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Abstract

A notion called Herbrand saturation is shown to provide the model-
theoretic analogue of a proof-theoretic method, Herbrand analysis, yield-
ing uniform model-theoretic proofs of a number of important conservation
theorems. A constructive, algebraic variation of the method is described,
providing yet a third approach, which is finitary but retains the semantic
flavor of the model-theoretic version.

1 Introduction

Many important theorems in proof theory are conservation theorems, which is
to say, they have the following form: if a theory 7; proves a sentence ¢ of a
certain kind, then another theory T proves ¢ as well, or, perhaps, a specified
translation, ¢’. Typically the foundational interest in such a theorem lies in
the reduction of Ty to Ty: though, on the surface, the principles embodied in
T1 may seem “stronger” or “more abstract” than those of Ty, the conservation
theorem shows that there is at least a sense in which the stronger principles can
be eliminated in certain contexts.
Some examples of interesting conservation theorems are the following:

1. WKLy, a fragment of second-order arithmetic based on a weak version
of Ko6nig’s lemma, and hence also IY;, a fragment of first-order arith-
metic based on i induction, are conservative over Primitive Recursive
Arithmetic (PRA) for II, sentences.

2. 82, a weak fragment of arithmetic, is conservative over PV, a theory of
polynomial-time computable functions, for sentences that are ¥3%5.

3. X1-ACy, afragment of second-order arithmetic based on arithmetic induc-
tion, arithmetic comprehension, and arithmetic choice axioms, is conser-
vative over first-order arithmetic (for sentences in the common language).

4. For each k > 0, BXy 41, a fragment of arithmetic based on ¥ collection
axioms, is conservative over 1Yy for Il sentences.
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In all these examples, both proof-theoretic and model-theoretic proofs are avail-
able, and overall neither approach can claim a clear advantage. The conserva-
tion of IX; over PRA is due to Mints, Parsons, and Takeuti, independently,
obtained by syntactic methods in each case. The first model-theoretic proof is
due to Paris and Kirby, using the notion of a semi-regular cut. The conservation
of S over PV is due to Buss [9], also using a proof-theoretic argument; the
first model-theoretic proof is due to Wilkie.

The other results were first obtained using model-theoretic methods. The
conservation of WKL, over PRA is due to Friedman. The conservation of
Y1_AC over PA is due to Barwise and Schlipf [7], using recursively saturated
models. Finally, the conservation of BXy,; over [} is due to Friedman and
Paris independently, using compactness and an ultrapower construction, respec-
tively. For these three cases, the first proof-theoretic proofs are due to Sieg. For
model-theoretic proofs of the results just described, see [31, 23, 24].

In these examples, the relationship between the model-theoretic and proof-
theoretic methods is not transparent. And while the model-theoretic methods
used to obtain these results are varied (including the use of semiregular cuts,
recursive saturation, ultrapowers, and so on), it turns out that, in contrast, a
single proof-theoretic method suffices throughout. Herbrand analysis, developed
most fully by Sieg in [29, 30], applies most directly to universally axiomatized
theories; but by introducing appropriate Skolem functions, the methods can be
used to obtain all the conservation results described above. Buss’ witnessing
method [9, 11] is equally general, and, at the core, is very similar to Herbrand
analysis.

In Section 3, I will define a notion called Herbrand saturation, and 1 will
show that every universal theory has an Herbrand-saturated model. In Sec-
tion 4, I will show that this notion provides a semantic version of Herbrand
analysis, allowing one to carry out essentially the same arguments while avoid-
ing the use of the cut-elimination theorem. In the case of bounded arithmetic,
this construction has been used in Zambella [34], where it is attributed to un-
published work by Visser; see also [26, Section 7.6]. Section 4 simply notes
that the general construction is widely applicable, a fact which provides uni-
form model-theoretic proofs of a number of conservation theorems, and shows
that proof-theoretic methods can have direct model-theoretic analogues, and
vice-versa.

Of course, the proof-theoretic methods have some advantages over the model-
theoretic ones: syntactic proofs can be carried out a weak metatheory, yielding
finitary proofs of relative consistency; and they provide explicit translations be-
tween the theories involved, as well as algorithms for extracting additional “wit-
nessing” information. The last two sections below show how algebraic versions of
the model-theoretic argument, together with cut elimination or normalization,
can be used to recover these features.

In Section 5, the conservation results are reobtained by means of a sim-
ple forcing relation, providing alternative proofs that lie between the model-
theoretic and proof-theoretic ones. Such methods can be found in the work of
Dragalin (e.g. [17, 18]), where they are used to obtain similar proof-theoretic



results; the approach I take below stems more directly from ideas found in
2, 4, 5, 14, 15, 16].

