
Algebraic proofs of cut elimination∗

Jeremy Avigad

April 5, 2001

Abstract

Algebraic proofs of the cut-elimination theorems for classical and intu-
itionistic logic are presented, and are used to show how one can sometimes
extract a constructive proof and an algorithm from a proof that is noncon-
structive. A variation of the double-negation translation is also discussed:
if ϕ is provable classically, then ¬(¬ϕ)nf is provable in minimal logic,
where θnf denotes the negation-normal form of θ. The translation is used
to show that cut-elimination theorems for classical logic can be viewed as
special cases of the cut-elimination theorems for intuitionistic logic.

1 Introduction

The cut-elimination theorems for classical and intuitionistic logic are a mainstay
of proof theory, and with good reason. Even when it comes to pure first-order
logic, cut-elimination is a remarkably powerful tool, allowing one to extract
additional information from derivations in a wide range of axiomatic theories.

For the classical case, there is a simple, nonconstructive route to proving
the cut-elimination theorem: first, one shows that the proof system with cut is
sound with respect to standard first-order semantics, and then one shows that
the fragment of the system without cut is complete. Together these facts imply
that any sequent provable in the system with cut is valid, and hence has a cut-
free proof. Of course, a priori this argument provides no information as to how
to translate a proof with cuts to one that is cut free.

After setting forth the relevant preliminaries in Sections 2 and Section 3,
in Section 4 I present a natural “constructivization” of the argument just de-
scribed. The proof is akin to algebraic proofs of cut-elimination for higher-order
intuitionistic logic found in [5, 7], and is also similar in spirit to algebraic model-
theoretic constructions described in [2, 3, 6].

In Section 5, I discuss the algorithm that is implicit in the constructive
proof. The developments in Sections 4 and 5 may therefore be interesting for
two reasons: first, they provide an algorithm for cut-elimination which can
be verified naturally in a suitable type-theoretic framework; and second, they

∗Final version in the Journal of Logic and Algebraic Programming 49:15–30, 2001.

1

illustrate a way in which algebraic methods can be used to extract computational
information from nonconstructive classical proofs.

When working with classical logic, it is often convenient to use a one-sided
sequent calculus, in which formulae are assumed to be in negation-normal form.
This is not really a restriction, since traditional two-sided calculi are easily
interpreted in the one-sided version, a useful fact that suggests that in some
contexts the negation-normal form representation is, in a sense, the “right”
way to think about classical logic. In Section 6, I present a variation of the
double-negation translation that serves to embed classical logic in the minimal
fragment of intuitionistic logic. Using θnf to denote the negation-normal form of
θ, the translation can be described simply as follows: if a formula ϕ is provable
classically, then ¬(¬ϕ)nf is provable in minimal logic. More generally, if a
sequent {ϕ1, . . . , ϕk} is provable in a one-sided classical sequent calculus, then
the sequent {(¬ϕ1)nf , . . . , (¬ϕk)nf } ⇒ ⊥ is provable in minimal logic.

In Section 7, I present an algebraic proof of the cut-elimination theorem
for intuitionistic logic, essentially just the specialization of Buchholz [5] to the
first-order setting. It will then be clear that the proof for classical logic given in
Section 4 is just a special case of the intuitionistic version, via the translation
above. What is new here, then, is the algebraic proof of the cut-elimination
theorem for the classical sequent calculus; the new version of the double-negation
translation; and the observation that the translation can be used to interpret
classical logic as a fragment of intuitionistic logic, in a useful way. Since the
translation works equally well for higher-order logic, Buchholz’ proof can be
seen to yield a cut-elimination theorem for classical higher-order logic as well.

In contrast, one can also consider normalization proofs in the style of Tait,
Troelstra, and Girard, from an algebraic point of view; see, for example, Scedrov
[15] and Altenkirch et. al [1]. Berger [4] extracts an algorithm from the Tait-
Troelstra proof of strong normalization, in much the same way as an algorithm
is extracted, in Section 5 below, from the proof of cut-elimination presented
here. It would be interesting to have a better understanding of the relationship
between cut-elimination and normalization, as well as the associated algorithms;
Zucker [20] should be helpful in this respect. Section 8 poses some related
questions.

2 Sequent calculi

Though they are not the most natural systems to work with when it comes to
proving logical validities, proof theorists tend to be fond of sequent calculi. On
the one hand, using the sequent calculus with cut, it is easy to simulate natural
deduction or standard axiomatic systems. On the other hand, if one avoids the
cut rule, sequents are proved only “from the bottom up,” making it easy to
extract additional information from proofs. In this section I will describe the
sequent calculi that we will be concerned with below.

To have a uniform basis for the comparison of classical, intuitionistic, and
minimal logic, I will take the first-order logical symbols to be ∀, ∃, ∧, ∨, →, and

2

⊥, with ¬ϕ defined to be ϕ → ⊥. As is common, I will identify formulae that
differ only in the names of the bound variables. If ϕ is a formula and t is a term,
ϕ[t/x] denotes the result of substitution t for x in ϕ, renaming bound variables if
necessary; and once a formula has been introduced as ϕ(x), ϕ(t) denotes ϕ[t/x].
For simplicity, I will work with first-order logic without equality, though the
modifications needed to accomodate equality are routine.

A formula is said to be in negation-normal form if it is built up from atomic
and negated atomic formulae using ∧, ∨, ∀, and ∃. Classically, every formula
is equivalent to one in negation-normal form; if ϕ is any formula, I will use
ϕnf to denote its canonical negation-normal-form representation. The negation
operator, ∼ϕ, for negation-normal-form formulae is defined by ∼ϕ ≡ (¬ϕ)nf .
More explicitly, ∼ϕ is what you get if, in ϕ, you exchange ∧ with ∨, ∀ with ∃,
and atomic formulae with their negations. Note that ∼∼ϕ is just ϕ.

