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Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest
(ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal
relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous
investigations and anatomical and physiological knowledge may somewhat constrain the possible
hypotheses, but there often remains a vast space of possible causal structures. To find actual effective
connectivity relations, search methods must accommodate indirect measurements of nonlinear time series
dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown
possible location-dependent variations in BOLD response delays. We describe combinations of procedures
that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method
is illustrated with an empirical data set and confirmed with simulations of time series of non-linear,
randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays,
with regions of interest missing at random for some subjects, measured with noise approximating the signal
to noise ratio of the empirical data.

© 2009 Elsevier Inc. All rights reserved.
Six problems for causal inference from fMRI

Functional Magnetic Resonance data are increasingly used to
attempt to identify not only brain regions of interest (ROIs) that are
especially active during perception, cognition, and action, but also the
causal relations among activity in these regions (known as “effective
connectivities”; Friston, 1994). Modeling of this kind is typically done
either by positing a parameterized causal structure a priori and
estimating the parameters from data, or by statistical comparison of a
few alternative models. Previous investigations and anatomical and
physiological knowledge may somewhat constrain the possible
hypotheses, but there often remains a vast space of possible models.
Some automated search procedures have been tried, notably multiple
regression, modification indices (Bullmore et al., 2000) and exhaus-
tive search (Hanson et al., 2007). Recent investigations (e.g., Zheng
and Rajapake, 2006) have used quasi-Bayesian model scoring
methods to search parts of this space of alternative models, but
none of these automated search procedures addresses a combination
of fundamental problems particular to fMRI applications. In this paper
we outline some of the well-known, central challenges inherent in
sey).
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modeling causal relations in such data, and consider a set of partial
solutions.

It is now customary to represent effective connectivity relations
abstractly as directed graphs, where nodes in the graph represent
brain regions and directed edges in the graph represent relatively
direct causal influences of one region on another. More precisely, in a
directed graph G, with vertex/node/variable-set V, a directed edge
Vj→Vk, represents the proposition that there are values of the
variables in V, leaving aside Vj or Vk, such that if those variables were
(hypothetically) to be held fixed at those values, then some
hypothetical intervention that varies values of Vj, would produce an
associated set of values for Vk. Vk is said to be a child of Vjand Vj a
parent of Vk. If there is a directed path from Vj to Vr, Vr is said to be a
descendant of Vj. A graphical causal model may contain explicit
unmeasured (“latent”) variables as well as measured variables. In the
search for brain mechanisms from imaging data, the goal is to identify
the causal relations among the (unmeasured) neuronal populations
whose activity gives rise to observed fMRI signals in spatially localized
regions of interest (ROIs).

Graphical causal models–sometimes called ”causal Bayes nets”–
combine a directed graph with a joint probability distribution on the
graph nodes that represent random variables. The graphical structure
is intended to capture both the compositional structure of the causal
relations and general aspects of all probability distributions that factor
according to that structure. For directed graphs without cycles (DAGs)
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the defining property of a graphical causal model is the Causal Markov
Property (Spirtes et al., 1993), characterized as follows (boldface
denotes sets of variables):

“Causal Markov Condition: Let G be causal graph with vertex set V
and P be a probability distribution over the vertices in V generated by
the causal structure represented by G. G and P satisfy the Causal
Markov Condition if and only if for every W in V, W is independent of
V\Descendants(W) ∪ Parents(W) given Parents(W).”

TheMarkov property implies that for any value assignments to the
variables, the joint distribution of the variables is equal to the product,
over all variables, of the probability of the value of each variable
conditional on the values of its parent variables, a so-called Markov
factorization of the distribution.

A graphical causal model may be linear or non-linear, may form a
time series, and may have feedback relations (Spirtes et al., 2000;
Glymour, 2003). The graph itself is a non-parametric simultaneous
representation of conditional independence constraints (for whatever
probability distribution accords with the graph topology) and
qualitative effective connectivity relations. Feedback relations can
be represented by directed graphs with cycles or by time series with
acyclic graphs. Cyclic graphs for linear simultaneous equations with
independent disturbances do not satisfy the Markov condition, but
when used to represent linear systems they do satisfy a generalization
of the Markov condition (Spirtes, 1995) that permits a factorization
and computation of the vanishing partial correlations (and for
Gaussian distributions, the conditional independence relations) that
are satisfied by all linear parameterizations of the graph.

Problem 1: searching over models

A first challenge in characterizing causal relations between brain
regions arises from the astronomical size of the possible space of
alternative causal models. Represented graphically, the number of
alternative possible causal structures relating N ROIs (disallowing
further variables as common causes) is the number of directed graphs
(including 2-cycles) on N vertices, which is 4((N−1) N)/2. Even confined
to directed acyclic graphs (DAGs), the number of alternative graphs
grows super-exponentially with increasing numbers of vertices. The
empirical data we will consider for illustration consist, respectively, of
subsets of 5, 9 and11ROIs froma single study. Even for singly connected
DAGs with a designated input variable and 10 other variables–which is
a proper subset of the space we will search in our empirical example
and in some of our simulations–there are 2,609,107,200 alternative
causal structures (the set of permutations of rooted trees on 10
vertices). Reliable and computationally tractable methods of searching
over the spaces of alternative models seem urgent if imaging data is to
warrant novel claims about effective connectivity.

Search over a space of alternative models is a statistical estimation
problem. In searches for the graphical structure of causal relations, the
search space is some set of directed graphs, subject to some joint
distribution constraints. The estimates of graphical representation of
causal structure that arise from these searches can be characterized
using the same kinds of methods applied to routine statistical
estimators (e.g., consistency or bias criteria). These and other
desiderata are the subject of proofs of properties for estimators
under assumptions limiting the hypothesis space—i.e., the graph
structures, parameters and probability distribution families. Where
analytic results are not available the behavior of statistical estimators
is increasingly studied by simulation and the same applies to search
procedures that estimate graphical causal structure. Just as a
statistical estimator may not provide an estimate of all of the
information of interest about a probability distribution, a search
procedure over graphical causal models may not provide all of the
information of interest about the processes generating the data. Thus,
for reasons to be explained, the procedures we will describe estimate
only feed-forward substructures of effective connectivity relations,
even when the underlying process generating the data contains
effective back-projections. Further, the graphical causal models
sought by the search procedures we will describe are non-parametric.
They do not contain explicit parameters such as linear coefficients,
although they can be parameterized according to the investigator's
judgment or other considerations, and data can then be used to
estimate the parameter values. Further, the graphs we obtain are
intended to be characteristics shared by a group of subjects (as with
Chen and Herskovitz, 2007), and a number of subjects is required for
reliable discovery. Finally, the procedures we will describe do not
always return a unique DAG. Multiple DAGs, implying different causal
structures, may imply the very same set of conditional independence
relations when the Markov condition is applied to each DAG. Such a
collection of DAGs is a Markov Equivalence Class. For Gaussian
distributions, the methods we will describe (and in the Gaussian
case, all known consistent searchmethods for graphical causal models
that are DAGs) return only a Markov Equivalence Class. That class
may, however, sometimes be a singleton, as in the empirical example
we will describe later.

The parallel equivalence relation for directed cyclic graphs
representing linear systems is well understood, and algorithms for
deciding whether two cyclic graphs imply the same conditional
independence relations for all of their linear parameterizations are
known (Richardson, 1996; Lacerda et al., 2008). The cyclic equiva-
lence classes are, however, more complex and members of the same
equivalence class share less structure than in the acyclic case. In
particular, all DAGs in a Markov Equivalence Class share the same
adjacencies–if A→B is in one such graph, then A→B or A←B is in
any other graph in the same Markov Equivalence class–but that is not
true for equivalence classes of cyclic graphs. For these reasons, we
attend here to the more limited problem of finding feed-forward
substructures from fMRI data.

Problem 2: indirect measurements

Structural equation models, or SEMs, posit linear causal relations
among variables with independent, unobserved noises. Introduced in
social science in the late 19th century, they were proposed as models
for neural influences measured by fMRI signals by McIntosh and
Gonzalez-Lima in 1994, and continue to be recommended for that
purpose (Demarco et al., 2009). It has been correctly objected (for
example, by Penny et al., 2004) that the measured variables in SEM
models of fMRI data are in reality indirect effects of the underlying
non-linear relations of interest (effective connectivities). SEM models
can, however, be given non-linear forms and so the remark invites a
question: why cannot models using variables defined by aggregates of
voxel measurements of hemodynamic responses capture the underlying
structure of aggregate neural influences between regions? One answer is
that the Markov factorization of a graphical causal model specifies
conditional independence relations; the distribution of measured
variables is amarginal of a joint distribution including latent variables,
and conditional independence relations are not always preserved by
marginalization. A search procedure for causal structuremay therefore
be unbiased (have an expected graph structure in the Markov
equivalence class of the true structure) and consistent (that is,
converge in probability in the large sample limit to correct informa-
tion) if the causal relations are only among themeasured variables, but
biased and not consistent if the causal relations are among latent
variables that produce values ofmeasured variables subject to random
disturbances. Thus, for concreteness, suppose that the fMRI signal
recorded from three regions (X1, X2, X3) reflects the true net synaptic
activity in those regions (reflected in latent variables L1, L2, and L3)
along with random disturbances in the fMRI signal (represented by
error variables ɛX1−ɛX3) and random disturbances in the influence
between regions at the neural level (represented by error variables
ɛL1−ɛL3). Fig. 1 shows a graphical representation of this model.