Though the forcing constructions maintain most of the semantic flavor of
the model-theoretic ones, in Section 6, I show that instances of the algebraic
proofs can be carried out in a weak constructive theory rich enough to formalize
syntactic notions. Applying realizability yields typed lambda terms that denote
the translated derivations. Using cut-elimination or normalization to prove the
IT; soundness of the weak constructive theory, one then obtains finitary proofs
of the conservation results. And, of course, the algorithm for translating proofs
amounts to normalizing the lambda terms extracted via realizability.

I am grateful to Thierry Coquand for drawing my attention to [14, 16], for
showing me an algebraic proof of the conservation of ACA, over PA, and for
emphasizing the constructive nature of these methods.

2 Preliminaries

Unless I specify otherwise, the logic in question is always classical first-order
logic with equality. A formula is said to be universal (resp. existential) if it
consists of a string of universal (resp. existential) quantifiers, possibly empty,
followed by a quantifier-free formula. The classes of formulae that are V4, 3V,
etc. are defined similarly. I will identify formulae that differ only in the names
of their bound variables, and use the notation ¢[t/z] to denote the result of
substituting ¢ for x in ¢, renaming bound variables if necessary. Once a formula
has been introduced as p(z), ¢(t) then abbreviates o[t/z]. I will use & and £ to
denote finite sequences of variables and terms, o[t/#] to denote the simultaneous
substitution of ¢ for Z, etc. If ¢ is a formula with free variables, saying that
 is provable or valid is equivalent to saying that its universal closure is. For
convenience, I will assume that all the languages we consider have at least one
constant.

I will say that a theory T is universal if it can be axiomatized by a universal
set of sentences. Herbrand’s theorem can be stated follows:

Theorem 2.1 (Herbrand’s theorem) Suppose T is a universal theory, and
T+ 37 (2, 9), where v is quantifier-free with the free variables shown. Then
there are sequences of terms ty(%),...,tx(Z) with at most the free variables
shown, such that

T Q@R @) V..V O, (7).
In fact, the latter is provable from substitution instances of axioms of T and

equality axioms, using only propositional logic.

By soundness and completeness, provability can be exchanged with semantic
entailment in the statement of the theorem. Herbrand’s theorem is an easy
consequence of the cut-elimination theorem, but it has an easy model-theoretic
proof as well: if the conclusion fails, then T is consistent with the set

{-9(¢,t(¢)) | t(Z) a term in the language of T},



where ¢ is a sequence of new constants; by completeness, T together with this
set has a model; taking the submodel generated by the set of terms {¢(¢)} yields
a model of T in which 37 (¢, ¢) is false. A refinement of this argument yields
the second, stronger statement. Note that in particular, the theorem implies
that if T is a universal theory and ¢ is quantifier free, then T proves ¢ if and
only if ¢ is provable from substitution instances of axioms of T" and equality
axioms, using only propositional logic.

Say that a theory T supports definition by cases if for every sequence of
terms ¢1(%), ..., ¢, (Z) and quantifier-free formulae 01 (Z), ..., 0k_1(Z) there is a
function symbol f such that T proves

tp(Z) otherwise.

If T is a universal theory and T supports definition by cases, then Theorem 2.1
implies that whenever T F VZ 37 ¢ (Z,¢) and ¢ is quantlﬁer free, there is a
sequence of function symbols f such that T' - VZ 1(Z, f(Z)).

If M is a structure for a language L, let L(M) denote the language with
additional constants to denote the elements of the universe of M. A type with
parameters from M is a set of sentences in an extension of L(M) by finitely
many constants. When the context is clear, I will say “type” instead of “type
with parameters from M.” A type I is said to be realized in M if there is an
interpretation of the additional constants by elements of the universe, making
every sentence in I' true in M. A type is universal if all its sentences are
universal, and a type is principal if, in fact, it consists of a single sentence. The
universal diagram of M is the set of universal sentences of L(M) that are true

in M.

3 Herbrand saturation

Definition 3.1 Let M be a structure for a language L. M is Herbrand satu-
rated if every principal universal type consistent with the universal diagram of
M is realized in M.

Put slightly differently, the definition requires that any 3V sentence of L(M)
that is consistent with the universal diagram of M is true in M. To compare this
to the more traditional notion, recall that a model M is said to be saturated if
the following holds: whenever T is a type of L(M) involving a set of parameters
of cardinality less than that of the universe of M, and I' is consistent with the
complete diagram of M, then I is realized in M. Here we only require that
principal universal types are realized; but to be realized, the type only has to
be consistent with the universal diagram of M.

Theorem 3.2 Fvery consistent universal theory has an Herbrand-saturated model.