For classical logic, we will use a calculus in which one derives sets of formulae
in negation-normal form, read disjunctively. If Γ and ∆ are such sets and ϕ is
a formula in negation-normal form, then Γ, ϕ abbreviates Γ ∪ {ϕ} and Γ,∆
abbreviates Γ ∪∆. The rules of the calculus are as follows:

Γ, A,¬A

Γ, ϕ Γ, ψ
Γ, ϕ ∧ ψ

Γ, ϕi
Γ, ϕ0 ∨ ϕ1

Γ, ϕ
Γ,∀x ϕ

Γ, ϕ[t/x]
Γ,∃x ϕ

Γ, ϕ Γ,¬ϕ
Γ

In the first rule, expressing the law of the excluded middle, A denotes any atomic
formula. In the rule for the universal quantifier, one has the usual restriction
that x is not free in any formula of Γ. The last rule is the notorious cut rule, and
proofs that do not use it are said to be cut free. An easy induction on proofs
shows that “weakening” is a derived rule, which is to say, if Γ is provable and
Γ′ ⊇ Γ then Γ′ is provable as well. Below, we will find it convenient to add the
weakening rule explicitly, allowing one to derive Γ′ from Γ.

For intuitionistic or minimal logic, a simple one-sided calculus is not suffi-
cient; one needs to use two-sided sequents of the form Γ ⇒ ϕ, where Γ is a set
of formulae and ϕ is a formula. Such a sequent is interpreted as the assertion
that the conjunction of the formulae in Γ entail ϕ. The rules of the intuitionistic
calculus are as follows:

3

Γ, A⇒ A Γ,⊥ ⇒ A

Γ, ϕi ⇒ ψ

Γ, ϕ0 ∧ ϕ1 ⇒ ψ

Γ ⇒ ϕ Γ ⇒ ψ

Γ ⇒ ϕ ∧ ψ

Γ, ϕ⇒ ψ Γ, θ ⇒ ψ

Γ, ϕ ∨ θ ⇒ ψ

Γ ⇒ ϕi
Γ ⇒ ϕ0 ∨ ϕ1

Γ,⇒ ϕ Γ, θ ⇒ ψ

Γ, ϕ→ θ ⇒ ψ

Γ, ϕ⇒ ψ

Γ ⇒ ϕ→ ψ

Γ, ϕ[t/x] ⇒ ψ

Γ,∀x ϕ⇒ ψ

Γ,⇒ ψ

Γ ⇒ ∀x ψ

Γ, ϕ⇒ ψ

Γ,∃x ϕ⇒ ψ

Γ,⇒ ψ[t/x]
Γ ⇒ ∃x ψ

Γ ⇒ ϕ Γ, ϕ⇒ ψ

Γ ⇒ ψ

Once again, in the first line A is intended to denote any atomic formula, and the
last rule is the two-sided version of the cut rule. If one omits the second axiom,
one has minimal logic. Notice that the rest of the rules come in left/right pairs,
one pair for each connective. The usual eigenvariable restrictions apply to the
∃ rule on the left and the ∀ rule on the right.

The two calculi I have presented are most similar to the ones denoted G3i
and GS in [18]. Of course, there are also two-sided versions of the classical
calculus: one obtains such a system by modifying the intuitionistic calculus
above to allow sequents of the form Γ ⇒ ∆, interpreted as the assertion that
the conjunction of the formulae in Γ implies the disjunction of the formulae in
∆. If Γ is a set of formulae, let Γnf denote the set {ϕnf | ϕ ∈ Γ}, and if Π
is a set of formula in negation-normal form, let ∼Π denote {∼ϕ | ϕ ∈ Γ}. So,
writing ∼Γnf instead of ∼(Γnf), we have

∼Γnf = {∼(ϕnf) | ϕ ∈ Γ} = {(¬ϕ)nf | ϕ ∈ Γ}.

The following theorem shows that the classical two-sided sequent calculus is
inter-interpretable with the one-sided one.

Theorem 2.1 A sequent Γ ⇒ ∆ is provable in the two-sided classical sequent
calculus if and only if ∼Γnf ,∆nf is provable in the one-sided calculus. Moreover,
there are efficient translations of derivations between the two systems, with the
property that cut-free proofs are translated to cut-free proofs.

Here and in Theorem 6.2 the word “efficient” means that the number of symbols
in the translation is bounded by a polynomial in the number of symbols in the
original. The proof of Theorem 2.1 is entirely routine: each rule in the two-sided
calculus corresponds, under the translation, to a rule in the one-sided calculus.

4

3 The double-negation translation

A formula is said to be negative if it does not involve ∃ or ∨, i.e. it is built up
using the logical symbols ∀, ∧, →, and ⊥. The following version of the Gödel-
Genzten double-negation translation maps an arbitrary first-order formula ϕ to
a negative formula, ϕN :

• ⊥N = ⊥

• AN = ¬¬A, for A atomic

• (ϕ ∧ ψ)N = ϕN ∧ ψN

• (ϕ ∨ ψ)N = ¬(¬ϕN ∧ ¬ψN)

• (ϕ→ ψ)N = ϕN → ψN

• (∀x ϕ)N = ∀x ϕN

• (∃x ϕ)N = ¬∀x ¬ϕN

The following lemma and theorem are well known. The first is proved using
induction on formulae, and the second is proved using induction on derivations.

Lemma 3.1 If ϕ is any formula, then ϕN is equivalent to ¬¬ϕN in minimal
logic.

Theorem 3.2 If ϕ is provable from Γ classically, then ϕN is provable from ΓN

in minimal logic.

If one is interested specifically in translating proofs from the one-sided sequent
calculus to minimal logic, one can prove the following lemma and theorem more
directly.

Lemma 3.3 If ϕ be any formula, then (∼ϕ)N is equivalent to ¬ϕN in minimal
logic.

Theorem 3.4 If {ϕ1, . . . , ϕk} is provable in the classical sequent calculus, then
¬((∼ϕ1)N ∧ . . . ∧ (∼ϕk)N) is provable in minimal logic.

4 Cut elimination for classical logic

The cut-elimination theorem for classical logic states the following:

Theorem 4.1 Any sequent provable in the classical one-sided sequent calculus
has a cut-free proof.

If Γ is a sequent, say that Γ is valid if the universal closure of
∨

Γ is true in
every model. The next two lemmata provide a nonconstructive proof of the
cut-elimination theorem.

5

Lemma 4.2 The one-side sequent calculus with cut is sound for standard clas-
sical first-order semantics: if a sequent is provable, then it is valid.

Proof. Use induction on the length of proofs. �

Lemma 4.3 The one-sided sequent calculus without cut is complete: if a se-
quent is valid, then it has a cut-free proof.

Proof (sketch). Here I will just outline the standard “tableau” construction;
for details see, for example, [9, 16].

Let p, q, r, . . . stand for finite sets of formulae in negation-normal form, and
read these conjunctively. We need to show that if Γ is any sequent and p is the
set of negations of formulae in Γ, then either Γ has a cut-free proof or p has a
model.