Fig. 1. An indirectly measured causal chain.
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The disturbance terms are positive variance and jointly indepen-
dent of each other. L1 is independent of L3 conditional on L2, but there
is no corresponding independence among the X variables. The point is
general and not dependent either on linearity or Normality, but it is
easily demonstrated with a linear Gaussian system: standardize the X
and L variables to unit variance and 0 mean. Let Xi=aiLi+ɛi, where
the ɛi are independent of each other and of the Li, and let L2=b2 L1+
ɛL2 and L3=b3L2+ɛL3, where the ɛL variables are jointly independent
and independent of the ɛi variables. Because the distribution is
Gaussian, conditional independence is equivalent to vanishing partial
correlation. The numerator of the partial correlation, ρL1, L3. L2,, equals
ρL1, L3−ρL1,L2ρL2, L3=b2 b3–(b2) (b3)=0, but the partial correlation
of X1 and X3 controlling for X2 is proportional to a1b2b3a3 – (a1b2a2)
(a2b3a3)=a1b2b3a3(1−a2

2) which is not equal to 0. Causal structure
estimators that implicitly or explicitly separate variables by vanishing
partial correlations or by conditional independence will tend to find a
direct dependence of X3 on X1, which does not reflect the relation
between L3 and L1. Thus, any causal inference methods to be applied
to fMRI must be able to address the statistical consequences of
indirect measurement and latent sources. There is one bright spot. In
the example of Fig. 1, the spurious association of X1 and X3 conditional
on X2 will be weaker than the association of X1 with X2 and weaker
than the association of X2 with X3. Spurious associations involving
conditioning on multiple intermediate variables in a causal chain will
be weaker still. We will exploit differences of these kinds.

In principle, this problem could be solved by estimating the values
of the latent variables. “Deconvolution” methods attempt to do that;
if, however, the deconvolution estimates are noisy, the same
difficulty–spurious estimated connections–may arise.

Problem 3: modeling causal structure across individuals

Imaging studies are frequently run on multiple subjects, and
separate laboratories may carry out experiments with essentially
identical stimuli. Potentially, such repetitions considerably increase
the sample size and should decrease dimensions of the variance of
causal structure estimators, but there are serious theoretical difficul-
ties. While the several participants in a study may share a common
abstract processing structure–i.e., which regions of the brain influence
which other regions in response to a stimulus–they are apt to vary in
the strengths of regional responses to stimuli and in the strengths of
influences from one region to another. Measurements with the same
stimulus but with different magnets or other instrumentation may
also result in different measurement sensitivities to brain activity. For
all of these reasons, as well as because of measurement error, the
probability distribution of neural responses, and the directed graphs
representing those distributions, can be expected to differ across
participants. Even when there is a common causal structure shared by
multiple subjects, combining two or more joint distinct probability
distributions for the same variables changes the distributions and
destroys information that may be shared by all of the distributions
(Yule, 1919). Except in special cases, independence and conditional
independence relations that hold in each of several probability
distributions will not hold in the combined distribution. Consequent-
ly, data frommultiple subjects cannot be pooled to form a unified data
base for model search. Some authors working in fMRI analysis have
emphasized the need for random effects models in estimating
localized activities with multiple subjects (e.g., Lazar et al., 2002;
Mumford and Poldrack, 2007). Stephan et al. (2009) have recently
proposed assessing and comparing particular models with multiple
subject data using a hierarchical Bayesian model and updating a
Dirichlet distribution.

Problem 4: distinct but overlapping variable sets

An experiment can yield different ROIs for different subjects. In the
most unhappy case, that could be because different individuals have
different processing mechanisms for an experimental task, but more
optimistically it may be because of individual differences in strengths
of BOLD responses and thresholding effects or due to anatomical
variation (cf. Poline, 2003) or chance disturbances.

Using Gaussian distributions, Chen and Herskovitz (2007) devel-
oped a Bayes net procedure for identifying small sets of active voxels
characteristic of ROIs for a group of subjects, differentiating such
cluster sets between groups of different neurotypes, and estimating
cluster associations within groups. Using only the ROIs shared by a
group may yield an accurate model of causal connections among the
shared ROIs, but, if omitted ROIs act as common causes of shared ROIs,
the omission may seriously misrepresent the relationships among the
shared variables. If an omitted ROI Y is merely an intermediary in a
causal pathway from shared ROI X to shared ROI Z, neglect of Y will
lose information of interest, but it will not invalidate the inference
that X causes Z. If, however, Y causes X and Z but X and Z have no
influence on one another, omission of Y will leave a spurious
association between X and Z which may be difficult to separate from
a real causal relation. Alternatively, neglect of data sets not containing
some variables will, all else being equal, reduce the accuracy or
informativeness of inferences.

Problem 5: varying delays in BOLD response

Brain tissues may vary in the time delay of hemodynamic
responses to neural activity. A consequence of the indirect measure-
ment of neural processes in fMRI studies is that these time delays may
not be known. The synchronization of fMRI measurements of
variables from distinct ROIs may therefore not be correct for the
sequences of the underlying neural activities. Various authors (e.g.,
Breakspear et al., 2003) have noted that this fact poses a problem for
causal inferences based on time series analysis, but it likewise poses a
problem for every searchmethodwhether or not the resultingmodels
have time-indexed variables. Causes cannot precede effects, and any
method, such as multiple regression, that presumes a time order
among the variables will therefore risk bias except in cases where
such an order is actually known independently.

Problem 6: equilibrium or time series?

The BOLD signal from a neural region is a time series that is usually
sampled intermittently, and in the course of an experiment may be
influenced by a sequence of stimuli. The reconstruction of activation
influences among regions–effective connectivity–may be attempted
by modeling the joint, time-stamped measurements of variables
associated with several ROIs as a time series, or by modeling them as
“equilibrium” values resulting from an exogenous stimulation. (The
latter might be viewed as a time series analysis with lag 0.) Each
approach carries risks. The equilibrium approach is unrealistic if
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measured BOLD responses to one exogenous experimental stimula-
tion endure and influence measurements after a subsequent stimulus
presentation. Since the interval between consecutive samples of
voxels in the same ROI is typically slower than the neural influences to
bemodeled, the time series approach tomodel specification implicitly
requires that lagged influences can be factored out, as by regression.
We are aware of no comparative studies of results of these alternative
approaches with real or simulated data; adequate studies would have
to address the other problems noted here as well.

These problems certainly do not exhaust the challenges. They do
not include, for example, the art of ROI selection. Again, ideally, one
would like to usemeasures of the BOLD response to estimate variables
that quantify neural activity in regions of interest, and use those
estimates to search for causal models. Accurate estimates require
prior knowledge of the mathematical relation between quantified
variables representing aggregate neural activity over time and the
BOLD signals they produce. Even if the neural activity/BOLD response
is known and the function inverted, measurement errors in the fMRI
signal may produce a component of variance in the estimate of neural
activity that will, in principle, eliminate conditional independencies
such as that illustrated above for L1 and L3 conditional on L2. Whether
in practicemodeling is best done by assuming a definitemathematical
relationship and estimating, or instead by using the fMRI measure-
ments of the BOLD signal as noisy surrogates for neural activity, seems
an open question. We will illustrate various methods without
deconvolution estimates, but the solutions we propose would apply
to deconvoluted estimates as well. A further issue, noted by a
reviewer, is that fMRI acquisition and preprocessing schemes can
result in the mixing of signals acquired at different points in time
within a single region of interest, and it is likely that this occurred in
the real fMRI data presented here (due to the use of interleaved slice
acquisition). In principle, this could cause particular problems for
methods, such as Granger causality, that rely upon relative timing of
responses across regions. We will, however, provide some evidence
that the interleaving of slices does not affect the accuracy of the
solutions we offer below.

Addressing the problems using graphical causal models

We propose that modifications of machine learning techniques for
graphical causal modeling available for more than a decade (Meek,
1997) provide a basis for addressing the problems we have sketched
above. Appendix A presents a more detailed description of graphical
causal models andmore detail on the algorithms we use to learn these
models from data. The software we used is available as freeware in
the TETRAD IV suite of algorithms with a graphical user interface at
www.phil.cmu.edu/projects/tetrad. Under some general assumptions
(Chickering, 2002), Meek's method using the Bayes Information
Criterion (BIC) provably provides consistent estimates in the large
sample limit for a single data set. We generalize the procedure to
multiple data sets, some possibly withmissing variables, and provide a
proof (see Appendix A) that the BIC score generalizes to this case. We
will illustrate our adaptations with various data sets selected from an
experiment with 13 subjects, and we will show, sequentially, how the
firstfiveproblems canbe addressed. The last problemwill be addressed
by constructing both 0 lag and 1 lag time series analyses aswe proceed.
Finally, we offer some simulations to confirm the methods.