Proof. Let L be the language of T'. For simplicity, I will assume that L is
countable. Modifying the argument below to use a transfinite iteration yields
the more general case.

Let L, denote a new language with an additional sequence of new constant
symbols cg, ¢1, Ca, . ... Let 01(Z1,91), 02(Z2, ¥2), . . . enumerate the quantifier-free
formulae of the new language. Recursively construct an increasing sequence
of sets S; of universal sentences, as follows. First, let Sy be a set of universal
axioms for T. At stage i + 1, try to satisfy Vgir1 0i+1(%iv1,7ix1): pick a new
sequence of constants ¢ that do not occur in S; or 6;41, and let

g Si U{V¥;1 0;41(C ¥iv1)} if this is consistent
R otherwise.

By induction, each S; is consistent, and hence so is their union, S,,. Let A/ be
a model of S, and let M be the submodel of N' whose universe is generated
by the terms of L,; that is, |[M| = {tV | t € L,}. Since S, is a set of universal
sentences, M is also a model of S, and therefore a model of T'.

Note that every element of the universe of M is denoted by one of the
constants c;. This is true because each element of the universe of M is denoted
by a term t in L,,; pick i such that 6; is the formula x = ¢, so for some constant
¢ the formula ¢ =t is an element of S;1;.

Now it is not difficult to show that M is Herbrand saturated. Suppose M
3% Yy (&, 7, d), where ¢ is quantifier-free and @ is a sequence of parameters
from M. We need to show that this formula is inconsistent with the universal
diagram of M. Let d be a sequence of constants in L, denoting the elements

—=

d, choose i such that 6;; is the formula ¢(Z,¥,d), and let ¢ be the constants
used at stage i 4+ 1 in the construction. Then M & Vi (¢, 7, cf), and so, by the
construction, the latter formula is inconsistent with S;. Since ¢ does not occur
in .S;, the formula 37 Vi o(Z, ¥, (f) is also inconsistent with S;. But, renaming d
and the constants in S; to the constants of L(M) that name the same elements,

S; is a subset of the universal diagram of M. O

If M is any model and S is a finite subset of its universal diagram, then S is also
satisfied by the submodel of M generated by the elements mentioned in S. This
can be used to show that the restriction to universal theories in Theorem 3.2 is
necessary. For example, if T is the theory of dense linear orders with at least two
points, and M is a model of T, then the 3V sentence asserting the existence of
two points with nothing between them is consistent with the universal diagram
of M, but is inconsistent with T', and hence false in M.

Given any model M, one can let 7" be the universal diagram of M and
apply Theorem 3.2. With this fact in mind, it is not hard to see that Theo-
rem 3.2 implies (and is implied by) the statement that every model M has a
Yi-elementary extension that is Herbrand saturated.

The following theorem describes a feature of Herbrand-saturated models that
makes them useful: any V3 sentence true in such a model is “witnessed,” in a
strong way, by a finite set of terms with parameters.



Theorem 3.3 Let M be an Herbrand-saturated structure for a language L.
Suppose M = VT 37 o(Z,§,d), where o(Z,y,Z) is a quantifier-free formula in
L, and @ is a sequence of parameters from M. Then there is a universal formula
Y(Z,W) with the free variables shown, and sequences of terms t1(Z,10), . . ., t,(Z, @),

such that M = 34 ¢(d, W), and
': w(ga U_j) - (P(fa{l(fa Z, u_;)a Z) V..oV (,O(f, {k(fa Z, 717), 2)

Note that the last formula is valid, and hence provable in pure logic. In particu-
lar, the conclusion of the theorem implies that there is a sequence of parameters
b such that V& (o(Z, 11 (Z,@,b),a@) V ...V (T, 1,(Z,d,b),d)) is true in M.

The proof of Theorem 3.3 is just an application of Herbrand’s theorem.

Proof. If 3% Vi —(Z,y,d) is not true in M, then it is inconsistent with the
universal diagram of M. This implies that there is a universal formula (2, o)
of L, and a sequence of parameters b from M, such that M E ¥(a, I_;) and
E y(a, b) — 37 ©(Z,7,d). Replace the constants @ and b by variables 7 and
W, note that the resulting formula is equivalent to an existential sentence, and
apply Herbrand’s theorem. O

Finally, the following theorem provides us with a recipe for proving conservation
theorems.

Theorem 3.4 Let Ty be a universal theory and let Ty be a theory in the language
of Ty. If every Herbrand-saturated model of Ty is also a model of T}, then every
V3 sentence provable in Ty is also provable in Ts.

Proof. Suppose every Herbrand-saturated model of T5 is a model of T;. Let
©(Z, ) be a quantifier-free formula in the language of T, with the free variables
shown, and suppose that Ty does not prove VZ 35 ¢(Z, ). We will show that
T, does not prove it either.