The idea is to construct, systematically, a tree of “attempts” at building a
term model of p. Label the bottom node of the tree with p, and proceed upwards
as follows. To build a model of q, ϕ ∧ ψ, build a model of q, ϕ, ψ. To build a
model of q, ϕ ∨ ψ, branch, and in parallel try to build a model of either q, ϕ or
q, ψ. To build a model of q,∀x ϕ(x), build a model of q,∀x ϕ(x), ϕ(t), where t is
the next term in some predetermined list. To build a model of q,∃x ϕ(x), pick a
new constant symbol, say “y,” and build a model of q, ϕ(y). If one is ever called
on to build a model of q, A,¬A, where A is an atomic formula, one abandons
the attempt that this branch represents, and hopes that another proves more
fruitful.

Assuming one is systematic enough in choosing, at each node, which formula
to deal with next, one of two things can happen. The first is that the process
comes to an end at some finite stage, because each terminal node is of the form
q, A,¬A. In that case, replacing each node r in the tree by ∼r yields, essentially,
a cut-free proof of Γ. Otherwise, the tree is infinite, and by König’s lemma has
an infinite branch. The systematic construction of the tree should guarantee
that the union of the sets appearing along this branch, H, is a Hintikka set: no
atomic formula and its negation occurs in H; if ϕ ∧ ψ is in H, then ϕ and ψ
are both in H; if ϕ ∨ ψ is in H, then either ϕ or ψ is in H; if ∀x ϕ(x) is in
H and t is any term, then ϕ(t) is in H; and if ∃x ϕ(x) is in H, then for some
“constant” y, ϕ(y) is in H. Let M be the model whose universe is the set of
terms in the language, and in which a relation symbol R is true of t1, . . . , tk if
and only if R(t1, . . . , tk) is in H. Reading the variables as constants, it is then
easy to verify that all the sentences in H, including those in p, are true in M.
�

This proof is curiously nonconstructive: it gives us no information on how to
translate a proof of Γ with cuts to one that is cut-free. Of course, if Γ is
provable with cut, then a blind search for the cut-free proof is guaranteed to
succeed; but a priori the nonconstructive proof gives us no sense of how long
the resulting derivation may be, and it gives us no way of using the original
derivation to guide the search. The constructive proof presented below is similar

6

to the nonconstructive one, but instead of worrying about the models obtained
from infinite branches through a tree whose root is labelled with a set q, we
reason about which formulae are forced to be true in any model obtained in this
way. The argument will then read roughly as follows: if Γ is provable, then it is
forced to be true in every model; and if it is forced to be true in every model,
it has a cut-free proof.

Call the sets p, q, r, . . . conditions, and if p and q are conditions, write q � p
(“q is stronger than or equivalent to p”) if there is a proof of ∼q from ∼p in
the one-sided sequent calculus, using only the rules for ∨, ∃, and weakening.
Put differently,“stronger than or equivalent to” is the smallest transitive and
reflexive relation satisfying the following clauses:

1. If q ⊇ p then q � p

2. If ϕ ∧ ψ is in p, then p � p ∪ {ϕ} and p � p ∪ {ψ}.

3. If ∀x ϕ(x) is in p and t is any term, then p � p ∪ {ϕ(t)}.

The intuition is that if p � q, then p implies q, or, better, every infinite branch
through the tree containing p will also contain q. So if p � q, any model of
p (e.g., constructed from such a branch) is also a model of q. For a concrete
example, the condition {∀x ϕ(x),∀y ψ(y), θ, η, σ ∧ τ} is stronger than the con-
dition {ϕ(t1), ϕ(t2), ϕ(t3),∀y ψ(y), ψ(s), η, σ}. It is not difficult to verify that
the relation � is transitive and reflexive.

The following clauses define, inductively, a relation between sets of formulae
p in negation-normal form, and negative formulae ϕ. Intuitively, p ϕ means
that ϕ is true in any model obtained from a branch through a tree rooted at p,
constructed according to the recipe above.

1. p ⊥ if and only if there is a cut-free proof of ∼p in the one-sided sequent
calculus.

2. If A is atomic, p A if and only if there is a cut-free proof of ∼p,A.

3. p θ ∧ η if and only if p θ and p η.

4. p θ → η if and only if for every q � p, if q θ then q η.

5. p ∀x θ(x) if and only if for every term t, p θ(t).

A formula ϕ is said to be forced, written ϕ, if every condition forces ϕ.

Lemma 4.4 The forcing relation is monotone: if p ϕ and q � p then q ϕ.
Also, for any formula ϕ, if p ⊥, then p ϕ.

Proof. Both claims are clearly true when ϕ is atomic or ⊥. An easy induction
shows that it holds for arbitrary negative formulae. �

Since any two conditions p and q have a least upper bound, p ∪ q, it is not
difficult to show that p θ → η is equivalent to the assertion that for any
condition q, if q θ, then p ∪ q η.

7

Lemma 4.5 If ϕ is any negative formula provable in intuitionistic logic, then
 ϕ.

Proof. Take minimal logic to be given by a system of natural deduction (see,
e.g. [19]), and show the following by induction on proofs: if ϕ is a negative
formula provable from Γ, the free variables of Γ and ϕ are among ~x, and ~t is
any sequence of terms of the same length, then whenever p θ[~t/~x] for each θ
in Γ, then p ϕ[~t/~x]. The second assertion of Lemma 4.4 is used to handle the
rule ex falso sequitur quodlibet, “from ⊥ conclude ψ” for arbitrary ψ. �

In fact, Lemmata 4.4 and 4.5 hold for any forcing relation defined by clauses
2–5 above, as long as the conditions of Lemma 4.4 holds for atomic formulae
and ⊥.

Lemma 4.6 If ϕ is any formula in negation-normal form, then {ϕ} ϕN .

Proof. The proof involves a routine induction on ϕ. I will carry out three
illustrative cases.

In the case where ϕ is the atomic formula A, we need to show that if p is
any condition and p ¬A, then p,A ⊥. But this follows from the fact that
{A} A, and the observation after Lemma 4.4.

In the case where ϕ is of the form θ ∧ η, from the induction hypothesis we
have {θ} θN and {η} ηN . But since {θ ∧ η} is stronger than both {θ} and
{η}, we have that {θ ∧ η} forces both θN and ηN , and hence (θ ∧ η)N .