Meek's Greedy Equivalence Search (GES) (Meek, 1997) begins
with an empty graph whose vertices are the recorded variables and
proceeds to search forward, one new connection at a time, over
Markov Equivalence classes of DAGs. Each class of models with an
additional edge is scored using BIC (Schwarz, 1978): -2ln(ML) + k ln
(n), whereML is the maximum likelihood estimate, k is the dimension
of the model (in our cases, the number of directed edges plus the
number of variables), and n is the sample size. The algorithm searches
forwards from the empty graph until no improvement in BIC score is
possible, and then backwards, and outputs a description of a Markov
Equivalence class. In practice, the algorithm requires a computation of
a series of maximum likelihood estimates, and is limited to cases
where approximations to such estimates can be rapidly obtained. The
implementation we use estimates maximum likelihood on a Gaussian
distribution hypothesis, but this is evidently a second moment
approximation. The graphical models output by GES may be
parameterized and tested in conventional ways, for example as linear
models with asymptotic chi square tests, but for reasons explained
later, we do not recommend doing so for fMRI applications. For sparse
graphs with the number of variables considered here (11 or fewer),
GES runs on a conventional personal computer in less than a second.

The examples that follow employing real fMRI data are from a
study (Xue and Poldrack, 2007) in which subjects performed rhyming
judgments on words or pseudowords across separate blocks. Details
regarding the design, acquisition, and data processing are provided in
Appendix B.

Problem 1

We illustrate the ability of the GES algorithm (see Appendix A) to
extract causal structure from fMRI data and compare it to a well-
known search method that uses a Lagrangian modification index
search (Bullmore et al., 2000). The data in this example are from an
arbitrarily chosen one of 13 subjects performing rhyming judgments
on either words or pseudowords across separate blocks (see Appendix
B for more details). We consider for the moment only 5 left
hemisphere ROIs (LOCC: left occipital cortex, LMTG: left middle
temporal gyrus, LACC: left anterior cingulate, LIFG: left inferior frontal
gyrus, LIPL: left inferior parietal) along with an input variable that
represents the task, convolved with a canonical hemodynamic
response. Both searches are conducted with the prior constraint that
the input variable, I, is not an effect of the other variables, and, in the
Lagrangian case, with the assumption that there is no feedback. The
models obtained by each method are presented in Fig. 2, panels A and
B. The simpler GES model has a p value of 0.31; the more complex
model obtained with modification indices has a p value of 0.17, each
by an asymptotic chi square test with the model as the null
hypothesis. The example does not fully indicate the disadvantages
of Lagrangian modification indices as a search method. Search by
modification index fails to find the correct structure (no matter the
sample size) even in simple linear systems with joint Gaussian
distributions, for example in a system of four variables, X1,…, X4 in
which X1 and X2 are independent and each directly influences X2 and
X3, neither of which influences the other.

Although the consistency proof for GES assumes no latent
confounding, and models obtained with the algorithm will often
admit alternatives with latent variables, in this examplemost edges in
the model output cannot be replaced or supplemented by latent
common causes without reducing themodel fit. The consistency proof
for GES also assumes that the true graph is acyclic, but feed-forward
effects in non-linear cyclic systems can be identified by methods that
call the GES algorithm, as we will illustrate later.

BOLD signals are sometimes modeled as an AR(1) or higher order
autoregressive time series, with causal relations estimated by
modified versions of Granger's (1969) criterion: X is regarded as a
cause of Y in multivariate series Xt, Yt, Zt provided Yt+1 is better
predicted (with least squares loss) by (Xt−, Yt−, Zt−) than by {Yt−,
Zt−}, where subscript t− denotes t and all preceding time steps. More
generally, X is a Granger–cause of Y if Yt+1 is dependent on Xt–

conditional on {Yt−, Zt−}. In practice the conditional dependence is
estimated by multiple regression of each time series variable on a
specified number of lags of itself and other variables. The Granger
procedure, or variations of it, has been used in previous studies of
fMRI data (e.g., Roebroeck et al., 2005). In the machine learning
literature, statistical analogues of Granger's criterion have been given

http://www.phil.cmu.edu/projects/tetrad


Fig. 2. Best-fitting lag 0 models for modifications indices (Panel A, p=0.17) and GES (Panel B, p=0.31), c=1, and, as well as the first model for GES excluding triangles (Panel C,
p=0.001). For lag 1, the GES model for c=1 is shown (Panel D, p=0.00003), along with the first GES model excluding triangles (Panel E, p=0).
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graphical representations under the description “Dynamic Bayes
Networks.” Eichler (2005), provides a graphical generalization to
allow for latent variables and gives an fMRI application. Granger
himself later noted that his procedure can fail to capture causal
relations when processes occur faster than the sampling rate, which is
certainly the case when we wish to extract causal relations in neural
activity from fMRI signals. For example, if Xt causes Yt+1 which in
turn causes Zt+2, and measures are taken only at intervals of 2 time
steps or greater, Granger's criterion will yield the information that X
causes Y and Y causes Z and X causes Z but will not yield the
information that Y is the intermediate variable in the causal chain: an
additional spurious direct connection between X and Z will be found,
because Yt+1 is unobserved and therefore not conditioned on in the
Granger regressions. To remedy such problems, Swanson and Granger
(1996) proposed regressing the time series variables on lags and
applying an earlier search procedure for causal models (Glymour et
al., 1987) limited to finding causal chains, to the residuals of the time
series regression. For example, Xt+2, Yt+2, Zt+2 may be regressed on
Xt, Yt, Zt . The regression coefficients are used to obtain predictions
X⁎t, Y⁎t, Z⁎t for each time point t. The procedure should leave only
associations produced by processes occurring more rapidly than the
sampling interval. The residual values (Xt−X⁎t) etc. at each time point
are then treated as cases for analysis by a causal search procedure.
Demiralp and Hoover (2003) instead applied a more general search
procedure not restricted to causal chains (the PC algorithm, Spirtes
and Glymour, 1991) to the Swanson–Granger residuals. We illustrate
the results for the data from the previous data set discussed above,
applying GES to the residuals obtained by regressing all time series
variables on all variables one step previously. The lag 1 time series
residual graph is shown in Panel D of Fig. 2; a linear model of the lag 1
residual graph fails a chi square test (p=0.001).

Problem 2

The second problem is essentially that the class of cases considered
in the discussion of problem 1 is the wrong one: we want the causal
connections among the unobserved neural activities that are causes of
the measured hemodynamic responses.
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The noisy observation of indirect effects creates a difficult problem
for the estimation of latent causal relations. As illustrated for Fig. 1
above, GES produces false “triangulations” of measured variables that
are manifestations of a chain of three unmeasured variables. The
problem is not particular to GES, but is a general problem about
inference to latent structure.

With GES, the triangulation problem can be mitigated by
increasing the penalty function in the BIC score. The ease with
which the GES procedure finds directed edges is controlled by the
penalty term kln(n) of the BIC score. The penalty can be multiplied by
any constant c greater than 1 and the causal estimator will be less
likely to posit spurious transitive closures for chains of three variables.
At the risk of missing some real causal connections, spurious causal
connections can be reduced or eliminated by tuning the BIC penalty in
GES so as to eliminate triangulated connections while retaining single
connections and allowing direct connections between variables also
connected by a path with more than one intermediate variable. The p
values of the usual chi square test for linear Gaussian models will no
longer be even a rough guide to model preference, since the search is
designed to produce models that do not account for all of the
conditional associations in the data.

For the left hemisphere lag 0 data from subject 1, the GES
algorithm, excluding triangles, produces the model shown in panel C
of Fig. 2. This model is a subgraph of the one in panel B. The graph
obtained by treating the same data as a lag 1 time series, taking
residuals and varying the penalty function until there are no triangles,
is shown in Panel E. It seems plausible that the input directly
influences the occipital region rather than influencing it via the
anterior cingulate, and on those grounds the model of Panel C would
be preferred to the model of Panel E. However, the experiment
involved 13 subjects, and the analyses so far have used data for only 1
subject. Results should change, and do, when all subjects sharing a
common set of ROIs are considered. The distribution of the
disturbance terms is of interest for the adequacy of the Gaussian
approximation, and this subject is typical. Estimating the distribution
of the disturbances by the distribution of residuals after linear
regression of each variable on its parents for the model in Panel C, the
input and the occipital disturbances are not Gaussian, but the
disturbance terms for other variables have Gaussian distributions.

