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Abstract

We describe a model-theoretic approach to ordinal analysis via the
finite combinatorial notion of an α-large set of natural numbers. In con-
trast to syntactic approaches that use cut elimination, this approach
involves constructing finite sets of numbers with combinatorial prop-
erties that, in nonstandard instances, give rise to models of the theory
being analyzed. This method is applied to obtain ordinal analyses of a
number of interesting subsystems of first- and second-order arithmetic.

1 Introduction

Two of proof theory’s defining goals are the justification of classical
theories on constructive grounds, and the extraction of constructive
information from classical proofs. Since Gentzen, ordinal analysis has
been a major component in these pursuits, and the assignment of re-
cursive ordinals to theories has proven to be an illuminating way of
measuring their constructive strength. The traditional approach to
ordinal analysis, which uses cut-elimination procedures to transform
proofs in various deductive calculi, has a very syntactic flavor. The
goal of this paper is to describe an alternative, model-theoretic ap-
proach, one that we hope will find favor with mathematicians of a
more semantic bent. Basically these techniques are modifications of
known ones, but new here is the adaptation of these techniques to
second-order theories.

The origins of our approach can be found in the 1970’s, in which
Paris and others [13, 15] explored the use of finite combinatorial princi-
ples that, in nonstandard instances, give rise to models of arithmetic. A
crowning achievement of this pursuit is the Paris-Harrington statement
[16, 10, 11], a slight variant of the Ramsey’s theorem for finite sets that
is equivalent to the 1-consistency of Peano Arithmetic (PA). Ketonen
and Solovay [12] later developed the notion of an α-large set for ordinal
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notations α, and used it to determine effective bounds on the numbers
asserted to exist by Paris and Harrington’s combinatorial statement.
In [15] Paris showed how to use the notion of α-large interval to build
models of the theories I Σn for n ≥ 1 (i.e., the theories obtained by
restricting the induction axioms of PA to Σ0

n-formulas). In [30, 32] the
second author extended these methods to apply to fragments of PA
based on transfinite induction, yielding sharp upper bounds on their
proof-theoretic strength; similar work has been carried out by Kot-
larski and Ratajczyk (see [14, 19]). As a by-product, these methods
also provide natural “indicators” (see [10, 11, 15, 13]) for the theories
in question.

In this paper we hope to convince the reader that such combinato-
rial methods provide an important alternative to cut elimination when
it comes to ordinal analysis. The complementarity of the approach can
be summarized as follows: with cut-elimination, one unwinds proofs to
obtain cut-free proof trees with height bounded by an ordinal; in our
constructions, one starts with an ordinally-large interval and uses that
to construct a model of the theory in question.

The outline of this paper is as follows. In Sections 2 through 6 we
present an overview of our methods, set down preliminary definitions
and conventions, and discuss the way in which our constructions yield
ordinal analyses. In Section 7 we construct a model of the first-order
theory I Σ1 , and in Section 8 we discuss the construction of second-
order objects like Turing jumps. In Section 9 we use these ideas to build
a model of WKL0 . A suitable iteration of the Turing jump construction
gives us finite jump hierarchies, which are useful in constructing models
of I Σn , PA, ACA0 , and Σ1

1 -AC0 in Sections 10 to 12.
All the theories analyzed in this paper have proof-theoretic strength

at most that of Peano Arithmetic. These methods, however, are ex-
tended to stronger “predicative” theories in [4], where we use appropri-
ately large nonstandard intervals to build models of theories of strength
up to Γ0 (and, in fact, just a little bit beyond). These constructions
employ a transfinite jump lemma that extends the finite jump lemma
introduced here.

For more information on the traditional ordinal analyses of the the-
ories discussed here and in [4], as well as proofs that the bounds we give
are sharp (obtained by proving instances of transfinite induction within
the theories themselves), see, for example, [17, 18, 20, 28, 7, 27]. For
information on theories of first-order arithmetic, see [10, 11], and for
more information on the relevant theories of second-order arithmetic,
see, for example, [26, 24, 25, 7, 2, 3].
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2 Overview

In this section we give an informal introduction to the model-theoretic
techniques we will use below. Given a theory T , our goal is to de-
termine an ordinal notation α that provides an upper bound to its
proof-theoretic strength. If T is a theory in the language of first-order
arithmetic, we will use the combinatorial notion of an α-large interval
of natural numbers [a, b] to construct a model of T . In fact, we’ll show
that if M is a nonstandard model of arithmetic with universe M , and
a and b are nonstandard elements such that

M |= [a, b] is α-large

then there is an initial segment I of M containing a but not b, such
that I is a model of T . This situation is described by the diagram
below.

) ) )
0 ω a I |= T b M

If b is taken to be the least element of M such that [a, b] is α-large,
this yields a model I of T in which the combinatorial assertion

∀x ∃y ([x, y] is α-large) (1)

is false, and hence this assertion is not provable in T . On the other
hand, in a weak base theory one can prove (1) using transfinite induc-
tion up to α, and so as a corollary we obtain an instance of transfinite
induction up to α that cannot be proven in T . This is one sense in
which the strength of T is bounded by α, and is one of the usual con-
sequences of a traditional ordinal analysis. We will discuss some of the
other consequences of an ordinal analysis, and the way they can be
obtained from our model-theoretic constructions, in Section 6.

In order to construct the initial segment I that models T , we will
use the combinatorial properties of [a, b] to construct a set

A = {a0, a1, . . . , ak} ⊆ [a, b]

with further combinatorial properties that guarantee that if I is any
“limit” of A, I will satisfy the axioms of T . For example, if the elements
ai have been listed in increasing order and k is nonstandard, then the
set

I =
⋃
i∈ω
{x|x < ai}

will be an initial segment ofM in which elements of A occur cofinally,
and will therefore serve our purposes.
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In this paper we will be concerned moreover with theories T in the
language of second-order arithmetic, which include variables that range
over sets of natural numbers. To construct a model of T , we will have
to specify the universe of sets that are to interpret these variables as
well. Given a set S coded by a single element of the first-order model
M in some reasonable way, we will write

SI = S ∩ I,

so that SI is a subset of I. All the sets in our second-order models will
be of this form, and so our task will be to come up with combinatorial
conditions on sets S that guarantee that SI will satisfy appropriate
axioms of T in any limit I of A. When such is the case we will say
that S “approximates” the desired property in A.

In short, then, our constructions take the following form:

1. we show that if [a, b] is α-large, we can construct sets A, S, and
so on, having certain combinatorial properties; and

2. we show that if I is any limit of A, these combinatorial properties
enable us to extract a model of T in which the first-order universe
is I.

After fixing some conventions in the next section, we will discuss the
relevant ordinals and notation systems in Section 4, define the notion
of an α-large interval in Section 5, and describe the proof-theoretic
consequences of our techniques in Section 6. The first application of
the techniques themselves will appear in Section 7, when we begin by
building a model of IΣ1.

3 Preliminaries

Though the following list of preliminaries regarding models and theo-
ries of arithmetic is long, most of the definitions and conventions are
either standard or easily deduced from context. As a result, the reader
may want to just skim this section and return to it as necessary. For
more detail on the topics of this section the reader is referred to [10, 11].

The language of first-order arithmetic includes a constant zero sym-
bol, function symbols for the operations successor, plus, and times, and
a less-than relation. When we speak of true arithmetic, we mean the
set of sentences in this language that are true in the standard model.
As described in the previous section, we need to construct objects in
a nonstandard model of true arithmetic, so we fix a particular such
model M from the outset. M will be used to denote the universe of
M.

An initial segment of M is a subset of I of M that is closed
downwards, that is, if a ∈ I and b < a, then b ∈ I. An initial segment
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I is a cut if it is closed under the successor operation, and proper if
it is not equal to all of M . Note that if I is a proper cut of M then I
is not definable in M, since any first-order formula defining it would
represent a failure of induction in the model.

Though the variables of the language of first-order arithmetic range
over natural numbers, modulo coding we can take the universe to in-
clude finitary objects like ordered pairs, finite sets, and finite sequences
as well. For example, if S is an element of M , we can interpret i ∈ S
to represent the assertion that “the ith bit of the binary expansion of
S is equal to 1.” In this situation we will say that the set S is coded
inM, or even more concisely, S is inM. Similar conventions hold for
other finitary objects as well.

If A is a subset of M and we write

A = {a0, a1, . . . , ak}

it is to be assumed that we have listed the elements of ai in increasing
order. A cut I is a limit of A if elements of A occur cofinally in I. For
example, if k is nonstandard and we take

I =def

⋃
i∈ω
{x|x < ai}

then I will be a limit of A. If I is a cut containing a but not b, we can
indicate this fact by writing

a < I < b.

If I is also closed under plus and times, we will also use I to denote the
model for the language of first-order arithmetic, with the operations
that are derived from M.

We will use the notation [a, b] to denote the set {a, a + 1, . . . , b},
with similar conventions for open and half-open intervals.