In the case where ϕ is of the form θ ∨ η, we need to show that whenever
p ¬θN ∧ ¬ηN , then p, θ ∨ η ⊥. So suppose p ¬θN ∧ ¬ηN . Then, in
particular, we have p ¬θN and p ¬ηN . Using the induction hypothesis, we
have {θ} θN and {η} ηN , and so p, θ ⊥ and p, η ⊥. This means that
there are cut-free proofs of ∼p,∼θ and ∼p,∼η, and hence a cut-free proof of
∼p,∼θ ∧ ∼η. But this is equivalent to saying p, θ ∨ η ⊥.

The cases for ∀, ∃, and negation atomic formulae are similar. �

Lemmata 4.4–4.6 yield a short proof of the cut-elimination theorem.

Proof (of Theorem 4.1). Suppose {ϕ1, . . . , ϕk} is provable in the sequent calcu-
lus with cut. By Theorem 3.4, (∼ϕ1)N∧. . .∧(∼ϕk)N → ⊥ is provable in minimal
logic, and so is forced. By Lemma 4.6, for each i we have {∼ϕi} (∼ϕi)N . By
monotonicity, we have {∼ϕ1, . . . ,∼ϕk} (∼ϕ1)N ∧ . . . ∧ (∼ϕk)N , and hence
{∼ϕ1, . . . ,∼ϕk} ⊥. By definition, this means that there is a cut-free proof of
{ϕ1, . . . , ϕk}. �

5 Extracting an algorithm

In what sense is the proof in the previous section algebraic? By assigning to
each formula ϕ the set [[ϕ]] = {p | p ϕN}, one can view the forcing relation

8

as providing a nonstandard semantics for classical first-order logic, mapping
formulae to values in a boolean algebra of “regular” sets of conditions. See
[5, 6, 7] for presentations more along these lines.

On the other hand, expressing the proof in terms of the forcing relation
makes its constructive content more transparent. Assuming one has specified
a language in which one can represent basic syntactic notions and operations,
for each formula ϕ(x1, . . . , x1) with the free variables shown, the relationship
p ϕ(t1, . . . , tn) can be expressed with a first-order formula in p, t1, . . . , tn. Note
that the logical complexity of p ϕ(t1, . . . , tn) increases with that of ϕ, so there
is no single first-order formula that captures the notion uniformly. But for each
fixed derivation in the classical sequent calculus, the proof in the last section can
be carried out in intuitionistic first-order logic, using only quantifier-free axioms
governing the syntactic notions. In other words, the argument above yields a
method of assigning to any classical derivation d of a sequent Γ, an intuitionistic
proof Pd that there exists a cut-free derivation of Γ. Normalizing Pd yields an
explicit witness d′, and a proof that d′ is a cut-free derivation of Γ. If all one
really cares about is the cut-free derivation (and not the associated proof that
it is such), one can instead use modified realizability to extract a simply typed
lambda term Td realizing the existential conclusion of Pd (see [17]).

The argument in Section 4 used induction on d and the formulae in Γ, so the
implicit assignment d 7→ Pd or d 7→ Td can be obtained using the correspond-
ing structural recursions. All told, then, the full proof of the cut-elimination
theorem can be carried out in a theory that allows a modicum of recursion on
syntax, together with a reflection principle for first-order intuitionistic logic. Al-
ternatively, it can be carried out in an appropriate Martin-Löf-style type theory,
allowing polymorphic recursion over a universe of basic types. Once again, if one
is interested primarily in a procedure for eliminating cuts (and not a proof that
the procedure is correct), one has the following algorithm: given a derivation d,
find the term Td, and normalize it.

The goal of this section is to describe the assignment d 7→ Td in more detail.
Suppose we would like to eliminate cuts from the sequent calculus for a fixed
first-order language, L. Start with a basic type TERM for terms in this language,
a type COND for conditions (or their negations, sequents), and a type DER for
cut-free derivations, which we will take simply to be finite trees labelled with
sequents.

Our strategy will be to assign to each negative formula ϕ a type Typeϕ,
and specify what it means for an object of this type to realize the statement
“p ϕ.” Then, given a derivation d in the classical sequent calculus of a
sequent {ϕ1, . . . , ϕk}, we will show how to obtain a term Td denoting a realizer
for {∼ϕ1, . . . ,∼ϕk} ⊥. This realizer will be the cut-free derivation we are
looking for.

For the moment, read “type” as “set,” and if σ and τ are types, read σ×τ as
the ordinary set-theoretic cartesian product of σ and τ , and σ → τ as the set of
functions from σ to τ . Take the notation ρ, σ → τ to abbreviate ρ→ (σ → τ),
and if f is of this type, take f(a, b) to abbreviate (f(a))(b). The assignment

9

ϕ 7→ Typeϕ is defined inductively, as follows:

Typeϕ = DER if ϕ is atomic or ⊥
Typeϕ∧ψ = Typeϕ × Typeψ

Typeϕ→ψ = COND,DER,Typeϕ → Typeψ

Type∀x ϕ = TERM → Typeϕ

Recall that if p and q are conditions, p � q means that there is a derivation of
∼p from ∼q using only the rules for ∨, ∃, and weakening. If f ∈ DER, say “f
realizes p � q” if f is such a derivation. By induction on ϕ, given a condition
p and an element f of Typeϕ, we can now say what it means for f to realize
p ϕ:

• If ϕ is ⊥, f realizes p ϕ if and only if f is a derivation of ∼p.

• If ϕ is atomic, f realizes p ϕ if and only if f is a derivation of ∼p, ϕ.

• f realizes p ϕ ∧ ψ if and only if (f)0 realizes p ϕ and (f)1 realizes
p ψ.

• f realizes p ϕ→ ψ if and only if the following holds: whenever d realizes
q � p and g realizes q ϕ, f(q, d, g) realizes q ψ.

• f realizes p ∀x ϕ(x) if and only if for every term t, f(t) realizes p ϕ(t).

We will now work with a simply typed lambda calculus over the base types
TERM,COND,DER, with operations for pairing, projections, lambda abstrac-
tion, application, and a certain list of constant symbols, as described below. If
f is a closed lambda term, we will say that f realizes p ϕ if the object de-
noted by f realizes p ϕ. References to the full set-theoretic interpretation in
the definition above is really just an expository convenience. The proofs which
follow depend only on properties of β-conversion and syntactic properties of the
objects denoted by the constant symbols, and so, as noted above, these proofs
can be formalized in a weak theory.