Problem 3

Because directly combining datasets can result in statistical
dependencies in the combined data that do not exist in any of
the individual datasets, we developed a modification of the GES
procedure (which we call IMaGES to abbreviate Independent Multiple-
sample Greedy Equivalence Search) that allows for modeling of
multiple datasets. Suppose there are m data sets Di of sizes n (the
issue is more complicated if the sample sizes differ considerably). For
any graph G, let ln(Di, G) be the natural log of the likelihood of the
data determined by the maximum likelihood estimate of the free
parameters in G, which for Gaussian linear systems are the variances
of exogenous and error variables and all coefficients without fixed
values. IMaGES follows the GES procedure but each stage scores each
graph by using the average of the BIC scores for that graph in each of
the individual data sets:

IMscore = − 2 =mð Þ
X

i
ln Di;Gð Þ + ck ln nð Þ

The IMscore is a BIC score with the number of independent
dimensions multiplied by the number of data sets (see Appendix A).
Markov equivalent graphs should receive the same IMscore when the
distribution is Gaussian, but may receive slightly different scores for
non-Gaussian distributions (which for BOLD maybe be more typical,
Hanson and Bly, 2000). For independent samples from the same
distribution, the IMscore is consistent whenever GES is consistent but
with increasing size of each sample IMaGES converges more rapidly
than does GES applied to only one data set of the same size.

The IMaGES models so obtained are non-parametric, although a
parametric assumption is used to obtain maximum likelihood
estimates in the BIC and IMscore. The graph expresses only
hypotheses as to the causal connections and conditional indepen-
dence relations, whatever the true underlying distribution may be.
Consistent with the graph representation, two or more ROIs may
influence another ROI interactively, as in our simulations described
below. The proof of convergence of the BIC score to a representation of
the posterior distribution assumes the parameters used in the
likelihood computations are independent, but the IMaGES graphical
models imply no posterior distributions over the parameters. The
combination of parametric maximum likelihood estimates with a
non-parametric generalization makes the IMaGES procedure heuris-
tic, although the linear, Gaussian parametrization should identify the
correct Markov equivalence classes when the true distributions imply
that independence and conditional independence are accompanied by
zero correlations and partial correlations.

A sensible heuristic strategy is to run IMaGESwith a systematically
increasing penalty constant, c, until triangulations of variables
disappear or the input becomes disconnected–whichever comes
first–placing more trust in edges that are more robust as the penalty
increases.

After excluding two ROIs missing from the data of four individuals,
IMaGES was applied to the data from the 9 of 13 subjects who had
activation clusters in all of the ROIs, including both the left and right
hemispheres. The results are shown in Fig. 3, for both lag 0 and for lag
1 residual data. When applied to lag 0 data, the results become
strikingly reasonable as the cost function is increased to eliminate
triangles. These graphs were obtained only with prior specification
that the input variable is not an effect of the anatomical variables but
with no priors on the anatomical connections, and no specification,
prohibition, or priors for influences of the input variable on the
anatomical variables. Without any such information, IMaGES was able
to reconstruct the canonical left-hemisphere language network and
its influence over the right-hemisphere homologs.

IMaGES applied to the lag 1 residuals produces no triangles when
c=6, and the resulting graph (Fig. 3D) is nearly identical to that
obtained from the lag 0 data (Fig. 3C), with one edge reversed.

Problem 4

An even more difficult problem arises when data are not available
for all regions of interest across all subjects; this can occur, for
example, if activation clusters are used to define the regions but some
subjects do not have clusters in some regions of interest. In statistics,
multiple data sets with distinct but overlapping sets of variables have
been treated by “multiple imputation” (Rubin, 1987). However, this
procedure assumes amodel inwhich the unshared variables are linear
functions of the shared variables, and can produce erroneous results
when this assumption is false.

The full data set for the experiment we are considering has 13
subjects and 11 variables; although some subjects were missing data
from some regions (due to the requirement of significant activation to
create the ROI), variables for all ROIs were present in data for 5 of the
subjects. We applied IMaGES just as before, but for each data set we
computed IMscores only for edges connecting the variables in that
data set. If it assumed only that the multiple samples share a common
factorization up to Markov equivalence, we conjecture, but have not
proved, that the IMaGES procedure converges on a collection of data
sets whenever GES converges on each data set singly, provided at least
one data set contains all variables in any data set.

The results with the lag 0 time series data and also with residuals
from a lag 1 time series are shown in Fig. 4 (LTMG and RTMG are left
and right temporal medial gyrus, respectively). The results are similar



Fig. 3. Best fitting IMaGES models of 9-variable, 9-subject lag 0 data as c increases (Panels A, B, C) and lag 1 data for c=6 (Panel D). (See text for details.)
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to those obtained in Fig. 3 using common ROIs, but also detect
additional connections, including someconnections (e.g., LOCC→LACC)
between regions that were suggested in the earlier analysis of left
hemisphere variables.

Problems 5 and 6

A fundamental challenge to causalmodeling is thatwewish to infer
the direction of influence between variables from sample data alone,
apparently in contradiction to the truism that correlation does not
imply causation. All of the DAGs within the sameMarkov Equivalence
Class share the same variables and the same adjacencies, but the DAGs
within a class may differ in the directions given to one or more edges.
In some cases, as with the results of our analyses of the experimental
data, but not always with the simulated data we will later describe, all
directions are uniquely determined in a Markov Equivalence Class.
When a unique direction is given to an edge in the output of the search,
the direction is not arbitrarily chosen: any DAG that implies the same
independence and conditional independence relations and has no
unrepresented common causes must so direct that edge.
The indirect measurement of neural activity through BOLD
responses produces a further problem of timing. It is well known
that the parameters of hemodynamic responses (including delays)
may differ substantially across regions within an individual (e.g.
Miezin et al., 2000). This means that the BOLD signal at time t in one
region may reflect neuronal activity at time t−Δ1, whereas the BOLD
signal at the same time in another regionmay reflect neuronal activity
at time t−Δ2, where Δ1–Δ2 may be on the order of seconds. Thus,
unknown to the search algorithm or the investigator, the fMRI data
may reflect neuronal signals at:

xt + 1; yt ; zt
xt + 2; yt + 1; zt + 1

etc., whereas the actual events are in the sequence

xt ; yt ; zt
xt + 1; yt + 1; zt + 1

etc. If the second of these sequences, the actual one, is i.i.d., then in the
first, measured sequence, X will be independent of Y and of Z, even if



Fig. 4. Best fitting lag 0 and lag 1 IMaGES models of 11-variables, 13-subject data, allowing for missing ROIs across individuals, reporting the first model excluding triangles as c
increases.
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there are strong causal relations connecting X with Y and with Z. In
that case, no matter the sample size, GES will be biased against any
causal connections involving X, and so will any other search method
that treats the simultaneously measured variables as due to
simultaneous causes. In fMRI designs, however, each variable is
typically autocorrelated: the value of X at t is not entirely independent
of the value of X at t+1 or possibly of other variables. In that case,
mis-synchronization will remove some relations of independence
conditional on X, and may result in the large sample limit in
estimation of one false edge in a triangle of edges.

We address this problem by time shifting the series of values for
one or more variables backwards in various ways to obtain a
collection of data sets with the same backshift, applying IMaGES to
each resulting collection of data sets, and choosing the resulting
model with the best BIC score. Backshifting reduces the sample size by
the maximum over the variables of the number of shifts. Ideally, every
plausible combination of time shifts of variables should be considered,
but combinatoric considerations prevent that. A greedy heuristic is to
time shift variables one at a time and if the BIC score is not improved
by a shift to delete that shift, but we have found that procedure
unreliable. Instead, we bound the size of the set of shifted variables
and consider all shifts over those variables up to a maximum shift. The
run time requirements for a search of this kind, for all 13 subjects,
bounding the cardinality of each set of shifted variables at 3, is about
10 min. The procedure can obviously be implemented in parallel with
reduced run time. This method was applied to the rhyme judgment
dataset presented above. Both for 0 lag and for lag 1 residuals analysis,
for all of the 13 subject data sets and for each combination of 1, 2 or 3
of the 11 variables, except I, we backshifted the variables in all
combinations of 0.5, 1, 1.5 or 2 recorded time steps, corresponding to
shifts between 1 and 4 s. In all cases the IMaGESmodels without shifts
had the best BIC scores. This suggests that, for the blocked design data
examined here, there are no detectable differences in timing between
regions of interest.

Simulation studies

In view of the theoretical difficulties with inference to latent, non-
linear relations between sets of neurons, some investigation by
simulation of the accuracy of the IMaGES procedures is needed. To
address this, we simulated causal processes in which a large number
of unrecorded latent variables, L (e.g., synaptic activity in each of a set
of cortical columns), influence one another non-linearly, with
feedback, and combine with a hemodynamic response function to
produce a multivariate time series of values of the recorded X
variables (fMRI data in regions of interest). This simulation frame-
work is meant to reproduce, so far as possible, the circumstances of
the Xue and Poldrack experiment, but with randomly selected
effective connections among the ROIs. It is not meant to simulate
faithfully the details of neuronal activity, but rather as an abstract
representation of the relation between neuronal activity in voxels,
aggregated voxel activities within a ROI, and fMRI signals. Typical
signal to noise ratios were estimated for the Xue and Poldrack data
and parameters of the simulation were adjusted approximately to
match. The empirical disturbance variances were estimated as the
residuals after regressing each variable in the GES model of Fig. 1 on
its parents. Signal to noise was represented as the difference of the
variance of a variable and its disturbance variance, divided by its
disturbance variance. Further details regarding the simulation model
are provided in Appendix C.

