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Lindquist and Sobel claim that the graphical causal models they call “agnostic” do not imply any
counterfactual conditionals. They doubt that “causal effects” can be discovered using graphical causal models
typical of SEMs, DCMs, Bayes nets, Granger causal models, etc. Each of these claims is false or exaggerated.
They recommend instead that investigators adopt the “potential outcomes” framework. The potential
outcomes framework is an obstacle rather than an aid to discovering causal relations in fMRI contexts.
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In response to Ramsey et al. (2011a, 2011b), Lindquist and Sobel (in
press) (LS) appear to make three claims and a recommendation. The
claims are that (1) “causal effects” cannot be found by methods
associated with a variety of directed graph representations of causal
relations, including SEM, Granger causal models and Dynamic Causal
Models (DCMs), all ofwhich they doubt are “generally useful for ‘finding
causal effects’ or estimating causal effects”; (2) the theory of graphical
causal models developed by Spirtes et al. (1993) makes no counterfac-
tual claims; and (3) that causal relations cannot be determined non-
experimentally from samples that are a combination of systems with
different propensities. Their recommendation is that fMRI researchers
adopt the “potential outcomes” framework. Of these claims, (1) is mere
assertion on unspecified grounds; (2) is false; (3) is false as a generali-
zation, and distinguishing the cases in which it is true from those in
which it is false is part of what is done in the paper towhich LS respond.
For empirical inquiry with large numbers of variables whose causal
connections are unknown and with limited experimental control of the
processes to be understood, the potential outcomes framework is an
obstacle, not an aid, to discovery.

(1). The search for causal explanations of sample data is a form of
statistical estimation. In statistical estimationonehasa spaceof alternative
hypotheses (in point-valued estimation of continuous parameters the set
of alternatives is uncountably infinite). Each hypothesis determines a
sampling distribution or set of sampling distributions. An estimator is a
function from samples to subsets of the hypothesis space. Estimators are
sought with various virtues, notably convergence (in one or another
83

84

85

86 Q4
sense, under various assumptions) to the true hypothesis in the large
sample limit.Anestimatormayhavevariousfinite sampleerrorproperties
(e.g., unbiased). The asymptotic andfinite sampleproperties of estimators
under distribution assumptions are characterized theoretically, or
nowadays estimated by simulation. One important facet of statistical
research has been to develop new estimators for special problems with
special assumptions about the distribution family.

Causal estimation has the very same structure. Causal relations are
represented by a directed graph, or equivalently by a connectionmatrix,
or set of suchmatrices (as for example,with timedependent structures).
The space of alternative hypotheses is a set of such matrices together
with various parameterizations of the connections among variables; the
parameterizations transform each abstract graph into a statistical
model. The statistical model determines a sampling distribution or set
of sampling distributions. The goal of causal inference is usually to
estimate features of the true connectionmatrix, and possibly parameter
values for an associated statistical model. A causal estimator is just a
function from sample data to a subset of connectionmatrices or graphs.
Exactly as with conventional parameter estimation, the properties of
estimators can be demonstrated mathematically or estimated by
simulation. Exactly as with conventional statistics, the consistency and
error properties of estimators will depend on the hypothesis space. And
exactly as with conventional parameter estimation, research in causal
inference consists in part in adapting estimators to special problems.

Causal estimation from fMRI data poses a very special, very
interesting and difficult problem: the data are indirect, noisy, aggregat-
ed measurements of non-linear feedback processes, and the variables—
the ROIs—are often built in whole or in part out of the sample data.
Notwithstanding, the construction of estimators for causal structure
from fMRI data is improving rapidly. For example, Smith et al. (2011)
011.07.071
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have recently simulated fMRI data for a number of simple structures
under a variety of realistic conditions on noise, measurement error and
length of recording, and in a few unrealistic conditions (nearly deter-
ministic systems; very small effects; canceling feedback). Work in press
(Ramseyet al., 2011a)describesmethods that recover the adjacencies in
the graphs generating the Smith et al. data in simulated realistic
conditions with nearly 100% precision and recall; the methods identify
directions in most of the data-generating causal models with precision
and recall ranging between 80 and 95%. And, contrary to some
commentators, consistent causal estimators are available for classes of
feedback systems or for cyclic graphs that represent them. Continuing
research will undoubtedly improve on current causal estimators.