The symbols Σ0
i , Π0

i , and ∆0
i represent the usual classes in the

arithmetic hierarchy. In particular, a formula ϕ is ∆0
0, or bounded,

if all its quantifiers are of the form ∀x ≤ t or ∃x ≤ t, where t is a
term which doesn’t involve the variable x. If ϕ is ∆0

0 in an additional
set parameter S, we will write that ϕ is ∆0

0(S). An easy induction on
formula complexity shows that if I is a cut of M that is closed under
plus and times, and ϕ is a ∆0

0 formula, then ϕ is absolute between I
and M in the following sense.

Lemma 3.1 If ϕ(~x) is ∆0
0, I is a cut of M closed under plus and

times, and ~a are parameters from I, then

(I |= ϕ(~a))⇔ (M |= ϕ(~a)).
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We will use 〈a, b〉 to denote an ordered pair with elements a and b,
and if s is a sequence in M we will let si denote the ith element of s.
If S is a set in M, we use the notation Si to denote the ith slice of S,
namely

Si =def {a | 〈i, a〉 ∈ S}.
Though this introduces some ambiguity between sequences and sets,
we trust that our intentions will be clear in context. In fact, if 〈Ti〉i∈I
is a sequence of sets indexed by elements of another set I, we can define⊕

i∈I

Ti =def {〈i, x〉 | x ∈ Ti} =
⋃
i∈I

({i} × Ti),

so that if S =
⊕

i∈I Ti then the projection Si is equal to Ti whenever
i ∈ I, and ∅ otherwise. Finally, if ≺ is some ordering definable in M
and S is a sequence of sets, we define

S≺a =def

⊕
b≺a

Sb.

It is important that we choose a coding scheme with definitions whose
basic properties can be verified in a weak theory like I ∆0 + (exp) (see
below), and such that if I is a cut of M that satisfies this theory, the
definitions are absolute between I and M. Finding coding schemata
with these properties is not difficult; see, for example, [10].

If S is a set in M and I is a cut of M, we define

SI =def S ∩ I,

namely, the part of S “seen” by I. A slight extension of Lemma 3.1
yields

Lemma 3.2 If ϕ(~x, Y ) is ∆0
0(Y ), I is a cut of M closed under plus

and times, ~a are parameters in I, and S is a set in M, then

(I |= ϕ(~a, SI))⇔ (M |= ϕ(~a, S)).

It will often be convenient to drop the ·I superscript in SI , as discussed
in Section 8. For S and a in M, we define

Sa =def {x < a | x ∈ S}.

Note that this agrees with the definition for SI if we identify a with the
set of all elements less than a. We use µ to denote the least-number
operator, so that

µx θ(x)

denotes the least x such that θ(x), if such an x exists, and 0 otherwise.
The bounded least-number operator

µx ≤ a θ(x)
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does not look past a for a witness.
Below we adopt the practice of naming axioms and axiom schemata

with parentheses, so for example if Γ is a class of formulas we will use
(Γ-IND) to denote the schema of induction

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))→ ∀x ϕ(x)

for formulas ϕ in Γ. The theory I ∆0 +(exp) is a weak base theory which
includes quantifier-free defining equations for successor, plus, times,
and less-than, the schema (∆0

0 -IND) of induction for ∆0
0, and an axiom

asserting that exponentiation is total. To express this latter axiom one
needs to use a ∆0

0 formula defining the graph of exponentiation in a
reasonable way; see [10] for details.

In I ∆0 + (exp) formulas ψ can be coded as elements pψq. If ψ
contains numeric parameters we can code them using their binary (or
dyadic) representations, so that pψq becomes an I ∆0 +(exp)-definable
function of the parameters in ψ.

We fix a universal Σ0
1 truth predicate

TrΣ0
1
(x) ≡def ∃y Θ(x, y),

where Θ is ∆0
0, so that for any ∆0

0 formula ψ(y) the equivalence

∃y ψ(y)↔ TrΣ0
1
(p∃y ψ(y)q) (2)

holds in any model of I ∆0 +(exp). After Section 7 we will need to use
a formula

TrΣ0
1
(x,Z) ≡def ∃y Θ(x, y, Z),

which is a Σ0
1 truth predicate relative to the set parameter Z. Such

truth predicates are defined, for example, in [10, 11].
We are also concerned with building models of theories in the lan-

guage of second-order arithmetic, which includes variables that range
over sets of numbers and a binary “element-of” relation ∈. In this
language we take only first-order equality to be basic, defining X = Y
to mean

∀z (z ∈ X ↔ z ∈ Y ).

We can specify a structure N for the language of second-order arith-
metic by presenting a first-order part K, and a collection S of subsets
of the universe of K to interpret the second-order variables. In such a
situation we will write

N = 〈K,S〉.

In the second-order setting we allow Σij , Πi
j , and ∆i

j formulas to contain
second-order parameters, so that when we say that N satisfies I ∆0 +
(exp) we mean to include induction for ∆0

0 formulas in the expanded
language.
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If ϕ(x) is a formula the least-element principle for ϕ is the assertion

∃x ϕ(x)→ ∃x (ϕ(x) ∧ ∀y < x ¬ϕ(y)), (LEP)

which asserts that if there is any x satisfying ϕ, then there is a least
such x. By (Γ-LEP) we denote the schema in which this principle is
applied for formulas ϕ in Γ. The relationship between induction and
the least-element principle is given by the following

Lemma 3.3 Over I ∆0 + (exp), for fixed i and k, the following schemata
are pairwise equivalent:

1. (Σi
k -IND)

2. (Πi
k -IND)

3. (Σi
k -LEP)

4. (Πi
k -LEP)

For a proof of this lemma, see [10, 11].

4 Ordinals and ordinal notations

In discussing the role of ordinals in proof theory, it is useful to distin-
guish between the following concepts:

1. A countable ordinal is an isomorphism class of countable well-
orderings. As usual, we can identify countable ordinals with their
von Neumann representations as transitive sets that are linearly
ordered by the membership relation.

2. An ordinal notation system is a pre-well-ordering � on a set
U of terms in a specified language. Intuitively speaking, the ele-
ments of U are notations that denote countable ordinals. Each
notation α is identified with its Gödel number pαq. Typically it
will be clear from the context whether α refers to a notation or
its Gödel number; for example, if we refer to α as an element of
M then we mean the Gödel number of the notation, and if we
refer to the “form of α” (in terms of the function and constant
symbols used to build the notations in U) then α denotes the
notation itself.
Saying that the relation � is a pre-well-ordering means that it is
transitive and reflexive, and that there are no infinite descending
�-chains. What distinguishes a pre-well-ordering from a well-
ordering is that in the former there may be more than one nota-
tion for a given ordinal, since

α � β ∧ β � α
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may hold for distinct α and β. From such sets of equivalent
notations, it is often useful to identify a canonical normal form
representative, which we will write as α. We will use |α| to denote
the order-type of α in the associated well-ordering on equivalence
classes of notations, and define α ≺ β to mean that α � β but
β 6� α.
If the set (of Gödel numbers of the elements of) U , the order-
ing � (as an ordering on Gödel numbers), and the map α 7→ α
(as a function on Gödel numbers) are primitive recursive (or el-
ementary recursive, polynomial-time computable, etc.), it makes
sense to call the ordinal notation system primitive recursive (resp.
elementary recursive, polynomial-time computable, etc.).

3. An ordinal notation system with limit sequences is an or-
dinal notation system together with an assignment of a cofinal
sequence

α[0], α[1], α[2], . . .

to every notation α that denotes a limit ordinal. We do not
require that equivalent notations have equivalent limit sequences,
or that the elements of a limit sequence assigned to a notation in
normal form are again in normal form.
If the ordinal notation system is primitive recursive, and the as-
signment 〈λ, n〉 7→ λ[n] is primitive recursive, we can say that the
ordinal notation system with limit sequences is primitive recur-
sive, etc.

It is usually desirable that basic ordinal functions such as succes-
sor, addition, multiplication, exponentiation, and so on are also easily
computable in the context of the notations. For the ordinals dealt with
in this paper and in [4] it is fairly easy to see that there are elementary
recursive notation systems such that the functions in this list are also
elementary recursive. Further, it is not difficult to prove simple proper-
ties about these functions (algebraic properties and defining equations)
in I ∆0. In [31] it is shown that we can find such notation systems for
any fixed recursive ordinal.

In this section we will begin by defining a series of ordinals and
functions on ordinals from a classical (set-theoretic) point of view,
and then point out that in a very standard way, one can use these
functions to define terms which denote ordinals. Finally, we will define
limit sequences for these notations. The combinatorial properties of α-
large sets, defined in the next section, will depend very heavily on our
choice of limit sequences, so we will be careful to choose sequences that
facilitate our later constructions. On the other hand, the point of these
constructions is to obtain the types of proof-theoretic results described
in Section 6, which, in contrast, refer only to countable ordinals and
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ordinal notation systems. One can therefore think of our choice of limit
sequences, and the resulting definition of an α-large set, as a convenient
stepping-stone to these end results.

The following “refresher course” on ordinals is somewhat brisk. A
more detailed development can be found in [17, 18, 28].