Two kinds of simulated data sets were generated, one for 9
variables and 9 subjects and one for 11 variables and 13 subjects,
using randomly generated graphs of ROIs respectively with 9 andwith
11 edges, in addition to a backprojection for each feedforward
connection. For each experiment, the entire simulation (with a new
randomly generated DAG representing feed-forward effective con-
nectivity) and search were repeated 10 times and the error rates
averaged over the ten runs. Table 1 shows the results of the
experiment with 9 variables, 9 subjects, no missing ROIs and no
time shifts. Table 2 shows the results of the experiment with 11
variables, 13 subjects, and up to 3 variables missing at random for the
data for any subject on any run. Table 3 is for an experiment like that
of Table 1, except in each run the records of three randomly chosen
variables are randomly shifted forward in time 0.5, or 1, or 1.5 or 2
sampling intervals for all subjects. Table 4 is for an experiment like
that of Table 2, except again in each run the records of three randomly
chosen variables randomly shifted forward in time 0.5, or 1, or 1.5 or 2
sampling intervals for all subjects, representing the simulation of
BOLD delay differences between 1 and 4 s. The error rates can be
obtained by dividing the number of errors by the number of feed-



Table 3
Errors for ROI shifting experiments for 9-node, 9-subject simulated experiments, with
no missing ROI's across individuals, without voxelwise shifts.

Run Shifted, lag 0,
no triangle

Backshifted, lag 0,
no triangle

Backshifted, lag 1,
no triangle

AFP AFN DE AFP AFN DE AFP AFN DE

1 2 2 2 4 1 1 0 1 0
2 1 2 0 0 0 0 1 5 1
3 1 0 0 0 0 1 1 2 2
4 3 1 4 0 0 4 2 1 1
5 1 2 1 1 1 1 1 5 1
6 0 0 2 0 0 2 0 1 1
7 2 2 2 1 1 2 3 1 2
8 2 2 1 1 0 1 0 0 1
9 1 1 2 0 0 2 1 2 2
10 4 2 1 1 0 1 0 2 0
AVG 1.7 1.4 1.5 0.8 0.3 1.5 0.9 2 1.1

AFP=adjacency false positives, AFN=adjacency false negatives, and DE=orientation
errors for directed edges only (number of directed edges in the output that are oriented
differently from the Markov equivalence class). See text for details.

Table 1
Errors for graphs recovered by IMaGES on simulated 9-variable, 9-subject data, with no
missing ROIs across individuals, without voxelwise or ROI shifts.

Run Lag 0, first
nontriangular

Lag 1, c=1 Lag 1, first
nontriangular

AFP AFN DE AFP AFN DE AFP AFN DE

1 1 2 2 0 1 0 0 1 0
2 1 2 0 0 1 2 0 1 2
3 0 0 1 2 0 2 0 5 1
4 0 0 4 3 1 2 0 1 2
5 1 2 1 1 2 1 1 2 1
6 0 0 1 0 1 1 0 1 1
7 1 2 2 2 0 2 0 2 2
8 1 0 1 1 0 1 0 2 1
9 0 0 2 0 1 1 0 1 1
10 1 0 1 2 2 2 2 2 2
AVG 0.6 0.8 1.5 1.1 0.9 1.4 0.3 1.8 1.3

AFP=adjacency false positives, AFN=adjacency false negatives, and DE=orientation
errors for directed edges only (number of directed edges in the output that are oriented
differently from the Markov equivalence class). See text for details.

1553J.D. Ramsey et al. / NeuroImage 49 (2010) 1545–1558
forward edges in the simulation, 9 for Tables 1 and 3, and 11 for Tables
2 and 4. BOLD delays were selected at random for simulated (in terms
of the sampling interval) 1–s, 2-s, 3-s and 4-s delays, but the search
methods shifted measurements only by 2 s or 4 s in order to represent
circumstances where the true BOLD delay is a fraction of the shifts
used in search. Fractional delays are most difficult for search when the
delays occur at mid-point between the variable shifts.

Errors are computed with respect to the feed-forward (from the
Input variable) substructure of the randomly generated effective
connectivity graphs. None of the 3 methods we consider dominates
the others. Error rates for stopping at the first non-triangulated
variable using a 0 lag vary from 6.6% for false positive adjacencies with
9 variables and no BOLD delay shifts, nomissing variables, to 16.6% for
11 variables with 3 variables missing at random and up to 3 variables
shifted in their BOLD delays by as much as 4 s. For the same method,
errors of direction of edges are in all cases no higher than 16.6 %. Error
rates for false negatives are in all cases and by all methods inflated
because all three methods deliberately search for a sparse, connected
substructure without triangulated variables, but the simulation
procedure is allowed to generate graphs with such triangles. Again
for the 0 lag procedure, the false negative adjacency error rate varies
from 9% for 9 variables without missing ROIs and without shifted
BOLD delays, to 25.5% for 11 variables with missing ROIs and varying
BOLD delays. (A more informative count of false negatives, which we
have not done, might include only edges in a non-triangulated
substructure of the feed-forward graph).
Table 2
Errors for graphs recovered by IMaGES on simulated 11-variable, 13-subject data, with
missing ROIs across individuals, without voxelwise or ROI shifts.

Run Lag 0, first
nontriangular

Lag 1, c=1 Lag 1, first
nontriangular

AFP AFN DE AFP AFN DE AFP AFN DE

1 0 0 2 1 0 3 0 3 1
2 0 1 0 1 3 0 1 6 0
3 2 2 2 2 2 3 0 5 0
4 2 1 2 0 1 0 0 1 0
5 1 2 1 2 3 2 0 5 1
6 1 1 1 0 2 1 0 2 1
7 2 3 2 2 0 3 0 2 2
8 2 3 2 1 1 2 0 5 1
9 2 3 1 1 4 0 1 4 0
10 0 1 0 1 2 3 1 2 3
AVG 1.2 1.7 1.3 1.1 1.8 1.7 0.3 3.5 0.9

AFP=adjacency false positives, AFN=adjacency false negatives, and DE=orientation
errors for directed edges only (number of directed edges in the output that are oriented
differently from the Markov equivalence class). See text for details.
One reviewer has suggested that significant BOLD delays may
occur between voxels within the same ROI. We simulated that
possibility by allowing all variables within a ROI to be shifted at
random according to a uniform distribution on a simulated [0, 0.5]
second interval, representing completely asynchronous activity of
voxels within a half-second interval. The results, when this asynchro-
nous voxel shifting is combined with the random delays in BOLD
response for up to 3 ROIs (resulting in a maximum BOLD delay
difference for voxels in different ROIs of up to 4.5 s), and up to 3
variables are missing at random for each of 11 subjects, is shown in
Table 5. The error rates increase, for example for the 0 lag method to
just under 25% for false positive adjacencies, just under 14% for
orientation errors (not counting the orientations of false adjacencies
in the numerator or denominator in the ratio of errors to cases), and
just under 20% for false negative adjacencies.

To illustrate the value of applying IMaGES to a collection of data
sets frommultiple subjects, rather than applying a search such as GES
to individual subjects, we have simulated a 9 variable, 9 subject
version of the Xue and Poldrack experiment, using the graph of Fig. 3B
to represent effective connectivity relations. IMaGES was run on the
collection of data sets and GES was run separately on each individual
data set. The comparisons of edges produced by these various
procedures with those in the true graph are given in Table 6.

The table shows remarkable effects of analyzing the data
collectively via IMaGES rather than, for example, running GES
individually and using a voting procedure for edges. Only one of the
Table 4
Errors for ROI shifting experiments for 11-node, 13-subject simulated experiments,
with missing ROI's across individuals, without voxelwise shifts.

Run Shifted, Lag 0,
no triangle

Backshifted, Lag 0,
no triangle

Backshifted, Lag 1,
no triangle

AFP AFN DE AFP AFN DE AFP AFN DE

1 1 0 2 0 0 2 1 2 3
2 0 1 0 0 1 0 0 3 1
3 2 3 2 1 2 2 0 3 0
4 3 2 2 2 1 2 1 3 0
5 2 3 1 2 3 1 2 4 1
6 2 2 1 2 2 1 1 4 2
7 1 4 0 1 4 0 2 0 2
8 2 3 1 1 2 3 1 0 0
9 2 3 2 2 3 2 0 4 1
10 0 2 0 0 1 0 2 5 1
AVG 1.5 2.3 1.1 1.1 1.9 1.3 1.0 2.8 1.1

AFP=adjacency false positives, AFN=adjacency false negatives, and DE=orientation
errors for directed edges only (number of directed edges in the output that are oriented
differently from the Markov equivalence class). See text for details.



Table 5
Errors for ROI shifting experiments for 11-node, 13-subject simulated experiments,
with missing ROI's across individuals, with additional random voxelwise shifts.