The second assumption implies that T U {¥§ —¢(d, 7)} is a consistent uni-
versal theory, where dis a sequence of new constants. By Proposition 3.2,
there is an Herbrand-saturated model of this theory; but then the reduct of
this model to the language of T3 is an Herbrand-saturated model of T, satis-
fying 3% V§ —(Z,¥). By our hypothesis, this is also a model of T3, in which
VZ 37 p(Z, 7) is false. O

4 Applications

In this section I will show that the notion of Herbrand saturation does much
the same work that the methods of Herbrand analysis typically do. I will focus
on the conservation of IX; over PRA as a prototypical case, and then briefly
discuss the other conservation results mentioned in Section 1.

The set of primitive recursive functions is the smallest set of functions (of
various arities) from the natural numbers to the natural numbers, containing the



constant zero, projections, and the successor function, and closed under compo-
sition and primitive recursion. The language of Primitive Recursive Arithmetic,
or PRA, has a symbol for each primitive recursive function. The axioms of PRA
consist of quantifier-free defining equations for these functions, and a schema
of induction for quantifier-free formulae. A relation is said to be primitive re-
cursive if and only if its characteristic function is, and it is not hard to show
that the primitive recursive relations are closed under Boolean operations and
bounded quantification. Induction is then provably equivalent to the schema

Yy (p(0) AV <y (p(x) — oz + 1)) = ¢(y)),

where ¢ is quantifier-free (or even atomic), possibly with free variables other
than the one shown. Using these facts, one can show that PRA has a universal
axiomatization.

(Indeed, PRA can be presented as a quantifier-free calculus. Herbrand’s
theorem implies that the quantifier version is Il conservative over the quantifier-
free version, in the following sense: if the former proves Vz Jy ¢(x,y) for some
A formula ¢, there is a funtion symbol f such that the latter proves p(z, f(x)).
For foundational purposes, it is useful to maintain a distinction between the two;
see the notes at the end of Section 6.)

A formula in the language of arithmetic is said to be Ag, or bounded, if all
the quantifiers are bounded, and X if it is of the form 37 (¥, 2), where ¢ is Ay.
1Y, denotes the fragment of Peano Arithmetic in which induction is restricted
to X'y formulae.

Theorem 4.1 IX; is conservative over PRA for Ils sentences.

Proof. Let M be an Herbrand-saturated model of PRA. By Proposition 3.4,
we only need to show that M satisfies the schema of ¥; induction. Over PRA,
every 3; formula 7(x, ) is equivalent to one of the form Jy ¢(x,y, Z), where ¢
is quantifier-free; so it suffices to consider induction for formulae of that form.

To that end, suppose @ is a sequence of parameters in M, and M satisfies
the induction hypotheses:

e Jy ©(0,y,d)
o Vo (Jy p(z,y,d) — Iy p(z +1,y,d)).

We need to show that M satisfies Vo Jy ¢(x,y, @).

The second formula is equivalent to V,y 3y’ (¢(z,y,d) — ¢o(z + 1,y',qd)).
Using Theorem 3.3 and the fact that PRA supports definition by cases, we have
that there are parameters b and ¢, and a function symbol g(z,y, Z, @), such that
M satisfies the following:

o M = ¢(0,¢,ad).

o M EVz,y (p(v,y,d) — ¢(r+1,9(v,y,d,b),a)).



Let h(z, Z,v, %) be the function symbol of PRA with defining equations
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Then M satisfies
. w(O,h(O,g, ¢,a@),d) and
o Yz (¢p(x, h(x,b, ¢, d),d) — p(z, h(z +1,b,¢,d), ).

Since M is a model of PRA and hence satisfies quantifier-free induction, we

have M = Vz o(z, h(x,d, c,b),d), and hence M = Va Jy ¢(z,y, @), as desired.
0

The argument for the conservation of S over PV is similar. It is convenient
to take the first-order version of PV to be the theory CPV of [13], and then
one only needs to show that X% polynomial induction holds in any Herbrand-
saturated model. The proof parallels the one above, except one uses bounded
recursion on notations in place of primitive recursion.

The proofs for I3, and S7 just described exactly parallel the syntactic proofs
in [30] (see also [9, 11]). Other syntactic proofs in [9, 11, 29, 30] can be adapted
in a similar way. I will only sketch some of the details with respect to the
conservation results mentioned in the introduction.

To prove that WKL, is conservative over PRA for Il sentences, use a many-
sorted “second-order” version of PRA, denoted PRA», with function variables of
the various arities. Take composition and primitive recursion to be operations
on the function sorts. Since any quantifier-free proof in PRA, of a formula
without function variables is essentially a proof in PRA, it suffices to show that
every Herbrand-saturated model of PRA, is a model of WKLj.