Ordinal addition, multiplication, and exponentiation are defined
by transfinite recursion in the usual way. For example, the function
α 7→ βα is defined by the equations

• β0 =def 1

• βα+1 =def β
α · β

• βλ =def sup {βγ | 0 < γ < λ}, for limit ordinals λ.

Note that every ordinal α satisfies one of the following three criteria:

• α = 0

• α = β + 1, in which case we say that α is a successor ordinal

• α is not equal to 0 and there is no greatest β < α, in which we
say that α is a limit ordinal.

The ordinal ω corresponds to the order-type of the natural numbers.
The sequence of ordinals ωn is defined inductively by the following

equations:

• ω0 =def 1

• ωn+1 =def ω
ωn .

The ordinal ε0 is defined to be the limit of this sequence. One can
show that ε0 is the least fixed point of the function α 7→ ωα, i.e. the
least ordinal β such that ωβ = β. Furthermore, ε0 is the least ordinal
closed under addition and the map α 7→ ωα, and any ordinal less than
ε0 can obtained from 0 and finitely many applications of these two
operations.

The ordinal ε0 is sufficient for the analysis of all the theories dealt
with in this paper. However, for the theories analyzed in [4], we will
need ordinals that are larger. To go beyond ε0, define the sequence ωαn
by

• ω0(α) =def α

• ωαn+1 =def ω
ωαn

and let ε1 be the limit of the sequence ωε0+1
n . Then ε1 is the second

fixed-point of the operation α 7→ ωα, and equal to the set of ordinals
that can be obtained from 0 and ε0 from addition and the preceeding
operation. More generally, define

• εα+1 = limn ω
εα+1
n

• ελ = sup {εγ | γ < λ}, for limit ordinals λ,
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so that εα denotes the αth fixed point of the map α 7→ ωα, as well as
the set of ordinals that are obtainable from {εβ | β < α} using finitely
many applications of addition and the map α 7→ ωα.

This process can be iterated transfinitely to give the Veblen hier-
archy of functions, ϕα, defined as follows:

• ϕ0(α) = ωα

• ϕα+1 enumerates the fixed points of ϕα
• ϕλ enumerates the simultaneous fixed points of {ϕγ | γ < λ},

when λ is a limit.

Note that ϕ1(α) is just the ordinal εα defined in the previous para-
graph. It will often be convenient to write ϕ(α, β) instead of ϕα(β).

We can continue the process even further, this time diagonalizing
across the first argument of ϕ. In analogy to the ordinals ωn, define

• γ0 =def ε0

• γn+1 =def ϕ(γn, 0).

Then the Feferman-Schütte ordinal Γ0 is defined to be the limit of the
sequence γn. Alternatively, Γ0 can be characterized as the least fixed
point of the function α 7→ ϕ(α, 0), the smallest ordinal closed under
the map α, β 7→ ϕ(α, β), and the set of ordinals that can be obtained
from 0 using finitely many applications of addition and the function
α, β 7→ ϕ(α, β). Also define

• γα0 =def α

• γαn+1 =def ϕ(γαn , 0).

The ordinals Γα are then defined analogously to the ordinals εα.
More precisely, if we set ψ(α) = ϕ(α, 0), the ordinals Γα enumerate
the fixed points of ψ.

Of course, one can continue this process of generating ordinals in-
definitely. Obtaining ordinals that suffice for the analysis of stronger
theories requires new conceptual methods, some even motivated by
large cardinal hypotheses. (See, for example, [17, 18, 20, 21, 22].) The
ordinals and functions just described, however, suffice for the theories
we analyze below and in [4]. In fact, for the theories analyzed in this
paper it is enough to have notations for ordinals through ε0, and so
for now we restrict our attention to these.

Definition 4.1 Our set of ordinal notations is defined inductively,
as follows:

• 0 is an ordinal notation.

• If α1, α2, . . . , αk are ordinal notations other than 0, then so is

α1 + α2 + . . .+ αk.
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• If α is an ordinal notation, so is ωα.

• ε0 is an ordinal notation.

Notations of the form α + 1 (that is, α + ω0) are called successor
notations. A notation that is neither 0 nor a successor notation is
called a limit notation.

Our treatment of ordinal addition violates unique readability, since, for
example, the term α+β+γ can be interpreted by associating to the left
or to the right. As it turns out, blurring this distinction is convenient,
and one can check that the definitions and proofs below are insensitive
to the way such a term is parsed. When we refer to notations such as
1, 2, ωn, and so on, these are to be taken as abbreviations for their
representations using 0, +, and ω·. In particular, α · n denotes the
term

α+ α+ . . .+ α

in which there are n terms in the sum.
Terms α denote ordinals |α| under the intended interpretation. We

would like to emphasize that these representations are not unique, so
that, for example, |1 + ω| = |ω| and |ωε0 | = |ε0|. As described in item
2 at the beginning of this section, we identify a normal form α with
each ordinal notation α. When we use α as a variable, we mean that
this variable is intended to range over notations in normal form.

Both the mapping of notations to their normal forms and the or-
dering ≺ on notations induced by the intended interpretation, can be
described in a very effective way [31, 32]. Oddly enough, the details of
the ordering are irrelevant to our model-theoretic constructions, which
rely instead on the limit sequences we define below. In contrast, the
proof-theoretic results described in Section 6 refer only to the ordering
of notations, and not the limit sequences. The bridge between these
two aspects of the analysis is given by the following fact: if λ denotes
a limit ordinal and λ[n] is an element of the limit sequence assigned to
λ, then λ[n] ≺ λ.

We now assign sequences of notations λ[n] to those notations λ
that denote limit ordinals. In each case the corresponding sequence of
ordinals |λ[n]| is increasing and cofinal in the ordinal |λ|.

Definition 4.2 Sequences are assigned to limit notations as follows.
(Here λ denotes a limit ordinal.)

1. (α+ β)[n] =def α+ (β[n]).

2. ωα+1[n] =def ω
α · (n+ 2)

3. ωλ[n] =def ω
λ[n]+1

4. ε0[n] =def ωn+1
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Aside from the occasional “+2” or “+1” which we have added to
make our constructions easier, these limit sequences are standard. We
feel obligated to point out that equivalent notations might not have
equivalent limit sequences; for example ω[n] = n + 2, whereas (1 +
ω)[n] = n+ 3. Furthermore, elements of a limit sequence λ[n] are not
required to be in normal form, even if λ is.

For reference, a list of the theories that have so far been analyzed
with these methods appears below, together with their proof-theoretic
ordinals. The first five lines are dealt with in this paper, while the
remaining theories are treated in [4].

Theory Ordinal
I Σ1 ωω

RCA0 , WKL0 ωω

IΣn ωn+1

PA ε0

ACA0 , Σ1
1 -AC0 ε0

(Π0
1 -CA)≺ωα ϕ(α, 0)

ACA εε0
Σ1

1 -AC ϕ(ε0, 0)
ÎDn γn

ATR0 , ÎD<ω Γ0

ATR Γε0

5 Ordinal largeness properties

In order to define the notion of an α-large set of numbers, we first need
to extend the limit sequence function to define

α[a0, a1, . . . , ak]

for arbitrary notations α and sequences a1, . . . , ak. Intuitively, the
definition allows us to “count down” k+ 1 steps from α, taking prede-
cessors at successor stages, and taking an appropriate element of the
limit sequence λ[ai] at limit stages λ.

Definition 5.1 We extend the limit sequence function to successor
ordinals by

(α+ 1)[n] =def α

and set
0[n] =def 0.

The limit sequence function is defined on finite sequences by

α[a0, . . . , ak] =def (· · · ((α[a0])[a1]) · · · )[ak].
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Remember that whenever we write

A = {a0, a1, . . . , ak}

it is to be assumed that the elements ai are listed in increasing order.
In that case, we define

α[A] =def α[a0, a1, . . . , ak].

With this definition in place, we can finally come to the central com-
binatorial notion in this paper.

Definition 5.2 A set A is said to be α-large if α[A] = 0. A is said
to be exactly α-large if it is α-large, but no initial segment of it is
α-large.

So a set A is exactly α-large if the “counting down” procedure hits
0 on the last element of A. The following lemma gives an alternative
characterization of the α-large sets.

Lemma 5.3 Every set is 0-large. A set A = {a0, a1, . . . , ak} is

• (α+ 1)-large iff A− {a0} is α-large, and

• λ-large (where λ is a limit) iff A− {a0} is λ[a0]-large.

To take a concrete example, the reader can verify that a set is
n-large iff it has at least n elements. Given the definition of limit
sequences in the previous section, the set

{3, 4, 5, 34, 48, 96, 432, 521, 1000}

is (ω + 2)-large (in fact, exactly (ω + 2)-large; recall that ω[5] = 6),
whereas the set

{38, 84, 85, 86, 100}

is not. In [32] it is shown that the notion of α-largeness is ∆0
0(exp)-

definable, and hence absolute between M and any initial segment I
closed under exponentiation.