Run Shifted, Lag 0,
no triangle

Backshifted, Lag 0,
no triangle

Backshifted, Lag 1,
no triangle

AFP AFN DE AFP AFN DE AFP AFN DE

1 0 0 1 1 2 1 1 1 2
2 7 4 0 2 3 1 4 2 2
3 5 1 2 5 1 2 1 1 1
4 3 3 2 3 3 3 0 1 4
5 4 3 1 3 3 1 1 4 2
6 1 2 1 1 1 0 4 1 0
7 2 2 3 2 2 1 1 5 0
8 1 1 0 1 1 0 4 2 3
9 2 2 1 3 3 2 2 3 0
10 2 3 0 1 2 0 1 1 3
AVG 2.7 2.1 1.1 2.2 2.1 1.1 1.9 2.1 1.7

AFP=adjacency false positives, AFN=adjacency false negatives, and DE=orientation
errors for directed edges only (number of directed edges in the output that are oriented
differently from the Markov equivalence class). See text for details.

Table 7
Errors for graphs recovered by IMaGES on simulated 9-variable, 9-subject data, without
voxelwise or ROI shifts, butwith slicemeasurements in the order 1, 3, 1/4, 19, 2, 4,…, 20.

Run Lag 0, first
nontriangular

Lag 1, c=1 Lag 1, first
nontriangular

AFP AFN DE AFP AFN DE AFP AFN DE

1 2 1 1 1 1 2 0 6 0
2 0 0 0 1 0 2 0 2 2
3 1 2 0 0 5 0 0 5 0
4 0 1 0 0 4 1 0 4 1
5 0 1 0 0 0 2 0 0 2
6 2 3 1 2 1 1 2 1 1
7 2 3 0 3 0 2 0 1 1
8 3 2 1 1 0 1 1 2 2
9 1 2 0 0 6 0 0 6 0
10 1 2 0 3 3 0 2 6 0
AVG 1.2 1.7 0.3 1.1 2 1.1 0.5 3.3 0.9

AFP=adjacency false positives, AFN=adjacency false negatives, and DE=orientation
errors for directed edges only (number of directed edges in the output that are oriented
differently from the Markov equivalence class). See text for details.
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9 true edges occurs in the majority of the GES analyses, but IMaGES
omits only two adjacencies and reverses one direction.

Finally, we consider (Table 7) the effect of interleaving slices in
signal acquisition. The 9 variable, 9 subject simulation above
(without time shifting) was modified in a separate experiment to
simulate the order in which individual slices are measured in a
typical fMRI experiment. We simulated a measurement sweep of 20
layers but with slices measured in the order 1, 3,…, 19, 2, 4,…, 20,
where 1 is the bottom-most slice and 20 is the top-most slice. Again,
each ROI R consists of 50 variables, but this time arranged as a 10×5
grid of variables V(i, j, R), i=1,…, 10, j=1,…, 5. Within R, each
variable V(i, j, i) is influenced by variables V(k, l, R) such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i−kð Þ2 − j− lð Þ2
q

b1:5, each such edge being added with 50% probability.
R is then positioned randomly in the vertical direction—that is, a
random m is chosen, 1≤m≤15, and for each i=1,…, 10, j=1,…, 5,
V(i, j, R) is positioned at slice j+m. The simulation proceeds
otherwise as before, with the exception that variables are recorded
in order of slice, in the order 1, 3,…, 19, 2, 4,…, 20, with the sequence
repeated until the end of the simulation.

We have not investigated how robust these results are over
variations in the vertical distance between ROIs connected by a
directed edge in the simulation.

It is essential to the success of GES and IMaGES search procedures
that the data generating process is non-linear. Application of these
methods to data generated from linear, cyclic SEMs would produce
much higher error rates. For that reason, as with DCM models, we
do not assign parameter values such as linear coefficients to edges
of DAGs obtained from IMaGES or GES searches. Such assignments
can be forced, for example by regressing each ROI on its parents
Table 6
Accuracy of IMaGES versus GES for a single 9-node, 9-subject experiment.

I→LOCC ROCC→RIPL LIPL→RIPL RIPL→RIFG LIFG→RIFG

IMaGES 1 1 1 1 1
GES1 1 0 0 1 1
GES2 1 0 1 1 0
GES3 1 0 0 0 1
GES4 0 1 0 0 0
GES5 1 0 0 0 −1
GES6 1 0 0 0 0
GES7 1 0 1 1 1
GES8 1 1 1 1 0
GES9 1 0 0 1 1

The graph in Fig. 3B was used to create a simulation as described in Appendix C. Each column
for the first nontriangular model found by IMaGES, using all nine data sets; GES1 through GE
individually. Where X and Y range over the ROIs in Fig. 4B, “1” is recorded in a given row f
recorded just in case X and Y are no adjacent in the model for that row, and a “−1” is reco
using the simulated ROI values, and, using as empirical estimates of
these pseudo “latent” parameters the corresponding regressions
using the simulated measured variables and the DAG obtained from
search. The estimates so obtained tend to be about 50% too high,
but they are in any case quite inappropriate estimates of effective
connectivity.

Discussion

The IMaGES algorithm is based on a procedure, GES, that has been
proven consistent only for feed-forward, acyclic causal structures,
whereas the simulated structures have feedback. Despite this, because
of the non-linearity of the systems, IMaGES is able to extract the feed-
forward structure with reasonable accuracy on large (for fMRI ROI
studies) numbers of variables with multiple subject data, missing
variables, and varying time delays. The general behavior of the
IMaGES algorithm on the simulated data closely resembles the
behavior of the same algorithm on the empirical data. With increasing
penalty for free parameters, a sparse, connected, partially oriented,
graphical structure emerges from multiple data sets. The problem of
variations in BOLD response among brain regions can be addressed by
explorations of time shifted data. Even with assumptions we think
unlikely about varying time delays in BOLD responses between voxels
in the same ROI, compounded with unknown BOLD delays between
ROIs and missing ROIs in some subjects, the procedures return
uncertain but useful information. In our simulations with such
realistically difficult data, 75% of the adjacencies in the graphical
output of the IMaGES search occur in the “true” graph from which the
simulation data were generated.
LOCC→ROCC LOCC→LIPL LOCC→LACC LIPL→LIFG RIPL→RACC

0 −1 1 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 1 0 0

−1 0 1 −1 0
0 −1 0 0 0
0 0 1 0 1
0 −1 1 0 1
0 0 0 0 0

records occurrences of edges in Fig. 3B. The first row records occurrences of these edges
S9 record the first nontriangular model found by GES for each of the nine data sets taken
or edge X→Y just in case the model in that row either contains X→Y or X–Y; a “0” is
rded just in case the model for that row contains Y→X.
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With the empirical data, analysis with lagged residuals is more
conservative than 0 lag analysis. There need not, however, be a
decision between analyzing data with 0 lags or with residuals from
one (or more) lags where the results of the different analyses are in
good agreement or share parts of their structure of interest. In our
view, actual conflict of results obtained by the different methods
represents uncertainties that can only be resolved by further, inde-
pendent information.

Our simulation studies leave open a number of issues: to
deconvolute or not; whether and how IMaGES accuracy depends on
the vertical distance of direct connections of ROIs; and the accuracy of
the procedures under varying possible topologies of voxel to voxel
connections between ROIs. The “topographic” model (Kaas, 2004) of
connections between ROIs we use in our simulations is reasonably
established anatomically, but its role in information processing in the
brain is not.

The IMaGES procedures can be modified in several ways. As noted
previously, they can be used with, or without, deconvolution
estimates. Maximum likelihood estimation other than the Gaussian
procedure we have usedmay be used in computing the BIC score, and,
in principle, approximations to a posterior distribution other than the
BIC score might be used. We have not investigated such alternatives.

Although estimates of linear coefficient parameters and standard
errors using Gaussian distribution theory could be given for any of the
graphical models we have produced, we deliberately have not done
so. In our simulations, inter-regional influences are collective, non-
linear and interactive, with no obvious parameterization (as by linear
coefficients) that accurately represents strengths of influences and
could be estimated from the measured variables.

The reproducibility of the results of search procedures has several
dimensions. Besides differences between results in similar experi-
ments from different laboratories and the expected variation in GES
results across subjects, GES results may vary within subjects over
multiple repetitions of an experiment. When multiple experimental
repetitions for each subject are available, and there are multiple
subjects, IMaGES reproducibility can be assessed within subjects and
across experimental repetitions, across subjects within experimental
repetitions, and as a whole. If effective connectivity is eventually to be
of use in differentiating clinical groups, systematic studies of
reproducibility, and within group and between group variation, in
neurotypicals and various patient groups will be essential.