The following is a list of constant symbols that we assume to be included in
our calculus, together with their intended interpretations:

1. For each term t(x1, . . . , xk) of the language, L, with the free variables
shown, a constant t̂ ∈ TERMk → TERM. In the intended interpretation, t̂
is simply a function that maps terms s1, . . . , sk to the term t(s1, . . . , sk).

2. For each condition p with free variables x1, . . . , xk, a constant p̂ ∈ TERMk →
COND. In the intended interpretation, p̂(s1, . . . , sk) is simply the condi-
tion obtained by subsituting s1, . . . , sk for x1, . . . , xk.

3. For each k, a constant Treek ∈ COND,DERk → DER. If p is a condition
and d1, . . . , dk are derivations (labelled trees), then Treek (p, d1, . . . , dk) is
the derivation with root labelled ∼p, and with subtrees d1, . . . , dk.

10

4. A constant Concat ∈ DER,DER → DER. If d is a derivation of Γ from ∆
using only the rules ∨, ∃, and weakening, and e is a similar derivation of Π
from Γ, Concat(d, e) represents the concatenation of these two derivations.
In particular, if d realizes q � p and e realizes r � q, then Concat(d, e)
realizes r � p.

5. For each formula ϕ(x1, . . . , xk) with the free variables shown, a constant
Weakenϕ ∈ TERMk,DER → DER. If d is a proof of Γ from ∆ using only
∨, ∃, and weakening, and t1, . . . , tk are terms, then Weakenϕ(t1, . . . , tk)
denotes the derivation of Γ, ϕ(t1, . . . , tk) from ∆, ϕ(t1, . . . , tk) obtained by
adding ϕ(t1, . . . , tk) to each sequent.

6. For each k, a constant NewVar ∈ TERMk → TERM. If t1, . . . , tk are
terms, NewVar(t1, . . . , tk) returns a variable that does not occur in any of
the ti.

The next three lemmata are the “concrete” versions of Lemmata 4.4, 4.5, and
4.6. In the statement of these lemmata, quantification over terms, conditions,
and derivations amounts to quantification over the types TERM, COND, and
DER.

Lemma 5.1 For every formula ϕ(x1, . . . , xk) with the free variables shown,
there is a term Monϕ of type DER,Typeϕ → Typeϕ, with free variables x1, . . . , xk
of type TERM, with the following property: whenever p is a condition, t1, . . . , tk
are terms, f realizes p ϕ(t1, . . . , tk), and d realizes q � p, then the term
(Monϕ[t1/x1, . . . , tk/xk])(d, f) realizes q ϕ(t1, . . . , tk).

Also, with ϕ and t1, . . . , tk as above, there is a term ExFalsoϕ(p, f) such
that whenever f realizes p ⊥, (ExFalsoϕ[t1/x1, . . . , tk/xk])(p, f) realizes p
ϕ(t1, . . . , tk).

Proof. Both Monϕ and ExFalsoϕ are obtained by structural recursion on ϕ, and
induction on ϕ is used to show that these terms satisfy the statement of the
lemma. I will focus on Monϕ, and omit references to the variables x1, . . . , xk
for simplicity.

Consider the case where ϕ is ⊥. If f realizes p ⊥, then f is a proof of
∼p. Then, if d realizes q � p, then d is a proof of ∼q from ∼p, in which case
Concat(f, d) is a proof of ∼q. So we can set Mon⊥ to be λd, f Concat(f, d).

Similarly, if ϕ is a atomic, we can take

Monϕ ≡ λd, f Concat(f,Weakenϕ(x1, . . . , xk, d)).

Suppose ϕ is of the form θ∧η. If f realizes p θ∧η then (f)0 realizes p θ
and (f)1 realizes p η. If d realizes q � p, then by the inductive hypothesis,
Monθ(d, (f)0) realizes q θ and Monη(d, (f)1) realizes q η. So we can take

Monθ∧η ≡ λd, f 〈Monθ(d, (f)0),Monη(d, (f)1)〉.

The reader can verify that we can take

Monθ→η ≡ λd, f (λr, e, g f(r,Concat(d, e), g))

11

and
Mon∀x θ ≡ λd, f λy ((λx Monθ)(y, d, f(y)))

where y is a new variable of type TERM. �

Lemma 5.2 Suppose d is a proof in natural deduction of a negative formula
ϕ(x1, . . . , xk) from negative formulae ψ1(x1, . . . , xk), . . . , ψl(x1, . . . , xk). Then
there is a term

Ld[u, x1, . . . , xk, z1, . . . , zl] ∈ Typeϕ

with free variables u ∈ COND, x1, . . . , xk ∈ TERM, z1 ∈ Typeψ1 , . . . , zl ∈ Typeψl
,

such that the following holds: whenever p is a condition, t1, . . . , tk are terms,
f1 realizes p ψ1(t1, . . . , tk), . . . , and fl realizes p ψl(t1, . . . , tl), then

Ld[p/u, t1/x1, . . . , tk/xk, f1/z1, . . . , fl/zl]

realizes p ϕ(t1, . . . , tk).

Proof. A straightforward recursion/induction on d. For an assumption, just use
the variable for the corresponding realizer. For introduction and elimination
for ∧, use pairing and projection; for introduction and elimination for →, use
monotonicity (Lemma 5.1), lambda abstraction, and application; for introduc-
tion and elimination for ∀, use lambda abstraction and application; and for the
rule ex falso sequitur quodlibet, use the terms ExFalsoϕ from Lemma 5.1. �

Lemma 5.3 Let ϕ(x1, . . . , xk) be a formula in negation-normal form, with the
free variables shown. Then there is a term Kϕ[x1, . . . , xk] with free variables
x1, . . . , xk of type TERM, such that the following holds: whenever t1, . . . , tk are
terms, Kϕ[t1/x1, . . . , t1/xk] realizes {ϕ(t1, . . . , tk)} ϕN (t1, . . . , tl).

Proof. Use recursion/induction on ϕ. I will do the same three illustrative cases
as in the proof of Lemma 4.6, and again omit references to x1, . . . , xk. Note,
incidentally, that the function NewVar is needed to handle the rule for ∃.

In the base case, suppose ϕ is an atomic formula A. We want a term taking a
condition p, a realizer d for p � {A}, and a realizer f for p ¬A to a realizer for
p ⊥. If d realizes p � {A} then WeakenA(x1, . . . , xk, d) realizes p A. Since
Tree0(p) realizes p � p, f(p,Tree0(p),Weakenϕ(x1, . . . , xk, d)) realizes p ⊥.
So set

KA ≡ λp, d, f f(p,Tree0(p),WeakenA(x1, . . . , xk, d)).