The potential outcomes framework, now standard in statistics, is
essentially a special case of the graphical causal model framework but
with twists that make causal estimation impossible except in very
restricted contexts. That framework was developed and tailored for
experimental trialswith a small number of variableswhere the concern is
to estimate the effect of a treatment, or treatment assignment, on an
observed outcome variable in circumstances inwhich there is a great deal
ofprior informationaboutwhich recordedvariables areandarenot causes
of other variables. These are not the usual circumstances of fMRI research.

Applications of the PO framework seem to assume that (1) most of
the causal relations are known; (2) that the causal (“treatment”)
variables are categorical; (3) that the number of actual variables is quite
small; and (4) that the variables whose causal relations are of interest
are directlymeasured. Noneof this is true ofmany fMRI studies. In order
to apply the PO framework in a concrete case, one must know which
variables are potentially direct causes of which others, and which
variables cannot be direct causes of others. Applying the PO framework
thus presupposes exactly what is not known in fMRI contexts (and
many other scientific contexts). That may help to explain why provably
consistent search methods relevant to fMRI are not available for PO
models. It may also explain why Lindquist and Sobel disparage the very
possibility of systematic scientific searchdespite long-standingproofs of
the existence of consistent estimators of causal relations inwell-defined
and testable circumstances, and despite any number of simulation and
empirical examples of successful applications of such estimators
(Spirtes, et al., 2010).

Point (2). The implications for experimentalmanipulations thatmay
or may not have ever been done are what make a causal model causal.
Claims about what the outcomewould be of a hypothetical experiment
that has not been done are one form of counterfactual claims. They say
that if such and suchwere to happen then the result would be thus and
so—where the such and suchhas not happenedor has not yet happened.
(Of course, if the experiment is later done, then the proposition becomes
factually true or factually false.) Thus it is a very serious charge to say, as
LS do, that the graphical model framework does not represent or entail
any counterfactual claims. The charge is quite false. The systematization
of the connection between graphical representations of causal relations
and predictions of outcomes of experimental interventions has a long
history, but its non-parametric form was inaugurated in Spirtes et al.,
1993. Extending those results, Pearl (2000) developed a complete
algorithmfor computingwhenan acyclic graphical causalmodel implies
a testable prediction and for estimating the predicted effectwhen that is
197
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possible. LS say that Spirtes et al. (1993)donot consider counterfactuals,
and indeed the word “counterfactual” is not used in that book. Which
only illustrates that before drawing conclusions about the content of a
work one should read more than the index.

The potential outcomes framework posits a set of “counterfactual
variables”—each variable, X, that is a relatively direct effect of a variable,
Y, has a shadow counterfactual variable X(y) for each possible assign-
ment of a value y to Y. A joint probability distribution is introduced over
values of the actual and the counterfactual variables. That joint
distribution permits the formal expression of a variety of counterfactual
relations that are not defined inwhat LS call the “agnostic” framework of
graphical causal models that LS attribute to Spirtes et al. (1993). For
example, PO assumes the following iswell defined: “the joint probability
of YwereX is forced tohave value1 andofYwereX forcedhave the value
0, given that actually X=1.” This is the sort of quantity denoted in
potential outcomes notation as f(Y(1),Y(0)|X=1). In contrast, in the
same circumstance the “agnostic” graphical causal model framework
only defines “the probability distribution of Y were X forced to equal 1,
given that X actually equals 1,” or in PO notation f(Y (1)|X=1), and “the
probabilitydistributionofYwereX forced toequal 0, given thatXactually
equals 1,” or in PO notation, f(Y (0)|X=1). But I emphasize that no
counterfactual variables are used or needed in the graphical causalmodel
framework. In the potential outcomes framework, if nothing is known
about which of many variables are causes of the others, then for each
variable, and for each value of the other variables, a new counterfactual
variable is required. In practice that would require an astronomical
number of counterfactual variables for even a few actual variables.

Point (3). In what appears to be intended as a criticism of the possibi-
lity of recovering causal structure from observational data, LS sketch an
example in which the sample is a mixture of units with different
propensities for aneffect, i.e., different probability distributions.When the
sample is a mixture of units with differing causal structures and/or
probability distributions, predictions about the effects of an experimental
distribution may still hold, not for every individual in the population but
for thedistribution thatwould result if the interventionwere tobeapplied
to the entire population. In the paper to which LS respond, Ramsey et al.
(2011a, 2011b) provide a general theory of when that is possible. LS
ignore the general theory in favor of sketching an example that fails to
distinguish prediction of individual or sub-group effects from prediction
of population effects.
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