Model scoring search procedures have previously been applied
to fMRI data (Zheng and Rajapake, 2006; Chen and Herskovitz,
2007) but the combination of challenges we have reviewed above
have not been addressed. Methodological proposals for uncovering
effective connectivity from fMRI data should at least take account of
the problems of indirect measurement, multiple subjects with
varying sets of ROIs, and varying BOLD response delays. Ideally, they
should also allow for the possibility of associations among ROIs that
are not represented by any recorded ROIs, and they should capture,
or at least be robust against, feedback relations. Our search is not
robust against confounding of represented ROIs by sources of
covariation not represented in the ROIs of any of the subjects, and
no search method is currently available that addresses this problem
in conjunction with the others just noted. (When, however, the
directed graph is uniquely oriented, as in our empirical study, latent
confounding of downstream variable pairs would prevent the
conditional independence relations the IMaGES search finds.)
Independent components methods (Hoyer et al., 2006; Lacerda et
al., 2008) produce more precise information than Markov Equiva-
lence Classes, and can learn cyclic graphs, but do not generalize to
multiple subjects. When some or all variables are not Gaussian,
search methods using conditional independence tests derived from
Hilbert kernels yield more informative results than Markov
Equivalence classes; they, can be (but have not yet been) extended
to make correct inferences for DAGs when there are unknown latent
confounders, generalized for multiple independent data sets, or
extended to learn cyclic graphs. But no methods are known that
correctly search for information about cyclic graphical structure
when there may be unknown latent confounders or when the
dependencies among measured variables are non-linear. Expanding
the information about the neural processes supporting cognition
that can be obtained from fMRI investigations will require further
development of statistical machine learning methods.
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Appendix A: Graphical causal models and search algorithms

About DAGs

A set of random variables {X1,…, Xn } is said to factor according to a
DAG G, if for all values of x1,…, xn of X1,…,Xn, the density d(x1,…, xn)=
ΠI d(xi | PARG(x1,…, xn) (xi)), where PARG(x1,…, xn) (xi)) is the values in
xi of the parents of Xi (i.e., the variables in G with edges directed into
Xi). Specific assumptions about linearity, etc. can be added, but the
representation is general over arbitrary smooth functional forms
with independent disturbances. The factorization determines a
unique set of independence and conditional independence rela-
tions among the variables. The Markov assumption is that these
independence relations hold in any probability distribution for a
causal model whose causal structure is given by G. A further
assumption, Faithfulness, is that the probability distribution for a
model satisfies only those independence and conditional indepen-
dence relations implied by the factorization of the causal structure.
For linear systems, Faithfulness amounts to the assumption that
the variables are not deterministically related and that the
correlations and partial correlations produced by multiple path-
ways between two variables do not perfectly cancel one another.
Let ΘG be the set of probability distributions that factor according
to DAG G. G and G' are said to be Markov equivalent if and only if
ΘG=ΘG' or, in other words, if their factorizations are mathemat-
ically equivalent. Markov equivalence classes are sometimes
singletons but often not.

With i.i.d. sampling, or stationary time series, the Markov and
Faithfulness Assumptions are sufficient to allow several consistent,
unbiased search algorithms (Spirtes et al., 1993, 2000; Demiralp
and Hoover, 2003; Meek, 1997; Richardson, 1996; Chickering,
2002; Silva et al., 2006; Zhang and Spirtes, 2008). Another set of
algorithms (Ramsey et al., 2006) in principle allows confidence
intervals assuming a modification of Faithfulness, although prac-
tical computational procedures for computing the intervals are not
available. Still another set of algorithms (Hoyer et al., 2006), does
not require Faithfulness, but does require i.i.d. sampling, non-
determinism, linearity, and that the disturbances or random errors
be non-Gaussian. (In the data we consider, most of the variables
have Gaussian residuals.) These various algorithms apply to linear
and additive non-linear time series, linear or approximately linear
equilibrium systems, various non-linear equilibrium systems,
linear and approximately linear systems with Gaussian and non-
Gaussian variables, feedback systems and systems with latent
variables.

GES

The Greedy Equivalence Search (GES) (Meek, 1997), begins with
an empty graph whose vertices are the recorded variables and
proceeds to search forwards, and then backwards, over Markov
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equivalence classes. To approximate a posterior probability distri-
bution, a DAG representative of each considered equivalence class
with an additional edge is scored using the Bayesian Information
Criterion (BIC) (Schwarz, 1978): −2ln(ML)+k ln(n), where ML is
the maximum likelihood estimate, k is the dimension of the model
and n is the sample size. For uniform priors on models and smooth
priors on the parameters, the posterior probability conditional on
the data is a monotonic function of BIC. At each stage, the
equivalence class (or more exactly, a representative DAG in the
class) with the best BIC score is chosen. This may require reversals
of edges directed in a representative of a previous equivalence class.
For example if the representative at some stage n is X→Y→Z and
the best edge to add is W→Z, the DAG representing the new
equivalence class will be X←Y←Z←W. This forward stage
continues until no further additions improve the BIC score. Then a
reverse procedure is followed that removes edges according to the
same criterion, until no improvement is found. The computational
and convergence advantages of the algorithm depend on the fact
that it searches over Markov equivalence classes of DAGs rather
than individual DAGs. In the large sample limit, GES identifies the
Markov equivalence class of the true graph if the assumptions above
are met.

Pseudo-code for the GES algorithm is given below, following GES
as presented in Chickering (2002). A pattern is a graph with directed
(→) and undirected (\) edges which represents an equivalence class
of directed acyclic graphs (DAGs), as follows. Two nodes X and Y are
adjacent in a DAG or pattern G, notated adj(X, Y, G), just in case there
is an edge connecting X and Y in G. A path (of length n−1) is a
sequence bX1,…,XnN of nodes in G such that for each i=1,…, n−1, Xi

is adjacent to Xi+1 in G. A collider in G is a path of length 2 of the form
X→Y←Z, for X, Y, and Z in G. In a pattern P, each directed edge in P is
so directed in each of the DAGs in the equivalence class, and each
collider in each DAG of the equivalence class is a collider in P. A
semidirected path from X to Y in G is a path bX1, …, Xn=YN such that
for each i=1 to n−1, Xi→Xi+1 or Xi–Xi+1.

GES(D)

(1) G←∅
(2) S← the score of G
(3) bG, SN←ForwardEquivalenceSearch(G, S)
(4) G←BackwardEquivalenceSearch(G, S)
(5) Return G

ForwardEquivalenceSearch(G, S)

1. Repeat while E0≠∅
1. E0←∅
2. T0←∅
3. S0 ← ∅
4. For each edge E'=X → Y such that ∼adj(X, Y, G)

1. T-Neighbors ← nodes Z such that Z \ Y and ∼adj(Z, X, G)
2. For each subset T of T-Neighbors

1. G′ ← a DAG in G
2. S′ ← S + ScoreEdgeAddition(G, E′, T)
3. If S′bS & S'bS0 & ValidInsert(G, E′, T)

1. E0 ← E'
2. T0 ← T
3. S0 ← S'

5. If E0 ≠∅

1. Add E0 to G
2. For each T in T0, if T –Y in G, orient T – Y as T → Y.
3. S ← S0
4. G ← Rebuild(G)

2. Return bG, SN
BackwardEquivalenceSearch(G, S)

1. Repeat while E0 ≠∅
1. E0 ← ∅
2. H0 ← ∅
3. S0 ← ∅
4. For each edge E' in G, connecting X and Y

1. H-Neighbors ← nodes Z such that Z – Y and adj(Z, X, G)
2. For each subset H of H-Neighbors

1. G' ← a DAG in G
2. S'← score that would result from removing the edge from
X to Y from G'
3. If S'bS and S'bS0 & ValidDelete(G, E', H)

1. E0 ← E′
2. H0 ← H
3. S0 ← S′

3. If E0≠∅
1. Remove E0 from G
2. For each H in H0, if X – H in G, orient X – H as X→H.
3. S ←S0
4. G ← Rebuild(G)

5. Return G

ScoreEdgeAddition(X, Y, T, G)

1. NAYX ← Z such that Z–Y and adj(Z, X, G)
2. S2 ← (NAYX ∪ T) ∪ parents(Y)
3. S1 ← S2 ∪ {X}
4. Return score(Y, S1) - score(Y, S2)

ScoreEdgeDeletion(X, Y, H, G)

1. NAYX ← Z such that Z–Y and adj(Z, X, G)
2. S2 ← (NAYX \ H) ∪ parents(Y)
3. S1 ← S2 \ {X}
4. Return score(Y, S1) - score(Y, S2)

ValidInsert(G, E, T)

1. NAYX ← nodes Z such that Z\Y and Z is adjacent to X
2. If NAYX ∪ T is not a clique

1. Return False
3. If some semidirected path from Y to X does not contain any node in
NAYX ∪T

1. Return False
4. Return True

ValidDelete(G, E, H)

1. NAYX ← nodes Z such that Z\Y and adj(Z, X)
2. If NAYX \ H is not a clique

1. Return False
3. Else

1. Return True

Rebuild(G)

1. For each edge X→Y in G
1. If there does not exist a Z not equal to X such that Z→Y

1. Orient X→Y as X\Y.
2. Orient Z→Y as Z\Y.

2. Repeat until no more orientations can be made, for X, Y, Z, W in G
1. If X→Y, Y\Z and ∼adj(X, Z), orient Y–Z as Y→Z
2. If X→Y, Y→Z, and X–Z, orient X–Z as X→Z.
3. If X→Y, X→Z, Y→W, Z→W, and X–W, orient X–W as X→W.