Suppose ϕ is of the form θ∧η. By the induction hypothesis, Kθ realizes {θ}
θN andKη realizes {η} ηN . Let e0 be the derivation Tree1({θ∧η},Tree0({θ}))
and let e1 be the derivation Tree1({θ∧η},Tree0({θ})), so e0 realizes {θ∧η} � {θ}
and e1 realizes {θ∧η} � {η}. Then MonθN ({θ∧η}, e0,Kθ) realizes {θ∧η} θN

and MonηN ({θ ∧ η}, e1,Kη) realizes {θ ∧ η} η. So we can take

Kθ∧η ≡ 〈MonθN ({θ ∧ η}, e0,Kθ},MonηN ({θ ∧ η}, e1,Kη}〉.

12

Finally, suppose ϕ is of the form θ ∨ η. We need a term taking a condition
p, a realizer d for p � {θ ∨ η}, and a realizer f for p ¬θN ∧ ¬ηN to a
realizer for p ⊥. So, suppose p, d, and f are as above. Then (f)0 realizes
p ¬θN and (f)1 realizes p ¬ηN . Let e0 and e1 realize p ∪ {θ} � {θ} and
p ∪ {η} � {η}, respectively. Then MonθN (p ∪ {θ}, e0,Kθ) realizes p ∪ {θ} θN

and MonηN (p ∪ {η}, e1,Kη) realizes p ∪ {η} ηN . Call these terms g0 and
g1. Let h0 and h1 realize p ∪ {θ} � p and p ∪ {η} � p, respectively. Then
(f)0(p ∪ {θ}, h0, g0) realizes p ∪ {θ} ⊥, i.e. is a derivation of ∼p ∪ {∼θ}; and
similarly, (f)1(p ∪ {θ}, h1, g1) is a derivation of ∼p ∪ {∼η}. Then

Tree2(p ∪ {θ ∨ η}, (f)0(p ∪ {θ}, h0, g0), (f)1(p ∪ {θ}, h1, g1))

is a derivation of ∼p ∪ {∼θ ∧ ∼η}, and so realizes p ∪ {θ ∨ η} ⊥. But since d
realizes p � {θ∨η}, Weakenθ∨η(x1, . . . , xk, d) realizes p � p∪{θ∨η}; combining
the two using Concat yields a realizer for p ⊥. �

Putting these together yields a “concrete” version of the cut-elimination theo-
rem.

Theorem 5.4 Let d be a proof of a sequent Γ in the classical sequent calculus.
Then there is a typed lambda term Td denoting a cut-free proof of Γ.

Proof. For simplicity, assume that Γ has no free variables; otherwise, we can
replace free variables xi with constants x̂i in the appropriate terms below.

Suppose Γ is the sequent {ϕ1, . . . , ϕk} and d is a cut-free proof of Γ. Use the
double-negation translation to find a derivation d′ of⊥ from (∼ϕ1)N , . . . , (∼ϕk)N
in intuitionistic logic, and let Ld′ [u, z1, . . . , zk] be the term given by Lemma 5.2.

For each i, let ei realize {∼ϕ1, . . . ,∼ϕk} � {∼ϕi}. Then for each i, the term
Mon∼ϕN

i
(ei,K∼ϕi) realizes {∼ϕ1, . . . ,∼ϕi} (∼ϕi)N . Then the term

Ld′ [{∼ϕ1, . . . ,∼ϕi}/u,Mon∼ϕ1(e1,K∼ϕN
1

)/z1, . . . ,Mon∼ϕk
(ek,K∼ϕN

k
)/zk]

realizes {∼ϕ1, . . . ,∼ϕi} ⊥, which is to say, it denotes a cut-free derivation of
{ϕ1, . . . , ϕk}. �

6 Another double-negation translation

Lurking beneath the constructive proof in Section 4 there is an implicit trans-
lation from classical logic to minimal logic. Here I will make this translation
explicit, and in the next section I will show how one can extend the proof of
the cut-elimination theorem to intuitionistic logic, in such a way that proof for
classical logic can be viewed as a special case.

Lemma 6.1 Let ϕ be any formula in negation-normal form. Then ϕ→ ϕN is
provable in minimal logic.

13

Proof. An easy induction on ϕ. For general formulae, dealing with implication
in the induction step would be problematic; but the restriction to negation-
normal form means that we only have to consider implication in the context of
a negated atoms. �

Theorem 6.2 If a formula ϕ is provable classically, then ¬(¬ϕ)nf is provable
in minimal logic.

Moreover: classical proofs of ϕ in a sequent calculus with cut, natural de-
duction, or an axiomatic proof system, can be translated efficiently to proofs of
¬(¬ϕ)nf in minimal logic, and vice-versa. Similarly, cut-free classical proofs of
ϕ in a two-sided sequent calculus, and cut-free classical proofs of ϕnf in a one-
sided sequent calculus, can be translated efficiently to cut-free proofs of ¬(¬ϕ)nf

in the sequent calculus for minimal logic, and vice-versa.

Proof. If ϕ is provable classically, then ϕN and hence ¬¬ϕN are provable in
minimal logic. By the previous lemma, (¬ϕ)nf → ¬ϕN is provable in minimal
logic, and hence ¬¬ϕN → ¬(¬ϕ)nf is also provable in minimal logic. So ¬(¬ϕ)nf

is provable in minimal logic as well.
We have shown that if ϕ is provable classically, then ¬(¬ϕ)nf is provable in

minimal logic. In the other direction, of course, ¬(¬ϕ)nf is classically equivalent
to ϕ. The reader can check that the proofs of the relevant implications and
equivalences in classical and minimal logic, using any of the standard proof
systems named in the theorem, are polynomial in the length of ϕ.

As far as cut-free proofs are concerned, one can show more generally that if
{ϕ1, . . . , ϕk} is provable in the classical one-sided sequent calculus without cut,
then the sequent {∼ϕ1, . . . ,∼ϕk} ⇒ ⊥ has a cut-free proof in the minimal se-
quent calculus. The proof is easy: under the translation, the rules of the classical
one-sided calculus correspond exactly to the left-rules of the minimal two-sided
calculus. Then a classical proof of ϕ in a two-sided calculus corresponds to a
classical proof of ϕnf in a one-side calculus, which in turn corresponds to a proof
of {(¬ϕ)nf } ⇒ ⊥ in minimal logic. �

The moral behind Theorem 6.2 is that if we restrict our attention to negation-
normal form, interpreting classical negation as ∼ϕ and interpreting classical
implication as ∼ϕ ∨ ψ, then we can view classical logic as taking place on the
left side of a sequent in minimal logic, with ⊥ sitting on the right.