We now provide some basic combinatorial properties of α-large in-
tervals.

Definition 5.4 An increasing partition of a set A is a sequence of
sets P0, . . . , Pk such that

• A = P0 ∪ · · · ∪ Pk, and

• for i < k, max(Pi) < min(Pi+1).

Lemma 5.5 Suppose α = αk+αk−1 + · · ·+α0 and A is α-large. Then
there is an increasing partition P0, . . . , Pk of A, where for each i ≤ k,
Pi is αi-large.
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The lemma follows easily from the definitions and induction on the
cardinality of A.

Given α, define the function fα by

fα(a) = µb ([a, b] is α-large).

Using Lemma 5.5 the reader can verify that fω(a) > 2a, fω2(a) > a2,
and fω3 > aa. In fact, the sequence fα is closely related to the Wainer-
Schwichtenberg hierarchy of fast-growing functions (see [12, 23, 32,
33]).

In order to get a better sense of the functions fα, define the set
of β-recursive functions to be the smallest set that has the usual clo-
sure properties of the primitive recursive functions and, additionally,
is closed under the scheme of β-descent recursion:

g(~a) =
{

0 if h(0,~a) � β
µn (h(n+ 1,~a) � h(n,~a)) otherwise

The idea is that g(~a) bounds the length of the descending sequence
of notations less than β that is generated by h with parameters ~a. A
function is ≺β-recursive if it is γ-recursive for some γ ≺ β. (For fur-
ther discussion see [29]; for other characterizations of the ≺β-recursive
functions see [23, 27].)

It is not difficult to verify that each function fα is α-recursive, so
the construction described in Section 2 provides a method of showing
that a theory T doesn’t prove a certain α-recursive function to be total.
In fact, our constructions yield an even stronger result, as described in
Section 6.

In Section 7 we will need the following rather technical lemma.

Lemma 5.6 Suppose α � ω3, min(A) > 3, and A is α-large. Then
max(A) > 2min(A).

Proof. A straightforward induction on the cardinality of A, using the
limit sequence definitions from the previous section. �

6 How this provides an ordinal analysis

We would like say a few words about how our constructions provide an
ordinal analysis. Saying that the proof-theoretic ordinal of a theory T
is less than or equal to α usually entails all of the following results:

1. There is some formula ϕ(y) such that T doesn’t prove TI (α, ϕ(y)),
where TI (α, ϕ(y)) formalizes transfinite induction up to α for the
formula ϕ(y).
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2. Over a weak base theory, PRWO(α) proves the 1-consistency of
T . Here PRWO(α) is a scheme which asserts that there are no
primitive recursive descending sequences beneath α, and “the 1-
consistency of T” is the formalized Π0

2 assertion that if T proves
any Σ0

1-formula (possibly with parameters) then that formula is
true.

3. If T proves a recursive function f to be total, then f is ≺α-
recursive. By “T proves the recursive function f to be total” we
mean that T proves

∀x ∃!y ϕ(x, y)

for some Σ0
1 formula ϕ that defines the graph of f in the standard

model.

4. If ≺ is any recursive ordering and T proves

∀X TI (≺, y ∈ X) (3)

then the order-type of ≺ in the standard model is less than |α|.
(If T doesn’t allow for quantification over sets of numbers, we
replace (3) by

TI (≺, X(y)),

where X is a new predicate symbol that we allow to appear in
the axiom schemata of T .)

Note that the first three results refer to an ordinal notation α, whereas
the last result refers to a countable ordinal |α|, in the “real world.”
Note also that none of these results refer to limit sequences, directly
or indirectly.

Suppose we’ve carried out the program described in Section 2, and
built a model of the theory T from an α-large interval. As we’ve already
pointed out, this gives us a model of T in which the assertion

∀x ∃y ([x, y] is α-large)

is false, providing an instance of transfinite induction up to α that fails
in this model of T . This yields the first result above.

Showing that over a weak base theory PRWO(α) proves the 1-
consistency of T requires more effort. As it turns out, we don’t need
to assume that the underlying modelM satisfies all the true statements
of arithmetic; in fact, the theory I ∆0 + (exp) is sufficient. With some
work we can use this fact to carry out the construction in WKL0 +
PRWO(α) and prove the 1-consistency of T there. (Since WKL0 can
prove the completeness and compactness of first-order logic, it is strong
enough to formalize a good deal of model theory. WKL0 will be dis-
cussed further in Section 9 below.) Since WKL0 is conservative over

16



I Σ1 for arithmetic formulas, we can conclude that the consistency of
T is provable in IΣ1 + PRWO(α).

An even nicer approach, which avoids the use of nonstandard model
theory and yields a stronger result, can be found in [30]. Working
in primitive recursive arithmetic PRA and using the notion of “Her-
brand provability,” one can show that “for every a there exists a b such
that [a, b] is α-large” implies that “there are arbitrarily large finite ap-
proximations to a model of T .” Since PRA + PRWO(α) proves the
hypothesis of this statement, it proves the conclusion as well.

To obtain results of the third type, we need to point out that in
fact our constructions typically allow us to build a model of T from
an α[c]-large interval, for any nonstandard c. Now suppose T proves
the function f to be total. In order to show that f is ≺α-recursive, it
suffices to show that whenever

T ` ∀x ∃y θ(x, y) (4)

for some ∆0
0 formula θ, then the function

g(x) = µy θ(x, y)

is bounded by some ≺α-recursive function.
Aiming for a contradiction, then, assume that (4) holds but g is not

bounded by any ≺α-recursive function. Then for every n, the standard
model satisfies

∀n ∀x ∃y ([x, y] is α[n]-large ∧ g(x) > y), (5)

since otherwise g would be dominated by the ≺α-recursive function
fα[n] defined in the previous section. Since (5) is a true statement of
arithmetic we can find nonstandard a, b, and c such that

[a, b] is α[c]-large ∧ g(a) > b

is true in M. But then our construction enables us to build a model
of T in which g is not total, violating the assumption (4). (For similar
arguments, see [11, 8].)

Finally, one can use our model-theoretic methods to obtain the last
type of proof-theoretic result as well. If ≺ has order-type greater than
|α| in the standard model, then there is an isomorphism between the
set of notations less than α and an initial segment of the ordering
≺. Using compactness we can find a nonstandard model M of true
arithmetic that comes equipped with such an isomorphism f . Then we
“relativize” the constructions with respect to an increasing function g
that dominates both f and f−1; for example, take g to be

g(x) =def max({f(y) : y ≤ x} ∪ {f−1(y) : y ≤ x}) + x,
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and, rather than starting with an exactly α-large interval, we begin
with the set S = {a, g(a), g2(a), g3(a), . . . , gl(a)} with l chosen so that
S is exactly α-large. Much of the construction proceeds as it did origi-
nally, leading to a subset A = {a0, a1, · · · ak} of S; then we take a limit
point of A to get our desired cut I. Clearly, I will be closed under g
and hence I will be closed under both f and f−1. Furthermore, the
sequence of notations

α, α[a], α[a, g(a)], α[a, g(a), g2(a)], . . .

has no least element in I. Using the isomorphism f we are able to get
an infinite ≺-descending sequence in I.

7 Constructing a model of I Σ1

We are finally ready to begin the model-theoretic constructions. The
main construction of this section is due to Paris and Kirby (see [13]).
Much of what is presented in this section is worked out in greater detail
in [10, 11, 30, 32]. We repeat this well-known construction here since
new constructions that come later in this paper, as well as in [4], are
modeled after this one.

As described in Section 2, our goal is to construct sets A = {a0, a1, . . . , ak}
such that if k is nonstandard, various axioms are guaranteed to hold
in any limit I of A. The theory I ∆0 + (exp) is the weakest theory we
want to consider in this regard. Fortunately, it is not difficult to make
the axioms of this theory hold in the limit I.

Definition 7.1 Say that the set A = {a0, a1, . . . , ak} is spread out
if for all i < k − 3, 2ai < ai+1.

The technical condition i < k − 3 will facilitate our constructions.
Recall that M is the nonstandard model of true arithmetic that we
fixed in Section 3.

Lemma 7.2 Suppose A = {a0, a1, . . . , ak} is a set in M. If A is
spread out and I is any limit of A, then

I |= I ∆0 + (exp).

In fact, if S is any set in M then

I |= I ∆0 (S I ) + (exp).