So let M be such a model, and let g represent a binary tree in M. Suppose,
in M, there is no infinite path through g; this means that for every infinite
binary sequence f, there is an « such that f has left the tree by level xz. We
need to show that ¢ is finite. By Herbrand saturation, there is a term ¢(f) with
parameters from M, such that for each infinite binary sequence f, f has left
the tree by level ¢(f). By induction on terms one can show that there is a term
b majorizing t(f), provably in PRA,; in other words, b does not involve f, and
PRAj proves

Vo (f@) < 1) = 4(f) < b.

This implies that, in M, g has no nodes at level b. Hence g is finite.

(This is the model-theoretic analogue of the argument in [30]. Harrington
has proved a strengthening of Friedman’s result, namely, that WKL, is II}
conservative extension of the theory known as RCAy, and hence of 1), as well;
see [31]. Syntactic proofs of Harrington’s result, involving explicit and feasible
translations between theories, can be found in [1] and [22]. But the proof given
in Section 3.1 of [30] is incorrect, and, indeed, there does not seem to be a way



of obtaining Harrington’s result using cut elimination. See Section 3 of [25] or
page 69 of [27] for a discussion of the subtleties involved.)

To prove that BXjy,; is conservative over Xy for Ilxio sentences, embed
1Y), in a universal theory with Skolem functions returning least witnesses to X
formulae. With these Skolem functions, ¥j and IIj formulae in the language of
arithmetic are equivalent to formulae in the new language that are quantifier-
free. Let M be an Herbrand-saturated model of this theory. Suppose ¢(z,y) is
a Il formula with parameters in M, such that the antecedent of the collection
axiom, Vz < a Jy ¢(z,y), is true in M. By Herbrand-saturation, there is a
sequence of terms such that

Vo < a (plz,ti(z)) V...V, te(z)))

is true in M. Using strong Y collection, derivable in X, one can prove that
the values of ¢1,...,t; are bounded, for values of x less than a; see [23, Section
1.63]. (The argument in [29] is not quite right, but can be repaired along the
lines just sketched. For other proof-theoretic proofs of this conservation result,
see [10] and [8].)

Finally, to prove that X -AC) is conservative over Peano Arithmetic, embed
PA in a second-order universal theory with function symbols. In this theory,
allow operations on the function sorts that define new functions by composition,
and operations p that define new functions by minimization:

f(@,9) =0 = f(u(F)(@) = 0N u(H) (@) < .

With these p operations, every arithmetic formula, possibly involving function
variables, is equivalent to a formula that is quantifier-free. Let M be any
Herbrand-saturated model of this theory. Suppose Vo 3f (z, f) holds in M,
where ¢ is arithmetic. By Herbrand saturation, there is a sequence of terms
t1(x),...,tx(z), such that

Vo (o(z,t(2) V.. V(e tr(z))

is true in M. From tq,..., ¢ it is not difficult to obtain a term s such that M
satisfies Va ¢(x, s,,), as required.

It seems worth mentioning that by combining the notion of Herbrand satu-
ration with the methods of [10] and [3] one can carry out the ordinal analysis of,
say, Peano arithmetic, without relying on cut-elimination. For example, if « is
infinite and closed under multiplication, an Herbrand-saturated model of a suit-
able theory of <a-recursion yields a model of II; transfinite induction below «;
and an Herbrand-saturated model of a suitable Skolemized version of II,, trans-
finite induction below w® yields a model of II, 1 transfinite induction below a.
Similar methods can be used to obtain the conservation results of Friedman [20],
along the lines of Feferman and Sieg [19]. For another model-theoretic approach
to ordinal analysis, see [6].



5 An algebraic version

There is a more direct way of obtaining the model M constructed in the proof
of Theorem 3.2: given S, let S be a maximally consistent extension, and “read
off” a model from that. If we allow ourselves to be content with a Boolean-
valued model instead of a traditional two-valued one, we can avoid the use
of the maximally consistent extension. Instead of enumerating constants and
formulae, we can build our model generically, using conditions to represent finite
portions of S, and reasoning about what, on the basis of such a condition, is
forced to be true in the maximal extension. In order to render our proofs
entirely constructive, we can even omit the “consistency check” used in the
proof of Theorem 3.2; we need only accept the fact that some of our conditions
will force falsity.

In this section I will provide a constructive proof of the conservation of IX;
over PRA, based on these ideas. In the next section I will make the sense in
which the proof is constructive more precise. It will be clear, I hope, that the
method can be adapted to the other conservation theorems as well, or to a
general proof-theoretic analogue of Theorem 3.4.