It is worth noting that with intuitionistic logic in place of minimal logic,
these facts follow from a characterization of Glivenko formulae due to Orevkov;
see the discussion in [12, Section 3.2.5].

7 Cut elimination for intuitionistic logic

Let us now extend the proof of the cut-elimination theorem to the intuitionistic
calculus. Take conditions p, q, r, . . . to be finite sets of formulae, not necessarily
in negation-normal form, and say p is stronger than q, written p � q, if p ⊇ q.

14

The clauses below provide an inductive definition of a relation “S covers p,”
between conditions p and finite sets S of conditions stronger than p:

1. {p} covers p.

2. If {q1, . . . , qk} covers p, and for each i, Si covers qi, then
⋃k
i=1 Si covers p.

3. If ϕ ∨ ψ is in p, then {p ∪ {ϕ}, p ∪ {ψ}} covers p.

4. If ϕ ∧ ψ is in p, then {p ∪ {ϕ}} covers p, and {p ∪ {ψ}} covers p.

5. If ϕ → ψ is in p, and there is a cut-free proof of p ⇒ ϕ, then {p ∪ {ψ}}
covers p.

6. If ∀x ϕ is in p and t is any term, then {p ∪ {ϕ[t/x]}} covers p.

7. If ∃x ϕ is in p and x is not free in p, then {p ∪ {ϕ}} covers p.

Below I will drop the extra set brackets, and say “q1, . . . , qk cover p” instead of
“{q1, . . . , qk} covers p.”

Lemma 7.1 Suppose q1, . . . , qk cover p, and suppose there are cut-free proofs
of q1 ⇒ ϕ, . . . , qk ⇒ ϕ, for some formula ϕ. Then there is a cut-free proof of
p⇒ ϕ.

Proof. Use induction on the covering relation. In fact, the hypotheses imply that
there is a cut-free proof of p⇒ ϕ starting from the sequents q1 ⇒ ϕ, . . . , qk ⇒ ϕ.
�

Now define the notion of p ϕ inductively, as follows:

1. p ⊥ if and only if there is a cut-free proof of p⇒ ⊥.

2. If A is atomic, p A if and only if there is a cut-free proof of p⇒ A.

3. p θ ∧ η if and only if p θ and p η.

4. p θ∨η if and only if there is a covering q1, . . . , qk of p such that for each
i, qi θ or qi η.

5. p θ → η if and only if for every q � p, if q θ then q η.

6. p ∀x θ(x) if and only if for every term t, p θ(t).

7. p ∃x θ(x) if and only if there is a covering q1, . . . , qk of p and a sequence
of terms t1, . . . , tk such that for each i, qi θ(ti).

In the next two lemmata, a renaming of variables is just an injective map from
the set of variables to the set of variables. If σ is a renaming, then ϕσ denotes
the result of replacing each free variable x of ϕ by σ(x), changing the names
of the bound variables if necessary, to prevent collisions. Similarly, if p is a
condition and σ is a renaming, then pσ denotes {ϕσ | ϕ ∈ p}. Lemma 7.3

15

implies that our notion of covering induces a Grothendieck topology on the
category with conditions as objects and an arrow p

σ→ q for each renaming σ
such that p � qσ. (A similar category is used in [3]. See also the definition
of a base for a Grothendieck topology in [11, exercise III.3].) Lemma 7.4 then
follows from the general results of [13], though it can just as well be verified
directly.

Lemma 7.2 Suppose p is any condition, q1, . . . , qk are conditions covering p,
and r is a condition stronger than p. Then there is a renaming σ such that
qσ1 ∪ r, . . . , qσk ∪ r covers r.

Proof. A straightforward induction on the covering relation. The renamings are
needed to handle the variable restriction in clause 7. �

Lemma 7.3 The forcing relation defined above satisfies the following:

1. Stability under renaming: if σ is any renaming of variables and p ϕ,
then pσ ϕσ.

2. Monotonicity: if p ϕ and q � p then q ϕ.

3. The covering property: if q1, . . . , qk cover p and for each i, qi ϕ, then
p ϕ.

Proof. Each clause can be proved using a straightforward induction on the for-
mula ϕ. Stability under renaming and Lemma 7.2 are needed to handle the
clauses for ∨ and ∃ when proving monotonicity. �

An easy induction derivations shows that if there is a cut-free proof of p ⇒ ⊥
and ϕ is any formula, then there is a cut-free proof of p ⇒ ϕ. This takes care
of ⊥ rule in the proof of the following lemma.

Lemma 7.4 If ϕ is provable intuitionistically, then ϕ is forced.

Proof. A straightforward induction on derivations, as in the proof of Lemma 4.5.
�

Lemma 7.5 Let ϕ be any formula. Then

1. {ϕ} ϕ.

2. If p ϕ, then there is a cut-free proof of p⇒ ϕ.

Proof. We can prove both claims simultaneously by induction on ϕ. I will focus
on two illustrative cases.

For the first sample case, suppose ϕ is a formula of the form θ ∨ η. Using
the induction hypothesis, we have {θ∨η, θ} θ and {θ∨η, η} η. Hence, both
these conditions force θ∨η; and since they cover {θ∨η}, we have {θ∨η} θ∨η.

For the second claim, suppose p θ ∨ η. By the definition of forcing and
the induction hypothesis, there are conditions q1, . . . , qk covering p such that

16

for each i, there is a cut-free proof of qi ⇒ θ or qi ⇒ η. In particular, for each i,
there is a cut-free proof of qi ⇒ θ ∨ η. By Lemma 7.1, there is a cut-free proof
of p⇒ θ ∨ η.

As a second example, suppose ϕ is of the form θ → η. For the first claim,
we need to show that if p is any condition and p θ, then p ∪ {θ → η} η.
So suppose p θ. By the induction hypothesis, there is a cut-free proof of
p⇒ θ. By the definition of covering, p ∪ {η} covers p ∪ {θ → η}. Again by the
induction hypothesis, we have that p ∪ {η} η. By Lemma 7.1, we have that
p ∪ {θ → η} η, as required.