Proof. If I is a limit of A then I cannot contain the last 3 (in fact, n,
for any standard n) points of A. I clearly satisfies the quantifier-free
defining equations for successor, plus, times, and less-than. Since the
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formula defining exponentiation is ∆0
0, I and M agree as to which

elements c are equal to ab, and it is easy to verify that the conditions
on A then guarantee that I will be closed under exponentiation as well.
Finally, we need to handle ∆0

0 induction. By Lemma 3.3 it suffices to
verify the ∆0

0-least element principle. Suppose ϕ(x) is a ∆0
0 formula

and
I |= ϕ(e)

for some e in I. Find the least such e in M; by Lemma 3.1 this will
also be the least such e in I. �

Although ∆0
0 formulas are absolute between I andM, Σ0

1 formulas
might not be, since a witness to the fact that

M |= ∃y ϕ(y)

might not appear in I. As a result, extending the above result to Σ0
1

formulas will require some work.
The theory I Σ1 is a fragment of Peano Arithmetic that adds the

scheme of induction for Σ0
1 formulas to I ∆0 + (exp). The following

lemma gives conditions on A that guarantee that the axioms of I Σ1
will hold in any limit. The main idea behind the construction is from
[13], and has appeared in various forms in [10, 15, 14, 30, 32]. Recall
that

TrΣ0
1
(x) ≡def ∃y Θ(x, y)

is a complete Σ0
1 truth definition, in which Θ(x, y) is ∆0

0.

Lemma 7.3 Suppose [a, b] is ωc-large. Then there is a set

A = {a0, a1, . . . , ac} ⊂ [a, b]

such that A is spread out, and for every i < c the following holds:
whenever e < ai,

∃y ≤ ac Θ(e, y)↔ ∃y ≤ ai+1 Θ(e, y).

Intuitively speaking, the conclusion of the lemma asserts that if
e < ai, then any witness to the truth of TrΣ0

1
(e) that appears at or

below ac in fact appears at or below ai+1. We defer the proof of
Lemma 7.3 so that we can first show how this in fact gives us a model
of I Σ1 .

Suppose the set A satisfies the conclusion of the lemma in our
nonstandard model of true arithmetic M. If c is nonstandard, we can
find a cut I that is a limit of A. By Lemma 7.2, I will be a model of
I ∆0 + (exp), and so the equivalence

∃y ψ(y)↔ TrΣ0
1
(p∃y ψ(y)q)
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from Section 3 will hold in I.
Now if e is any element of I, e will be less than ai−1 for some i.

The conclusion of the lemma guarantees that the equivalence

∃y ≤ ai Θ(e, y) ↔ ∃y ≤ ac Θ(e, y) (6)

holds in M. Since I is an initial segment of M containing ai but not
ac, we have the chain of implications

∃y ≤ ai Θ(e, y) → ∃y ∈ I Θ(e, y)
→ ∃y ≤ ac Θ(e, y),

and so (6) implies that these are all in fact equivalent.
The net effect is that if e is any element of I, we have

(I |= TrΣ0
1
(e))⇐⇒ (M |= ∃y ≤ ac Θ(e, y)). (7)

Ordinarily we wouldn’t expect the left-hand side of (7) to be definable
inM, since I is not definable there. Equivalence (7) shows that thanks
to our construction, it is in fact definable by a ∆0

0 formula.
Finally, suppose ϕ(y, ~z) is any (standard) ∆0

0 formula and ~p are pa-
rameters in I. Since I is a model of I ∆0 + (exp), the code p∃y ϕ(y, ~p)q
will appear in I. Equation (7) and the universality of TrΣ0

1
then imply

(I |= ∃y ϕ(y, ~p))⇐⇒ (M |= ∃y ≤ ac Θ(p∃y ϕ(y, ~p)q, y)). (8)

Theorem 7.4 Suppose a and b are nonstandard elements of M and

M |= [a, b] is ωω-large.

Then there is a cut a < I < b such that I |= I Σ1 .

Proof. Since [a, b] is ωω-large, [a+ 1, b] is ωa+2-large. Let

A = {a0, a1, . . . , ac}

be the set satisfying the conclusion of Lemma 7.3 with a+1 in place of a
and c = a+2. Lemma 7.2 insures that I is a model I ∆0 + (exp), so we
only need to verify that Σ0

1 induction also holds in I. By Lemma 3.3,
it suffices to check the Σ0

1 least-element principle. Suppose ϕ(x, y) is a
∆0

0 formula with parameters in I and for some e,

I |= ∃y ϕ(e, y).

We want to find a least such e. Since

M |= ∃y ≤ ac Θ(p∃y ϕ(e, y)q, y)
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and M is a model of true arithmetic we can find the least such e in
M; but by equivalence (8) this is also the least such e in I. �

We still owe the reader the following

Proof of Lemma 7.3. To obtain the set A having the desired properties
we will construct sequences

a0 < a1 < . . . < ac ≤ bc ≤ bc−1 ≤ . . . ≤ b0

such that for each i ≤ c the following hold:

1. If i > 0, then ai−1 < ai ≤ bi ≤ bi−1.

2. Whenever i > 0 and e < ai−1 we have

∃y ≤ ai Θ(e, y)↔ ∃y ≤ bi Θ(e, y).

3. [ai, bi] is ωc−i-large.

4. If 0 < i < c− 3, then 2ai−1 < ai.

Set a0 = a and b0 = b; conditions (1), (2), and (4) are immediate in the
case i = 0, and (3) follows from the hypothesis that [a, b] is ωc-large.
The construction will continue for c steps. In the end, clauses (2) and
(4) guarantee that the set A satisfies the conclusion of the lemma. In
following the construction, the reader might find it helpful to keep the
following picture in mind:

a0 = a a1 a2 . . . ai bi . . . b2 b1 b0 = b

Suppose we’ve already constructed a0, . . . , ai and b0, . . . , bi satis-
fying clauses (1–4). We need to show how to construct ai+1 and bi+1
satisfying (1–4) with i+ 1 in place of i. Since [ai, bi] is ωc−i-large, we
have [ai+1, bi] is ωc−(i+1) · (ai+2)-large, and so by Lemma 5.5 we can
find a sequence

d0 = ai, d1, d2, . . . , dai+2 = bi

such that each interval (dj , dj+1] is ωc−(i+1)-large.

d0 = ai d1 d2 . . . dai dai dai+1 = bi

Recall that for any e,

µy ≤ bi Θ(e, y)
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denotes the least f less than or equal to bi such that Θ(e, f) holds, or
0 if there is no such f . Since there are ai + 2 many intervals (dj , dj+1]
and only ai values of e less than ai, by the pigeonhole principle we can
find a j ≥ 1 so that

µy ≤ bi Θ(e, y) 6∈ (dj , dj+1]

for any such e. In other words, if

∃y ≤ dj+1 Θ(e, y)

for some e < ai, then in fact

∃y ≤ dj Θ(e, y).

If we then take ai+1 = dj + 1 and bi+1 = dj+1, clauses (1–3) are
satisfied with i+ 1 in place of i.

Notice that the condition j ≥ 1 excludes the first interval, (d0, d1].
Lemma 5.6 shows that the largeness property on this interval implies
that, as long as i+ 1 < c− 3 (i.e. c− (i+ 1) > 3), we’ll have 2d0 < d1.
This implies that clause (4) is satisfied as well. �

The brunt of Lemma 7.3 is that if we start from an ωc-large interval
[a, b], we can find a c-large set A with the useful properties described
above. (Recall that since c is finite, a c-large set is just a set of car-
dinality greater than or equal to c.) For later sections we will need to
generalize Lemma 7.3 in three different ways. First of all, notice that
there was nothing special about the fact that [a, b] was an ωc-large
interval; if we started with an ωc-large set C, we could get a c-large
A ⊂ C having the same properties. Second, using the truth predi-
cate TrΣ0

1
(x,Z), we could easily have relativized the construction to

any given set T . Finally, the interesting part: using the definition of
a λ-large interval for limits λ, we can iterate the construction “trans-
finitely” and show that if we start with an ωα-large set C, we can get
an exactly α-large A ⊂ C having the desired properties.

These extensions are summarized in the following lemma. The
proof is very similar to that of Lemma 7.3, with a bit more bookkeeping
at limit stages. Similar iterations play an important role in the sequel
of this paper [4].

Lemma 7.5 Suppose C is ωα-large. Then there is a set

A = {a0, a1, . . . , ak} ⊂ C

such that A is α-large and spread out, and for every i < k the following
holds: whenever e < ai,

∃y ≤ ak Θ(e, y)↔ ∃y ≤ ai+1 Θ(e, y).
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Proof. We will construct a sequence of sets

C ⊃ C0 ⊃ C1 ⊃ . . . ⊃ Ck

so that if we set
ai = min(Ci)

and
bi = max(Ci),

for each i ≤ k the following hold:

1. If i > 0 then Ci ⊂ Ci−1.

2. Whenever i > 0 and e < ai−1 we have

∃y ≤ ai Θ(e, y)↔ ∃y ≤ bi Θ(e, y).

3. C0 is ωα-large and if i > 0 then Ci is ωαi-large, where

αi =def α[a0, a1, . . . , ai−1].

4. If 0 < i < k − 3 then 2ai−1 < ai.

We start by setting C0 = C; conditions (1), (2), and (4) are imme-
diate in the case i = 0, and (3) follows from the hypothesis that C is
ωα-large. We will construct C1, C2, etc., until αi+1 = 0. If we then
set k =def i and

A =def {a0, a1, . . . , ak},
the fact that

αk+1 = α[a0, a1, . . . , ak] = 0

implies that A is α-large. Clauses (2) and (4) then guarantee that A
satisfies the conclusion of the lemma.