Let L be the language of PRA, and let L, be the language with infinitely
many new constant symbols a,b,c,.... A condition is simply a finite set of
universal sentences of L,,. The definition below describes a relationship between
conditions p and sentences ¢ of L,,, where “p forces ¢” means, intuitively, that
on the basis of p we can determine that ¢ will necessarily be true in the model
we are constructing. In fact, we will describe this relationship in two steps: first
we will use the double-negation translation to translate each sentence ¢ to a
negative sentence ¢”, and then we will say what it means for a condition to
force a sentence of that form. Of course, these two steps can be combined to
yield a forcing relation for classical logic; but given the nonstandard treatment
of falsity (and hence negation) the one-step version would be difficult to work
with.

Let us take the formulae of intuitionistic logic to be built up using the
connectives V, 3, A, V, —, and L, with —¢ taken to abbreviate ¢ — 1. A
formula in this language is said to be negative if it does not involve 3 and V.
The Godel-Gentzen double-negation translation for classical logic takes classical
formulae ¢ to negative formulae ¢, mapping atomic formula § to =—6, L to
L, oV to ~(=pN A=), o Ap to oV AYN, o — p to N — N, 3z o to
Vo =™, and Vo ¢ to Vo V. If I' is a set of sentences, then T'"V denotes the
set of their -V-translations.

Theorem 5.1 If I’ proves ¢ classically, then T proves ©N in the negative
fragment of minimal logic.

Minimal logic can be described as the subsystem of intuitionistic logic obtained
by leaving out the rule ex falso sequitur quodlibet, “from 1 conclude anything.”

Definition 5.2 If 0 is an atomic sentence of L, define p -0 to mean PRA U
p k8. Extend the forcing notion to arbitrary negative formulae in the language

10



of PRA inductively, via the following clauses:

plE(0An) = plkOandpltn
pl-(0 —n) = for every condition ¢ 2 p, if qI- 0, then q k7
plEVa 6(x) = for every closed term t of L, p - 6(t)

A formula 1) is said to be forced, written I v, if @ I ).

Notes. 1. T am taking | to be an atomic formula, so p IF 1 means that PRAUp
is inconsistent.

2. Since the sentences in p are universal, for atomic 8 we have that p forces
0 if and only if there is a quantifier-free (or even propositional) proof of 6 from
substitution instances of p and the axioms of PRA. Indeed, we could have
defined p IF 0 that way, and then, with some additional care, we could avoid
uses of Herbrand’s theorem below.

3. Since the extra constants of L, are not mentioned in the axioms of PRA,
they can be treated like variables; that is, if p(Z) U {6(Z)} is a set of formulae
in the language of PRA and ¢ is a sequence of new constants, then PRA U p(Z)
proves 6(Z) if and only if PRA U p(¢) proves 6(¢). I will use this fact below
without mentioning it explicitly.

The definition of forcing for atomic formulae has two special properties: first,
it is monotone in p; and second, if p IF L, then p IF 8 for any atomic formula 6.
The next two lemmata hold for any forcing relation with these properties.

Lemma 5.3 The forcing relation defined above is monotone for all sentences
of L, : if ¥ is any formula, p Ik ¢, and ¢ O p, then q - . Also, if p - L, then
p k.

Proof. An easy induction on . O

Lemma 5.4 Suppose v is a negative formula, and 1 is provable intuitionisti-
cally. Then 1 is forced.

Proof. Take intuitionistic logic to be given by a system of natural deduction (as
in, say, [33]), and prove the following by induction on derivations: if T'U {p}
is a finite set of negative formulae of L, with free variables among #, and ¢
is provable from I' intutionistically, then for every condition p and sequence of
terms i, if p IF 0[t/Z] for every 6 in T, then p I- @[t/]. O

Ultimately, our goal is to show that the double-negation translations of the
axioms of IX; are forced.

Lemma 5.5 Let ¢ be a quantifier-free sentence of L,,. Then p - ¢ if and only
if PRAUptE .

Proof. By definition, this holds when ¢ is atomic. For the general case, use
induction on . O

11



Lemma 5.6 Let o(Z) be a quantifier-free formula of L,, with the free variables
shown.

1. {VZ p(Z)} IF VT ().

2. If p Ik =VZ —p(Z) and € is a list of the new constants appearing in p U
{@o(Z)}, then there are function symbols f of PRA such that p I o(f(2)).

Proof. For the first statement, we need to show that if ¢ is any sequence of closed
terms of L, then PRA U {VZ p(Z)} proves ¢(t). This is easy.

