1 -AC#): ∀x ∃Y ϕ(x, Y ) → ∃Y ∀x ϕ(x, Yx), where ϕ is negative arith-

metic

4. Induction for arbitrary formulae

Let Σ1
1 -AC#

0 + (Σ1
1 induction#) denote the theory in which induction is re-

stricted to formulae of the form ∃Y ϕ, where ϕ is arithmetic and negative. As in
Section 5, I will say that a formula is weak Σ1

1 if it is of the form ∃W ¬∀X ∈W ϕ,
where ϕ is arithmetic and negative and W is not free in ϕ. Thanks to the fact
that induction is easier to interpret than foundation, note that here we do not
have to restrict Σ1

1 induction# to weak Σ1
1 formulae.

Finally, let us define

¬∀X ϕ→ ∃W ¬∀X ∈W ϕ (MParith)

for ϕ arithmetic and negative. As expected we have

Lemma 6.2 Σ1
1 -AC#

0 + (Σ1
1 induction#) proves the double negation of every

axiom of Σ1
1 -AC0 + (Σ1

1 induction); similarly for Σ1
1 -AC# and Σ1

1 -AC .
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Proof. The double-negations of the quantifier-free defining equations are equiv-
alent to themselves, and the double-negation of (ACA) is implied by (ACA#).
Using (MParith), the double-negation of a Σ1

1 formula is weak Σ1
1, so each in-

stance of Σ1
1 induction translates to an instance of Σ1

1 induction#; and, of course,
the arbitrary schema of induction in Σ1

1 -AC translates to induction in Σ1
1 -AC#.

Finally, consider arithmetic choice. By Lemma 6.1, it suffices to interpret
the N-translation of (Σ1

1 -AC ′). The hypothesis translates to

∀x ¬∀Y ¬ϕN (x, Y ),

which, by (MParith), is equivalent to

∀x ∃S ¬∀Y ∈ S ¬ϕN (x, Y ).

Applying (Σ1
1 -AC#) yields

∃S ∀x ¬∀Y ∈ Sx ¬ϕN (x, Y ).

Setting W to
⋃
S we have

∃W ∀x ¬∀Y ∈W ¬ϕN (x, Y ),

which implies the translation of the conclusion of (Σ1
1 -AC ′). �

Let Carith be the smallest class of formulae that is closed under conjunction,
implication, and universal quantification, and that contains all the weak Σ1

1

formulae in which every subformula of the form t ∈ X is preceeded by at least
one negation. Then we have

Theorem 6.3 Σ1
1 -AC0 + (Σ1

1 induction) is conservative over

Σ1
1 -AC#

0 + (Σ1
1 induction#) + (MParith)

for formulae in Cres , and similarly for Σ1
1 -AC and Σ1

1 -AC# + (MParith).

To interpret the intermediate theories, let us take our forcing conditions to
be finite sets

P = {∀X ϕ1(X), . . . ,∀X ϕk(X)}

of Π1
1 sentences with first- and second-order parameters. In order to code these

parameters, conditions must be represented by second-order objects. Let Trm
arith

be a truth predicate for a sufficiently large subset of the arithmetic sentences,
and use this to define

Tr(P,U) ≡
k∧

i=1

∀X ∈ U ϕi(X).

For any formula ψ, define

P ` ψ ≡ ∃U (Tr(P,U) → ψ).
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Then define
p 
 θ ≡ p ` θ

for atomic formulae θ, and extend the forcing definition to arbitrary formulae in
the usual way. Since most of the proofs from Section 5 now carry over, mutatis
mutandis, I will only sketch the details below.

Lemma 6.4 Let ϕ be any negative arithmetic formula. Then in Σ1
1 -AC i

0 one
can prove

P 
 ϕ↔ P ` ϕ.

Lemma 6.5 If ϕ is any negative arithmetic formula, then the following are
provable in Σ1

1 -AC i
0 :

1. 
 ∃X ϕ iff ∃X ϕ

2. ∀X ϕ 
 ∀X ϕ

3. If p 
 ¬∀X ϕ then p 
 ∃W ¬∀X ∈W ϕ

Lemma 6.6 In Σ1
1 -AC i

0 + (Σ1
1 induction) one can prove that each axiom of

Σ1
1 -AC#

0 + (Σ1
1 induction#) + (MParith) is forced; and similarly for Σ1

1 -AC i

and Σ1
1 -AC# + (MParith).

Proof. Lemma 6.5.1 takes care of the quantifier-free axioms and (ACA#), and
we can verify that induction is forced just as we did for first-order arithmetic,
in the proof of Lemma 3.5. Lemma 6.5.3 shows that (MParith) is forced as well.

Regarding (Σ1
1 -AC#), suppose

P 
 ∀x ∃Y ϕ(x, Y ),

where ϕ is negative and arithmetic. This implies

∀x ∃Y P ` ϕ(x, Y ).

Since P ` ϕ(x, Y ) is Σ1
1, the desired conclusion follows from an application of

(Σ1
1 -AC ). �

If Darith is the smallest set containing the weak Σ1
1 formulae and closed under

conjunction, disjunction, and universal and existential quantification, we have

Theorem 6.7 Σ1
1 -AC#

0 + (Σ1
1 induction#) + (MParith) is conservative over

Σ1
1 -AC i

0 + (Σ1
1 induction)

for formulae in Darith ; and similarly for Σ1
1 -AC# + (MParith) and Σ1

1 -AC i .

Combining Theorems 6.3 and 6.7 we have

Theorem 6.8 If Σ1
1 -AC0 + (Σ1

1 induction) proves ∀X ∃Y ϕ(X,Y ), where ϕ is
arithmetic, then Σ1

1 -AC i
0 + (Σ1

1 induction) proves ∃W ∀X ∃Y ∈W ϕN (X,Y ).
The corresponding assertion also holds for Σ1

1 -AC and Σ1
1 -AC i .

Both classical theories are stable under the Friedman-Dragalin translation (see
[14, Section 3]). As a result, here too we can recapture the theorems that are
arithmetic Π2.
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7 Questions

Given a proof of ¬¬∃x A(x) in Heyting arithmetic, where A is primitive recur-
sive, one can use either the Friedman-Dragalin translation or the interpretation
described above to extract a proof of ∃x A(x). What can one can say about the
relationship between the two methods?

In a sense, Buchholz’ interpretations in [7] are more general than the ones
described here, since they allow one to interpret iterations of the basic theory.
An “iterated” version of Σ1

1 -AC yields the theory ATR0 , whose main axiom is
equivalent to the assertion that every set X is contained in a coded model of
Σ1

1 -AC (see [4] or [21]); and the theories KPl and KPi can be seen as “iterated”
versions of KPω, since they axiomatize segments of the constructible set hier-
archy that correspond to limits (resp. admissible limits) of admissible ordinals.
Can the methods described here be used to provide direct interpretations of
ATR0 , KPl , and KPi , in intuitionistic versions thereof? Such an interpretation
of KPi would be particularly interesting, because at present the only means of
reducing it to its intuitionistic counterpart involves an ordinal analysis.
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