Assuming C0, C1, . . . , Ci have been constructed satisfying (1–4), we
show how to construct Ci+1 satisfying (1–4) for i+1 instead of i. Note
that αi+1 = αi[ai]. If αi is a successor notation then αi = αi+1+1, and
so Ci is ωαi+1+1-large. If αi is a limit notation then by the definitions
of large and limit sequence we have Ci−{minCi} is ωαi+1+1-large. By
letting

C ′ =def

{
Ci if αi is a successor notation, and
Ci − {minCi} if αi is a limit notation,

then we have that C ′ is ωαi+1+1-large. If c0 =def minC ′, then C ′−{c0}
is ωαi+1 ·(c0+2)-large. By Lemma 5.5, C ′−{c0} can be partitioned into
c0 +2 sets P0,P1, . . . ,Pc0+1, each of which is ωαi+1 -large and such that
for each i ≤ c0, max(Pi) < min(Pi+1). As in the proof of Lemma 7.3
the pigeonhole principle implies that we can find a j ≥ 1 so that

(µy ≤ max(Ci) Θ(e, y)) 6∈ (min(Pj),max(Pj)]
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for any e < ai. Taking
Ci+1 = Pj ,

and applying Lemma 5.6 to the set P0, we see that clauses (1–4) now
hold with i+ 1 in place of i. �

8 Approximating the Turing Jump

In this section we address the issue of constructing sets that approxi-
mate second-order objects in the limit I, using the Turing jump as our
first example.

Recall that if S is a set in our nonstandard model of arithmeticM
and I is a cut, we’ve defined SI to be S ∩ I. Lemma 3.2 tells us that
if ϕ(X) is a ∆0

0(X) formula, then

(I |= ϕ(SI))⇐⇒ (M |= ϕ(S)).

In particular, as long as the ordered pair 〈a, b〉 is in I,

(I |= a ∈ (SI)b)⇐⇒ (M |= a ∈ Sb),

so that whenever I is closed under pairing, (Sb)I and (SI)b are equal.
Similar properties will hold for the other set formation conventions
described in Section 3. As a result, we can safely write I |= ϕ(S) and
leave the restriction of the set to I implicit. In practice, we will use
the notation SI when we want to emphasize that the set S has “taken
on a new life” in I, and leave the ·I out otherwise.

Returning to the construction in Section 7, suppose A satisfies the
conclusion of Lemma 7.3, and set

S =def {x < ac−1 | ∃y ≤ ac Θ(x, y)}.

If c is nonstandard and I is any limit of A, we will then have that

I |= ∀x (x ∈ S ↔ TrΣ0
1
(x)).

In other words, from I’s point of view, S is a complete Σ0
1 set. Accord-

ing to Lemma 7.2, I will satisfy I ∆0 (S ) + (exp). But it is straight-
forward to show that ∆0

0 induction relative to a complete Σ0
1 predi-

cate yields Σ0
1 induction for ordinary formulas, so that I is necessarily

a model of I Σ1 as well. These considerations provide another per-
spective from which to view the construction of a model of IΣ1, and
motivate the following definitions.

Definition 8.1 Say that S is the Turing jump of T , written S = T ′,
if

S = {x | TrΣ0
1
(x, T )}.
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The idea is that in any model of I ∆0 + (exp) the Turing jump of T
codes the truth of formulas that are Σ0

1 definable from T (and possibly
other numeric parameters), via the universality of TrΣ0

1
. If T = ∅, we

will denote S by 0′. The set S discussed just before Definition 8.1 gave
us a “finite approximation” to 0′, that is, a set guaranteed to be 0′

in an appropriate limit I. Relativizing this notion gives us the next
definition. Recall that

Sd =def S ∩ [0, d),

and that
TrΣ0

1
(x,Z) ≡def ∃y Θ(x, y, Z).

Definition 8.2 Let

A = {a0, a1, . . . , ak},

S, and T be finite sets. Say that S approximates the Turing jump
of T in A if for every i < k and e < ai we have

∃y ≤ ai+1 Θ(e, y, T )↔ ∃y ≤ ak Θ(e, y, T );

and
Sak−1 = {e < ak−1 | ∃y ≤ ak Θ(e, y, T )}.

The following lemma asserts that Definition 8.2 serves our purposes.

Lemma 8.3 Let A, S, and T be finite sets in M such that

M |= S approximates the Turing jump of T in A.

Then in any limit I of A,

I |= S is the Turing jump of T .

Proof. Suppose A, S, T , and I are as in the statement of the lemma,
and suppose A = {a0, a1, . . . , ak}. Since I is a limit of A we have
I < ak, and if e is any element of I we have that e < ai for some ai in
I, and so i < k. If

I |= ∃y Θ(e, y, T )

then
M |= ∃y ≤ ak Θ(e, y, T ),

and hence e is in S. Conversely, if

I |= e ∈ S

then
M |= ∃y ≤ ak Θ(e, y, T )
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and since e < ai, and i < k, we have that

M |= ∃y ≤ ai+1 Θ(e, y, T ).

Since ai+1 is also in I, this implies that

I |= ∃y Θ(e, y, T ).

We’ve shown that

I |= ∀x (x ∈ S ↔ TrΣ0
1
(x, T )),

completing the proof. �

Lemma 7.5 can now be rephrased as follows.

Lemma 8.4 Suppose C is ωα-large, and T is an arbitrary set. Then
there are sets A and S, such that

A = {a0, a1, . . . , ak} ⊂ C

is α-large and spread out, and S approximates the jump of T in A.

Proof. Just take A as in the conclusion of Lemma 7.5 and define

S = {x < ak−1 | ∃y ≤ ak Θ(x, y, T )}.

This S works. �

We will need the following simple fact later on.

Lemma 8.5 Suppose S approximates the jump of T in A and B ⊆ A.
Then S approximates the jump of T in B.

The proof follows easily from the definitions.

9 Constructing models of RCA0 and WKL0

RCA0 is a theory in the language of second-order arithmetic which con-
tains I Σ1 (set parameters are now allowed to appear in the induction
axioms), and a recursive comprehension scheme,

∀x (∃u ϕ(x, u)↔ ∀v ψ(x, v))→ ∃Y ∀x (x ∈ Y ↔ ∃u ϕ(x, u))
(RCA)

where ϕ(x, u) and ψ(x, v) are ∆0
0 (again, possibly with number and

set parameters). In words, (RCA) asserts that if one has equivalent
r.e. and co-r.e. descriptions of a class of numbers, then there is a set
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corresponding to that class. WKL0 is the theory RCA0 together with
a weak version of König’s lemma,

∀T (“T is an infinite binary tree”→ ∃P (“P is a path through T”))
(WKL)

where a binary tree T is a set of binary sequences closed under initial
segments, and P is a path through T if every initial segment of the
characteristic function of P is in T . (The subscripted “0” in the names
RCA0 and WKL0 indicates that rather than allowing full second-order
induction, the induction scheme is restricted to Σ0

1 formulas, as above.)
Let Σ0

1-separation be the scheme

∀x ¬(∃u ϕ(x, u) ∧ ∃v ψ(x, v))→ ∃Y ∀x ((∃u ϕ(x, u)→ x ∈ Y ) ∧
(∃v ψ(x, v)→ x 6∈ Y )) (Σ0

1 -SEP)

where the formulas ϕ and ψ are ∆0
0, possibly with parameters. This

scheme asserts that disjoint Σ0
1 classes of numbers can be separated by

a set.

Lemma 9.1 Over I ∆0 + (exp) the axiom schema (RCA) + (WKL) is
equivalent to (Σ0

1 -SEP).

Proof. Below we will only need the right-to-left direction, which we con-
sider first. Clearly (Σ0

1 -SEP) implies (RCA), since if ϕ̂(x) ≡ ∃u ϕ(x, u)
and ψ̂(x) ≡ ∀v ψ(x, v) satisfy the hypothesis of (RCA) then ϕ̂(x) and
¬ψ̂(x) define disjoint classes, and a set Y separating ϕ̂ from ¬ψ̂ satis-
fies the conclusion of (RCA). To show that (Σ0

1 -SEP) implies (WKL),
given any tree T and σ ∈ T define

ϕ̂(σ) ≡ “there is a level of T in which σ 0̂
has extensions but σ 1̂ does not”

and define ψ̂(σ) by switching the 0 and 1 in the definition of ϕ̂. Since
we can bound the size of the codes of the binary sequences in any fixed
level of T , the formulas ϕ̂ and ψ̂ are Σ0

1 in T . Assuming T is infinite,
it is easy to verify that one can find a path through T recursive in any
separation Y of ϕ̂ and ψ̂ by traveling through the tree and using Y to
pick an infinite branch at each stage.

Conversely, to derive (Σ0
1 -SEP) from (RCA) and (WKL), given ϕ̂

and ψ̂ define T to be the tree of binary sequences σ, such that as far
as witnesses less than length(σ) are concerned, σ is consistent with a
separation of ϕ̂ and ψ̂. A path through T yields the desired separation.
See [26] for details. �

In Section 7 we showed how to construct a model of I Σ1 starting
from an ωω-large interval. We now show that we can in fact do better,
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and obtain a model of WKL0 . Constructions similar to the one below
can be found in [26, 13]. For more information on WKL0, see, for
example, [26, 24, 2].