For the second statement, suppose p IF =VZ —¢(Z) and let ¢ be a list of the
new constants appearing in pU{¢(Z) }. By the first clause, we have {VZ —p(Z)} I
—¢(Z), and then by the definition of forcing for a negation, we have that p U
{VZ =¢(Z)} IF L. But this means that PRA U p U {VZ —p(Z)} is inconsistent,
and hence PRA U p proves 3% ¢(Z). Applying Herbrand’s theorem and using
the fact that PRA supports definition by cases, we have a sequence of function
symbols f such that PRA U p proves ¢( f (€)). By Lemma 5.5, this is equivalent

—

to p - o(f(2))- O

Lemma 5.7 Let p(x) be a quantifier-free formula of L, with the free variable
shown, and let t be a closed term of L,,. Then {¢(t)} IF =Vz —p(z).

Proof. Suppose p 2 {p(t)} and p IF Va ¢(x). Then p IF p(¢) and p IF —p(t), and
hence pIF L. O

Lemma 5.8 The double-negation translation of each axiom of 1X; is forced.

Proof. Lemma 5.5 takes care of the quantifier-free axioms, so we only have to
worry about the -V-translations of X; induction. Let n(z,@) be a formula of
the form —Vy —p(z,y, @), where ¢(z,y, @) is a quantifier-free formula of L, with
the free variable and extra constant symbols shown. It suffices to show that for
any condition p, if p IF n(0,@) AVz (n(z,d) — n(x + 1,d)), then p IF Vz n(z, ).

To that end, suppose p(a, [_)') is a condition with at most the new constant
symbols shown, such that

-

o p(dv b) I= _'Vy _'QD(Ovya 6), and

-

o p(67 b) -V (_‘vy —\(p(LE,y,a) - _‘Vy —\cp(x + 17ya a:))

Let ¢ and d be additional new constants. Using Lemmata 5.6 and 5.7, there are
function symbols f and g such that

-, -

e p(d,b) IF (0, f(a,b),d), and

-, —.

e p(d@,b) U{p(c,d,a)} Ik o(c+1,9(c d,a,b),a).

Replace @, 5, ¢, and d by variables Z, W, x, and y respectively, and let ¢ (u, Z) be
the conjunction of the formulae in p(w, Z). By Lemma 5.5, we have that PRA
proves that ¢ (u, 2) implies

12



e ¢(0, f(,Z),Z), and

o o(r,y,2) — oz +1,9(z,y,0, 2), 2).

As in Section 4, there is a function symbol h such that PRA proves
Y(W, Z) — Vo o(z, h(z, @, Z), @).

Substituting the constants back for the variables and using Lemma 5.5, we have

-, -,

p(a@,b) - Vz o(z, h(z,d,b), d)

and hence, by Lemma 5.7,

-,

p(a@,b) Ik Ve —Vy —p(z,y,d),
as desired. O

Putting this all together, we have another proof that I); is conservative over
PRA for II5 sentences.

Proof (of Theorem 4.1).  Suppose IX; proves Vx Jy o(z,y), where ¢ is
quantifier-free. Then there is a conjunction « of finitely many axioms of IY;
such that a — Va Jy ¢(z,y) is provable in classical first-order logic, and so
aN — Vo =Vy —¢" (z,y) is provable intuitionistically. By Lemma 5.8, o® is
forced, and hence so is Vo ~Vy =" (z,y). Using Lemmata 5.5 and 5.6, there is
a function symbol f such that PRA proves Vz ¢™ (z, f(z)). Since PRA proves
that !V is equivalent to ¢, we can conclude that PRA proves Vo 3y ¢(z,y). O

Notes. 1. One can view the forcing relation given above as providing a de-
scription of truth in an associated Kripke model, provided we allow the case
that some nodes force falsity; the universe at each node consists of the set of
closed terms of L,. In fact, this structure models an intuitionistic version of
1Y, together with Markov’s principle, and this theory, in turn, interprets 12,
via the double-negation interpretation. These facts are implicit in the argument
above; for a presentation that makes them more explicit, see [2].

2. Alternatively, to each formula ¢, we can assign the set of conditions
[e] = {p | pIF ¢V}, where ¢” is the double-negation translation of . From
that point of view, what we are doing is assigning to each formula ¢ a truth
value in a complete Boolean algebra consisting of “regular” sets of conditions;
for a presentation along these lines, see [14, 15].

6 Finitary proofs of the conservation theorems

From a foundational point of view, we would like to know that our conservation
results can be established in a weak theory; and, given a proof in the stronger
theory T3, it would be nice to know how to go about finding a corresponding
proof in T5. In this section, I will show that the methods described in the last
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section yield proofs that are finitary, which is to say, they can be carried out
in primitive recursive arithmetic (and, in fact, in a fragment thereof).! One
can use this fact to obtain specific algorithms for carrying out the translations.
Once again, I will focus on the conservation of IX; over PRA as a prototypical
case.