3. Return G.
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Generalization of the BIC score to the IMscore

Let D be a list of data sets bD1,…,DmN, each with sample size n, over
a common set of variables V=bD1,…,VpN, and let G be a DAG model
over V, indexed by j. Let k be the number of nodes plus the number of
edges in G. Note that for the linear case,

−m
2c

� �
imScore = − n= cð Þ

Xm
i = 1

Xp
v = 1

log σ ip

� �
− mk = 2ð Þlog nð Þ

where σik is the residual standard deviation of Vi regressed linearly
onto the parents of Vi in G for Di. The first term of this formula is the
maximum likelihood of the product of m independent multivariate
Normal distributions with modified residual variances σ2 = c

11 ; N ;σ2 = c
mp ,

respectively. Following Schwarz (1978), the function being maxi-
mized is:

S Y;n; jð Þ = log
R
αjexp

Pm
i = 1 YB

i θi − bi θið Þð Þn� �
dμ j θ1ð Þ N dμ j θmð Þ

where for each i=1,…,m, Yi°θ-bi(θ), is distribution of , represented as
an element of the exponential family, where αj, Y, θ, and b are notated
as in Schwarz. But since the sum of strictly convex functions over
disjoint sets of parameters is strictly convex, by Schwarz's argument,
as n→∞, this is equal to:

S Y;n; jð Þ = log
R
αjexp A − λ j ϑ − ϑ0 jð Þð Þdμ j ϑ1ð Þ N dμ j θmð Þ

= nsup
Pm
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− Pm

i = 1 k= 2
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log n + R

= − n= cð ÞPm
i = 1

Pp
v = 1 log σ ip

� �
− mk= 2ð Þlog nð Þ + R

where R is a constant given fixed n, for A, λ, θ, θ0 and μj as notated in
Schwarz.

Cyclic graphs

The conditional independence relations of cyclic graphs, param-
eterized to represent linear systems with independent disturbances,
are given by a purely graphical condition, the d-separation algorithm.
Two variables, X, Y in a directed graph G are d-connected with respect
to a set Z of other variables in the graph if and only if there is a series of
pairwise adjacent (in G) variables, V1,…Vn, with V1=X and Vn=Y,
such that for every variable Vi with directed edges Vi-1→Vi←Vi+1

there is a directed path from Vi terminating in a variable in Z.
The variables are d-separated with respect to a set Z if and only if

there is no d-connection between them with respect to Z. The d-
separation property also characterizes the conditional independence
relations implied by DAGs.

Cyclic systems that are d-separation equivalent may not share
the same adjacencies. For example, the following systems are
d-separation equivalent:

X = aZ + bY + ex
Y = cW + dX + ey

and

X = aW + bY + ex
Y = cZ + dX + ey

Conditional independence relations or vanishing partial correla-
tions cannot distinguish the directions of edges in cycles. That is, for
example, if a graph contains the cycle X→Y→Z→X, its d-separation
class will contain a graph with the cycle X← Y← Z←W. A
computable, equivalence relation analogous to Markov equivalence
for DAGs is available for linear, cyclic systems that imply the same
conditional independence relations for all non-zero values of their
linear coefficients (Richardson, 1996).
Appendix B: data acquisition and analysis

On each trial, the subject judged whether a pair of visually
presented stimuli rhymed or not by pressing one of two response
keys. In each 20-s block, 8 pairs of words were presented for 2.5 s
each. Blocks were separated by 20-s periods of visual fixation. Four
blocks of words were followed by four blocks of pseudowords. The
data were acquired on a Siemens Allegra 3T MRI scanner at the UCLA
Ahmanson-Lovelace Brain Mapping Center, using the following
scanning parameters: TR=2000 ms, TE=30 ms, field of
view=200 mm, matrix size= 64 X 64, 33 slices, slice
thickness=4 mm (0 skip), 160 timepoints. For additional details
on the subject population and data acquisition, see Xue and Poldrack
(2007).

FMRI data processing was carried out using FEAT (FMRI Expert
Analysis Tool) Version 5.98, part of FSL (FMRIB's Software Library,
http://www.fmrib.ox.ac.uk/fsl). Following pre-processing steps were
applied; motion correction; brain extraction using BET; spatial
smoothing using a Gaussian kernel of FWHM 5 mm; grand-mean
intensity normalization of the entire 4D dataset by a single
multiplicative factor; highpass temporal filtering (Gaussian-weighted
least-squares straight line fitting, with=40.0 s). First level GLM
analysis was carried out using FILM with local autocorrelation
correction (Woolrich et al., 2001). Second level mixed effect GLM
analysis was carried out to detect the activations per condition
consistent across subjects. Z(Gaussianised T/F) statistic images were
thresholded using clusters determined by ZN2.3 and a (corrected)
cluster significance threshold of P=0.05 (Worsley, 2003).

Thresholded 2nd level GLM statistics maps revealed consistent
activations in the following areas: bilateral ACC, IFG, IPL, and OCC; and
left MTG. Right MTG activation was detected across a majority of
subjects in the 1st level analysis, but was not statistically significant in
the 2nd level analysis, hence the RMTG region is only used in analyses
that allow variable numbers of regions.

Regions of interest (ROIs) were defined as voxels that were
significant in the first-level analysis which also fell within the
anatomical regions of interest described above. The first level images
were thresholded at t=2.0 for the analysis presented in Fig. 2, and at
z=4.7 for the analyses presented in all other figures. Themeanwithin
these voxels was extracted and used for subsequent analyses. Since
some subjects had no supra-thresholded voxels for a particular area,
the number of non-degenerate time-series (hence regions) varied
across the subjects.

Appendix C: details of simulation

The framework of the simulations creates a time series of ROI
values which are sampled at a fixed interval, with the sample
measures subject to independent, Gaussian error. Each ROI consists of
a collection of 50 variables, which may be thought of as voxels or
neurons. Each variable within a ROI influences its neighbors (variables
at most two steps forward or backward in a pre-ordered list of
variables for the ROI) non-linearly with a simulated 100ms (1/20th of
the sampling interval) time delay. The variables in one ROI may
influence variables in another ROI in the same way, but with a longer
time delay. For every influence between ROIs in one direction, there is
an influence in the opposite direction. If variables in one ROI directly
influence variables in another ROI, we represent that dependence by a
directed edge in a graph. The “feed-forward” graph is composed of the
directed edges on directed paths out of the Input variable. The ROI
value at a time is the sum of the values of its constituent variables at
that and recent past times, convolved with a hemodynamic response
function of time.

We let Ki(j) index values of the ith variable constituent of ROI K at
time j. We let Pi range over parents of the ith variable within a ROI and
we let Qirange over parents of the ith variable located in ROIs other

http://www.fmrib.ox.ac.uk/fsl
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than that of i. The values of Ki(j) for each constituent variable i of ROI
K, and time j are determined by the equation

Ki jð Þ = 30tanh
X

k
akPkðj − 1Þ +

X
m
amQmðj − 4Þ

� �
+ e1

� �
= 30

� �
+ e2:

ð1Þ

with e1 ∼ N(0, σ) where for each variable Ki, σ is drawn from U(0,30),
and e2 ∼N(0, 0.3). The different arguments for P and Q represent the
different times required for signals to pass to adjacent variables
within a ROI (P) as compared with between ROIs (Q). The “30” factors
merely increase the scale so that the variances and error variances
when measurement error is taken into account will approximate
those of the Xue and Poldrack experiment.

The values of ROIs at a time are determined by the following
equation:

ROIK t0ð Þ =
Xt0

j = t0 − 100

X50
i = 1

Ki jð ÞHRF j; t0ð Þ ð2Þ

where HRF is the canonical dual-gamma HRF as used in SPM. Finally,
the measured variables are given by:

MK tð Þ = ROIK tð Þ + e3 ð3Þ

where e3∼N(0, σ) where σ is drawn from U(0, 30). Measured values
are obtained only every 20 simulated time steps after the first 600
simulated time steps (corresponding to a 60-s “burn in”).

For varying delays in BOLD response within ROIs, Eq. (2) is
modified for some ROIs to

ROIK t0ð Þ =
Xt0

j= t0 −100

X50

i=1

Ki jð ÞHRF j; t0 + δið Þ

where δi is drawn from U(0,5).
For varying delays in BOLD response between ROIs, the values

given by equation 2 for 3 (randomly) selected ROIs are shifted by 10,
20, 30 or 40 time steps into the future, corresponding to a simulation
of 0.5, 1, 1.5 and 2.0 sampling intervals. The forward graphs are
selected uniformly at random on the space of all possible 9 variable, 9
edge (respectively 11 variable, 11 edge) DAGs.

The simulated input was treated as a ROI associated with a set of
constituent variables, like the ROIs of other variables. In 25-step
intervals within 200-step blocks with 200-s rest periods between
blocks, 25 values for the constituent variables of the input ROI were
selected. Each selected constituent was given a value drawn from N
(5.0, 0.5) for the duration of its presentation.

Appendix D. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2009.08.065.
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