To state the following lemma we temporarily expand the language
of first-order arithmetic to include set parameters Pi for i ∈ ω.

Lemma 9.2 Suppose [a, b] is ωc-large. Then there are sequences

a = a0 < a1 < . . . < ac ≤ bc ≤ bc−1 . . . ≤ b0 = b

and a sequence of sets
D0, D1, . . . , Dc,

such that A =def {a0, a1, . . . , ac} is spread out, D0 = ∅, and for every
i < c the following hold:

1. Whenever p∃y ϕ(y, Pj1 , Pj2 , . . . , Pjk)q < ai codes a Σ0
1 formula

with the set parameters shown, and each jl ≤ i, then we have

∃y ≤ bi+1 ϕ(y,Dj1 , Dj2 , . . . , Djk)↔
∃y ≤ ai+1 ϕ(y,Dj1 , Dj2 , . . . , Djk).

2. If ~P is as above and ∃y ψ(x, y, ~P ) is coded below bi, then

(Di+1)p∃y ψ(x,y, ~P )q = {x < bi+1 | ∃y ≤ bi+1 ϕ(y, ~D)}.

If f < bi does not code a formula of this form, then (Di+1)f = ∅.

Proof. Note that we use the formula TrΣ0
1
(x,Z) to express the two

properties above. The proof requires only a slight modification to the
proof of Lemma 7.3: at each stage i we pick an interval [ai+1, bi+1] to
satisfy clause (1), and define

(Di+1)p∃y ψ(x,y, ~P )q = {x < bi+1 | ∃y ≤ bi+1 ϕ(y, ~D)}

to satisfy clause (2). �

Now we consider what happens when the conclusion of the lemma
holds in our nonstandard model of arithmetic M.

Lemma 9.3 Suppose c and A satisfy the conclusion of the previous
lemma in M. If c is nonstandard and I is any limit of A, let

J = {j | aj ∈ I},

so that J is a limit of the set {0, 1, . . . , c}, and let

D = {(Dj)If | j ∈ J, f ∈ I}.

Then
N = 〈I,D〉

is a model of I Σ1 + (Σ0
1 -SEP), and hence WKL0 .
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Proof. One can verify that I is a model of I ∆0 + (exp) and that Σ0
1

induction with parameters holds in N as in the proof of Theorem 7.4,
so we focus on (Σ0

1 -SEP).
Suppose

N |= ∀x ¬(∃u ϕ(x, u) ∧ ∃v ψ(x, v))

where ϕ and ψ are ∆0
0 with parameters from N . Then

I |= ∀x ¬(∃u ϕ′(x, u,Dj1 , . . . , Djk) ∧ ∃v ψ′(x, v,Dj1 , . . . , Djk))

where Dj1 to Djk include all the sets from which the parameters of ϕ
and ψ are defined, and ϕ′ and ψ′ are obtained from ϕ and ψ by replac-
ing the parameters (Dj)f by the corresponding (Pj)f . By reorganizing
quantifiers, we have

I |= ∀z (∀x ≤ z, u ≤ z, v ≤ z ¬(ϕ′(x, u, ~D) ∧ ψ′(x, v, ~D))).

Choose i so that each jl < i and the above formula is coded below ai.
Then the conclusion of the previous lemma tells us that

M |= ∀z ≤ bi+1 (∀x ≤ z, u ≤ z, v ≤ z ¬(ϕ′(x, u, ~D) ∧ ψ′(x, v, ~D))),

that is,

M |= ∀x ≤ bi+1 ¬(∃u ≤ ac ϕ′(x, u, ~D) ∧ ∃v ≤ ac ψ′(x, v, ~D)).
(9)

Now let
C =def (Di+1)p∃u ϕ′(x,u, ~P )q

so that
C = {x < bi+1 | ∃u ≤ bi+1 ϕ

′(x, u, ~D)}

is in M. We claim that CI , which is in the second-order universe of
N , is the desired separation. If

N |= ∃u ϕ(e, u)

then
I |= ∃u ϕ′(e, u, ~D)

and
M |= ∃u ≤ bi+1 ϕ

′(e, u, ~D),

so e is in C. On the other hand, if

N |= ∃v ψ(e, v)

then
I |= ∃v ψ′(e, v, ~D)
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and
M |= ∃v ≤ bi+1 ψ

′(e, v, ~D).

Equation (9) then guarantees that

M |= ¬∃u ≤ bi+1 ϕ
′(e, u, ~D),

and so e is not in C. �

We’d like point out that in the proof above CI is not necessarily
the set

{e | N |= ∃u ϕ(e, u)},

since M may see some witnesses u ≤ bi+1 that are not in N .
Lemmas 9.2 and 9.3 are sufficient to obtain the ordinal analysis

described in Section 6. To provide a more attractive statement of the
net result, though, we will use the following trick to code a second-
order universe satisfying WKL0 into a single set: if Td is a sequence of
sets indexed by elements of a set D,

S =
⊕
d∈D

Td,

and I is a cut that is closed under the pairing operation, then

SI =
⊕
d∈DI

T Id ,

so that the only sets T Id “seen” by I are those indexed by elements d
in D ∩ I.

Theorem 9.4 Suppose a and b are nonstandard elements of M such
that

M |= [a, b] is ωω-large.

Then there are a cut a < I < b and a finite set S in M such that

N = 〈I, {SIi | i ∈ I}〉

is a model of WKL0.

Proof. Let A and D be as in the conclusion of Lemma 9.2, define

T〈ai,f〉 = (Di)f ,

and define
S =

⊕
i≤c, f<ai−1

T〈ai,f〉.
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Let I be any limit of A and let

J = {j | aj ∈ I}.

Since I is a model of I ∆0 + (exp) it is closed under pairing, and so it
is easy to verify that

{SIi | i ∈ I} = {(Dj)If | j ∈ J, f ∈ I}.

We can now apply Lemma 9.3. �

10 Approximating finite jump hierarchies

In Section 8 we discussed the Turing jump. We now extend the dis-
cussion to include finite jump hierarchies.

Definition 10.1 Say H is a c-level jump hierarchy if H0 = ∅ and
for each i, 0 < i ≤ c,

Hi = (H<i)′.

Definition 10.2 Let A and H be finite sets. Say H approximates a
c-level jump hierarchy in A if for each i, 0 < i ≤ c, Hi approximates
the Turing jump of H<i in A.

If in Definition 10.1 (10.2) H0 is equal to some set T , we will say
that H is (approximates) a c-level jump hierarchy from T . As in the
case of Lemma 8.3, proving the following lemma is now straightforward.

Lemma 10.3 Suppose A, H, and T are sets in M such that

M |= H approximates a c-level jump hierarchy from T in A.

If I is any limit of A, then

I |= H is a c-level jump hierarchy from T .

The following lemma, analogous to Lemma 8.4, asserts that we can
build an approximation to a finite jump hierarchy if we start from a
suitably large interval.

Lemma 10.4 Suppose [a, b] is ωαc -large, and T is any finite set. Then
there are sets A and H such that A is an α-large subset of [a, b] and
spread out, and H approximates a c-level jump hierarchy from T in A.

Proof. This is just an iteration of Lemma 8.4. �

What makes a jump hierarchy useful is that it codes the truth of
arithmetic formulas of low complexity. Suppose H is a c-level jump
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hierarchy in some model N of I ∆0 + (exp) and expand the language
of arithmetic so that it includes constants to denote the sets Hl for
l < c. Say that a formula ϕ is Σ0

m(Hl) if it is Σ0
m definable from Hl.

Roughly speaking, if ϕ is Σ0
m(Hl) then the truth of ϕ will be coded in

Hk, whenever m+ l ≤ k ≤ c. The following lemma makes this precise.

Lemma 10.5 There is an I ∆0 + (exp)-definable function

TruthCode(pψq, x)

with the following property: whenever N is a model of I ∆0 + (exp),
H is a c-level jump hierarchy in N , ψ is a Σ0

m(Hl) formula, and

m+ l ≤ d ≤ c,

then the equivalence

ψ ↔ TruthCode(pψq, d) ∈ Hd

holds in N .

Proof. Straightforward, once a reasonable coding scheme for formulas
has been defined. �

In Lemma 10.5 we allow for the possibility that ψ has numeric
parameters, in which case pψq is really a function of these parameters.
In words the lemma asserts that we can determine the truth of ψ from
any level Hd of the jump hierarchy where d is greater than or equal to
m+ l.

We now introduce some notation. If H is a c-level jump hierarchy
in N , ψ(x) is a Σ0

m(Hl) arithmetic formula with only the free variable
shown, and m+ l ≤ d ≤ c,

H
[ψ(x)]
d =def {e | TruthCode(pψ(e)q, d) ∈ Hd}. (10)

If f does not code a formula of the required form, we can just set
H

[f ]
d = ∅.