For the second claim, suppose p θ → η. By the induction hypothesis, we
have that {θ} θ, and so p∪{θ} η. Again by the induction hypothesis, there
is a cut-free proof of p∪{θ} ⇒ η. This yields a cut-free proof of p⇒ θ → η. �

Note that by Lemmata 3.3 and 4.6, with the forcing relation for classical
logic, we have {∼θ} ¬θN for any negative formula θ. Therefore, if p ϕ,
then p ∪ {∼ϕnf } ⊥, and so there is a cut-free proof of ∼p, ϕnf in the one-
sided sequent calculus. This is, in a sense, the classical analogue of clause 2 of
Lemma 7.5.

Theorem 7.6 Any sequent provable in the intuitionistic sequent calculus has a
cut-free proof.

Proof. Suppose there is a proof of {ϕ1, . . . , ϕk} ⇒ ψ in the sequent calculus
with cut. Then ϕ1 ∧ . . . ∧ ϕk → ψ is provable intuitionistically, and so it is
forced. By Lemma 7.5, for each i we have {ϕi} ϕi. By monotonicity, we have
{ϕ1, . . . , ϕk} ϕ1∧ . . .∧ϕk, and hence {ϕ1, . . . , ϕk} ψ. By Lemma 7.5 again,
there is a cut-free proof of {ϕ1, . . . , ϕk} ⇒ ψ. �

The proof of the cut-elimination theorem for minimal logic instead of intu-
itionistic logic requires almost no changes; one simply replaces intuitionistic
provability by minimal provability throughout, and ignores the comment before
Lemma 7.4. Theorem 6.2 implies that the cut-elimination theorem for classical
logic follows the cut-elimination theorem for minimal logic; in fact, the proof in
Section 4 is just what one gets if one restricts the proof above to the negative
fragment of minimal logic, replaces “stronger than” by “stronger than some
covering of,” and incorporates the translation in Section 6. In much the same
way, the cut-elimination theorem for intuitionistic higher-order logic described
in [5] can now be seen to provide a cut-elimination theorem for classical logic
as well.

8 Questions

What is the relationship between the cut-elimination algorithm described in
Section 5 and procedures that arise from syntactic proofs of the cut-elimination
theorem (like the ones in [18])?

17

It is relatively easy to translate proofs in a sequent calculus with cut to
proofs in natural deduction, and vice-versa; and it is well known that, at least
as far as intuitionistic logic is concerned, cut-free proofs in the sequent calculus
correspond to normal ones in the natural deduction setting. As a result, nor-
malization proofs for natural deduction calculi can also be seen as establishing
cut elimination. But methods like those used in [10, 14] yield additional in-
formation, in the form of strong normalization; which is to say, they guarantee
termination for any procedure that follows a specified set of reductions. Can
one say more about the relationship between the algebraic methods above and
the methods of [10, 14]? Can the forcing arguments be modified to yield strong
normalization?

On the other hand, more explicit cut-elimination procedures yield bounds
on the increase in the length of proofs. In the current setting, one has to extract
these bounds from the normalization procedure used in Section 5. Is there a
more direct way to read off bounds from the algebraic proofs?

In sheaf-theoretic terms, the construction of Section 7 is not quite a sheaf
model, but rather a “modified sheaf model” in the terminology of [3], or a
“presheaf model” in the terminology of [13]. Similarly, the models constructed
in [5] are not quite sheaves. Is there some way that these arguments can be
recast as sheaf constructions?

The forcing relations described above can be viewed as providing a metalog-
ical framework for reasoning about search space in a tableau search, in the sense
that the forcing relation makes higher-order assertions about cut-free provabil-
ity. Can this observation be put to use for the purposes of automated deuction?

References

[1] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical
reconstruction of a reduction free normalization proof. Logic in Computer
Science, 1996.

[2] Jeremy Avigad. Saturated models of universal theories. Submitted.

[3] Jeremy Avigad and Jeffrey Helzner. Transfer principles for intuitionistic
nonstandard arithmetic. To appear in the Archive for Mathematical Logic.

[4] Ulrich Berger. Program extraction from normalization proofs. In M. Bezem
and J. F. Groote, eds., Typed Lambda Calculi and Applications ’93, Lecture
Notes in Computer Science 664, pages 91–106, 1993.

[5] Wilfried Buchholz. Ein ausgezeichnetes Modell für die intuitionistische
Typenlogik. Archive for Mathematical Logic, 17:55–60, 1975.

[6] Thierry Coquand. Two applications of boolean models. Archive for Math-
ematical Logic, 37:143–147, 1997.

18

[7] Albert Dragalin. Mathematical Intuitionism: Introduction to Proof The-
ory. Translations of mathematical monographs. American Mathematical
Society, 1988.

[8] J. E. Fenstad, editor. Proceedings of the Second Scandinavian Logic Sym-
posium. North-Holland, 1971.

[9] Melvin Fitting. Intuitionistic Logic, Model Theory, and Forcing. North-
Holland, 1969.

[10] Jean-Yves Girard. Une extension de l’interpretation de Gödel à l’analyse,
et son application à l’élimination des coupures dans l’analyse et dans la
théorie des types. In Fenstad [8], pages 63–92.

[11] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic.
Springer, 1992.

[12] Grigori Mints. Proof theory in the USSR 1925–1969. Journal of Symbolic
Logic, 56:385–424, 1991.

[13] Erik Palmgren. Constructive sheaf semantics. Mathematical Logic Quar-
terly, 43:321–327, 1997.

[14] Dag Prawitz. Ideas and results in proof theory. In Fenstad [8], pages
235–307.

[15] Andre Scedrov. Normalization revisited. J. Gray and A. Scedrov eds., Cat-
egories in Computer Science and Logic, AMS Contemporary Mathematics
92, pages 357–369.

[16] Raymond Smullyan. First-Order Logic. Dover, 1995.

[17] A. S. Troelstra. Realizability. In Samuel Buss ed., The Handbook of Proof
Theory. North-Holland, 1998.

[18] A. S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cam-
bridge University Press, 1996.

[19] A. S. Troelstra and Dirk van Dalen. Constructivism in Mathematics: An
Introduction, volume 1. North-Holland, 1988.

[20] Jeffery Zucker. The correspondence between cut-elimination and normal-
ization. Annals of Mathematical Logic, 7:1–112, 1974.

19