To begin with, we need a weak fragment of arithmetic in which one can com-
fortably develop syntactic notions. To that end, we will use an axiomatization of
the elementary recursive functions, i.e. the smallest set of functions containing
zero, successor, addition, multiplication, and exponentiation, and closed under
composition and bounded recursion. The set of elementary recursive functions
is a subset of the set of primitive recursive functions, and every elementary func-
tion is bounded by some fixed iterate of the exponential function. The theory
ERA is the analogue of PRA for the elementary functions; it can alternatively
be viewed as a universally axiomatizable Skolem extension of IA,(exp), or EFA.

In ERA, one can formalize the notions of a term and a formula in the lan-
guage of PRA, the notion of a proof from the axioms of PRA, and the notion
of a condition. To each negative formula ¢(x1,...,z) in the language of PRA,
the clauses of Definition 5.2 associate a formula ¥, (y, 1, ..., x) of ERA; if "p™
is a number coding a condition and "¢; 7, ..., ;' are numbers coding terms of
PRA, U ("p™,Tt17, ..., Tty ") asserts that p forces ¢(t1,...,tx). The quantifier
complexity of W, increases with ¢, so one cannot hope to find a single formula
(T, Tp Tt ..., Tt ") that captures the notion uniformly. But for each
fixed proof d of a II, sentence 6 in PRA, Section 4 shows us how to find a proof,
in FRA, that 0 is forced; and hence a proof, in ERA, of the existential assertion

3d’ (d’ is a proof of 6 in PRA).

And since this construction is syntactic, it can be carried out in a finitary
metatheory. In other words, PRA proves the following: if § is any Ily sentence
provable in I, then FRA proves that 6 is provable in PRA. These ideas lead
to the finitary relative consistency proofs we are after.

Lemma 6.1 PRA proves the 11y soundness of ERA.

Proof. First, note that PRA proves the cut-elimination theorem, and hence
Herbrand’s theorem. Now argue in PRA. Suppose ERA proves a Il, sentence
Vo Jy ¢(z,y). Then there is a term t(z) of FRA and a propositional proof d of
p(xz,t(z)) from substitution instances of axioms of FRA and equality axioms.
Let n be any natural number, and 7 the corresponding numeral. By induction
on d, p(nn,t(n)) is true. O

Theorem 6.2 PRA proves that IX; is conservative over PRA forIly sentences.

Proof. Argue in PRA. If there a proof of a Il sentence 6 in IY;, then ERA
proves that there is a proof of  in PRA. By the 3; soundness of FRA, there
really is such a proof. O

I Another method of obtaining finitary proofs of conservation results like the ones we have
been studying has recently been sketched by Friedman [21].
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Notes. 1. In fact, the methods of Section 5 yield constructive proofs, which
is to say, in the proof of Theorem 6.2 it is sufficient to use FRA with first-
order intuitionistic logic. With that restriction, it might be more natural to use
normalization instead of cut-elimination in the proof of Lemma 6.1.

2. To prove Lemma 6.1, and hence the conservation theorem, one only needs
a theory strong enough to prove the cut-elimination or normalization theorem,
and then evaluate terms and quantifier-free formulae of FRA. As a result, for
the finitary metatheory it suffices to use either 1A, (superexp), EFA*, or even
a quantifier-free version of ERA extended to include an iterated exponential
function.

3. In fact, in the finitary metatheory (be it PRA, EFA*, etc.) we can prove
the stronger conservation result: if IX; proves Va Jy p(z,y) and ¢ is quantifier
free, then there is a function symbol f and a propositional proof of ¢(x, f(x))
from instances of equality axioms and axioms of PRA.

4. As noted above, in place of ERA, one only needs a theory strong enough
to handle syntactic operations. One could simply construct a many-sorted the-
ory with sorts for terms, formulae, finite sets of formulae, and proofs in PRA,
with function symbols and quantifier-free axioms describing the requisite con-
structions.

5. If one applies modified realizability (see [32]) to the proofs constructed
in the intuitionistic first-order version of ERA (or the syntactic theory just
described), one obtains instead a typed lambda term denoting the desired proof.
Thus we have a uniform (and efficient) procedure which assigns to each proof
d of a Il sentence in IX; a typed lambda term T, denoting the corresponding
proof in PRA, where T, involving only syntactic constructions at the base types.
Normalizing this term produces the desired proof. See [4] for a more detailed
discussion along these lines.

5. Using Solovay’s method of “shortening of cuts” (see [28]) one can show
that, in general, the use of cut-elimination or normalization, with the potential
superexponential increase in the length of proofs, cannot be avoided.
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