Now suppose H is a jump hierarchy in the model N . By definition
we have

N |= ∀x (x ∈ H [ψ(x)]
d ↔ TruthCode(pψ(x)q, d) ∈ Hd).

If in addition 〈N ,H〉 is a model of I ∆0 + (exp) and d is sufficiently
big, we have that

N |= ∀x (x ∈ H [ψ(x)]
d ↔ ψ(x)),
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or, in other words,

N |= H
[ψ(x)]
d = {x | ψ(x)}.

On the other hand, suppose instead that H merely approximates a
jump hierarchy in some set A, where H and A are in our nonstandard
model M. If A is spread out and I is any limit of A, we have that

(HI)[ψ(x)]
d = (H [ψ(x)]

d )I ,

so that the set H [ψ(x)]
d approximates the set {x | ψ(x)} in A.

11 Constructing models of I Σn, PA, and
ACA0

The theory IΣn extends IΣ1 by adding induction for Σ0
n formulas, that

is, the schema (Σ0
n -IND). Ordinal analyses of Peano Arithmetic and

the theories I Σn , based on Schütte’s use of infinitary logic to obtain
Gentzen’s seminal results, can be found in [17, 27, 28].

Theorem 11.1 Suppose a and b are nonstandard elements ofM such
that

M |= [a, b] is ωn+1-large.

Then there is a cut a < I < b such that I is a model of I Σn .

Proof. Since ωn+1 = ωωn , by Lemma 10.4 we can find sets A and H in
M, so that A is ω-large and spread out, and that H approximates an
n-level jump hierarchy in A. Since A ⊆ [a, b] is ω-large, A− {min(A)}
is c-large for some c ≥ a, so we can find a cut I that is a limit of A.
By Lemma 7.2 I is a model of I ∆0 + (exp), so we only need to verify
that the Σ0

n least element principle holds in I.
Suppose ψ(x) is a Σ0

n formula and

I |= ψ(e). (11)

Then

I |= TruthCode(pψ(e)q, n) ∈ Hn (12)

and

M |= TruthCode(pψ(e)q, n) ∈ Hn. (13)

By the least-element principle in M we can find the least e ∈M such
that (13) holds. This e is then the least e ∈ I such that (12), and
hence (11), also hold.

(Alternatively, we can use the fact that HI is an n-level jump hi-
erarchy in I, and reduce Σ0

n induction to ∆0
0(H) induction there.) �

33



Theorem 11.2 Suppose a and b are nonstandard elements ofM such
that

M |= [a, b] is ε0-large.

Then there is a cut a < I < b such that I is a model of PA.

Proof. Since [a, b] is ε0-large, [a+ 1, b] is ωa+1-large, so we can find an
ω-large A ⊆ [a+ 1, b] and a set H inM such that A is spread out and
H approximates an a-level jump hierarchy in A. Since A is ω large and
min(A) ≥ a+ 1, as in the previous proof we can find a cut I that is a
limit of A. Since a is nonstandard and HI is an a-level jump hierarchy
in I, as in the previous proof we can verify that Σ0

n induction holds for
every standard n. �

The theory ACA0 consists of RCA0 together with an arithmetic
comprehension scheme

∃Y ∀x (x ∈ Y ↔ ϕ(x)), (ACA)

where ϕ is arithmetic, possibly with parameters. Since this includes
Σ0

1 comprehension, we can now take induction to consist of the single
axiom

0 ∈ Y ∧ ∀x (x ∈ Y → x+ 1 ∈ Y )→ ∀x (x ∈ Y ).

Lemma 11.3 Suppose 〈K, {H}〉 is a model of I ∆0 + (exp), c is a
nonstandard element of K, and H is a c-level jump hierarchy in K.
Let J be any limit of the set {0, 1, . . . , c}, and let

H = {H [k]
i | i ∈ J, k ∈ K}.

Then
N = 〈K,H〉

is a model of ACA0 .

Proof. The induction axiom for sets follows from ∆0
0 induction in

〈K, {H}〉 and the definition of H [k]
i given by equation (10) in Sec-

tion 10. To verify arithmetic comprehension, let ϕ(x) be a (standard)
arithmetic formula with parameters in N . We can assume that ϕ(x)
is Σ0

m(Hl) for some l ∈ J and standard m, since each level of a jump
hierarchy codes all the ones that have come before. Since J is a limit,
m+ l is also in J . But then

∀x (x ∈ H [ϕ(x)]
m+l ↔ ϕ(x))

holds in N , and so H [ϕ(x)]
m+l is the set that (ACA) asserts to exist. �

We can now use the same trick that we used in the proof of Theo-
rem 9.4 to code the universe of ACA0 into a single set.
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Theorem 11.4 Suppose a and b are nonstandard elements ofM such
that

M |= [a, b] is ε0-large.

Then there are a cut a < I < b and a finite set S in M such that

N = 〈I, {SIi | i ∈ I}〉

is a model of ACA0 .

Proof. As in the proof of Theorem 11.2 we can obtain sets A = {a0, a1, . . . , ac}
and H such that c is nonstandard, A is spread out, and H approxi-
mates an c-level jump hierarchy in A. Let I be any limit of A, and
let

J = {j | aj ∈ I},

so that J is a limit of {0, 1, . . . , c}. The fact that A is spread out
guarantees that 〈I, {H}〉 is a model of I ∆0 + (exp), and so the previous
lemma guarantees that

N = 〈I, {H [k]
i | i ∈ J, k ∈ I}〉

is a model of ACA0 . We can code the second-order universe of N into
a single set S as in the proof of Theorem 9.4. �

12 Constructing a model of Σ1
1 -AC0

The theory Σ1
1 -AC0 adds to ACA0 a Σ1

1 axiom of choice,

∀x ∃Y ϕ(x, Y )→ ∃Y ∀x ϕ(x, Yx) (Σ1
1 -AC )

where ϕ is Σ1
1 (i.e. ϕ is either arithmetic or obtained from an arithmetic

formula by prepending existential set quantifiers). This is often useful
in that it allows one to code sequences of sets as a single set and bring
second-order quantifiers to the outside of a formula. By “absorbing”
an existential set quantifier if necessary we can safely assume that the
formula ϕ in (Σ1

1 -AC ) is in fact arithmetic.
It is well-known that if one starts with a recursively saturated model

of Peano arithmetic K, then the second-order structure

N = 〈K,Arith(K)〉

is a model of Σ1
1 -AC0 , where Arith(K) denotes the set of subsets of

K that are arithmetically definable from parameters (see, for example,
[11, 26]). And, in fact, the model constructed in the proof of Theo-
rem 11.2 is recursively saturated, because we have a “truth definition”
for formulas of nonstandard complexity (see Theorem 11.5 of [11]).
The following theorem draws on this fact.
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Theorem 12.1 Suppose a and b are nonstandard elements ofM such
that

M |= [a, b] is ε0-large.

Then there are a cut a < I < b and a finite set S coded in M such
that

〈I, {SIj | j ∈ I}〉

is a model of Σ1
1 -AC0 .

Proof. In fact, we show that the model constructed in the proof of
Theorem 11.4 suffices. Let N , H, I, and J be as in the proof of that
theorem, and suppose N satisfies

∀x ∃Y ϕ(x, Y )

for some (standard) arithmetic ϕ with parameters from N . As in the
proof of Lemma 11.3 we can assume that ϕ is Σ0

m(Hl) for some l ∈ J
and standard m. Then I satisfies

∀x ∃y ϕ(x,H [y]
e ) (14)

for any e > J , since He codes all the sets in the second-order universe
of N . If furthermore e < c− (m+ 2) (which we can assume since m is
standard) we can use the function TruthCode to express (14) as a ∆0

0
predicate of e in 〈I, {H}〉.

By ∆0
0 induction in 〈I, {H}〉, find the least e such that (14) holds.

This e must be in J (if it weren’t, then (14) would fail for e− 1 > J).
By arithmetic comprehension in N , define S so that for each x

Sx = H [fx]
e

where fx is the least f such that

ϕ(x,H [f ]
e ).

Then this S witnesses the conclusion of (Σ1
1 -AC ). �

13 Final comments

Our goal in this paper is not to replace cut elimination as the primary
means to an ordinal analysis, but to provide a supplementary approach
that helps round out our understanding of the theories involved. We
hope the reader feels that this “hands-on” approach to constructing
models of the theories described here and in [4] adds to his or her
understanding of their axioms.
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We expect that these methods will extend, in some form or another,
to theories that are significantly stronger. Beyond the predicative the-
ories treated in [4], the next hurdle, of course, is the analyses of impred-
icative theories like ID1 and Π1

1 -CA. It is our hope that such analyses
will ultimately provide us with a better understanding of their models,
and perhaps point the way to obtaining some interesting combinatorial
independences as well.

We’d like to thank the editors and referees of both this paper and
[4] for their comments and suggestions, and Wolfgang Burr and his
seminar in Münster for an exceptionally careful and helpful reading.
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