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Neumann et al. (2010) aim to find directed graphical representations of the independence and dependence
relations among activities in brain regions by applying a search procedure to merged fMRI activity records
from a large number of contrasts obtained under a variety of conditions. To that end, Neumann et al., obtain
three graphical models, justifying their search procedure with simulations that find that merging the data
sampled from probability distributions characterized by two distinct Bayes net graphs results in a graphical
object that combines the edges in the individual graphs. We argue that the graphical objects they obtain
cannot be interpreted as representations of conditional independence and dependence relations among
localized neural activities; specifically, directed edges and directed pathways in their graphical results
may be artifacts of the manner in which separate studies are combined in the meta-analytic procedure. With
a larger simulation study, we argue that their simulation results with combined data sets are an artifact
of their choice of examples. We provide sufficient conditions and necessary conditions for the merger of two
or more probability distributions, each characterized by the Markov equivalence class of a directed acyclic
graph, to be describable by a Markov equivalence class whose edges are a union of those for the individual
distributions. Contrary to Neumann et al., we argue that the scientific value of searches for network
representations from imaging data lies in attempting to characterize large scaled neural mechanisms, and we

suggest several alternative strategies for combining data from multiple experiments.

© 2010 Elsevier Inc. All rights reserved.

Introduction

As functional magnetic resonance imaging time series from psy-
chological experiments and resting states have become available in
increasing number, search procedures adapted from economics and
machine learning have been applied to attempt to extract from
multiple data sets processing information represented by graphical
causal models (e.g., Chen and Herskovitz (2010), Chen et al. (2009),
Friston et al. (2003), Gates et al. (2010), Roebroeck et al. (2005), Laird
et al. (2008), Marreiros et al. (2009), Ramsey et al. (2010), Rajapakse
and Zhou (2007)) Recently, Neumann et al. (2010) have applied a
heuristic Bayes net search algorithm to combined samples from a
large, diverse collection of fMRI contrasts. The stated aim of the
Neumann study is not to identify neural processing mechanisms but
simply to characterize the dependence and conditional independence
structures of the multiple fMRI studies by a single graphical
representation. To that end, Neumann et al., produce three graphical
models using an automated search applied to reductions of fMRI data
assembled from multiple, diverse studies in BrainMap. They validate
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their search procedure with simulations that find that merging the
data from two distinct Bayes nets results in a graph that combines the
edges in the individual Bayes nets.

In what follows, we define relevant notions and describe and
analyze the Neumann et al. results. We argue that their procedure
yields graphical objects that in general do not result, even in the large
sample limit, in a combination of edges from the original directed
acyclic graphs (DAGs). We argue that their graphical results cannot
be used to characterize statistical dependencies in the individual
studies of their meta-analyses. We describe sufficient conditions
and necessary conditions for that aim to be possible. We argue that
their simulation results are an artifact of their examples and do not
generalize. Finally, we question the scientific value of network
representations of imaging data that are separated from causal
hypotheses, and consider several possible alternative strategies for
meta-analysis.

Graphical models and Markov equivalence classes

Directed graphs can be used to represent a family of joint prob-
ability distributions on the variables, or hypothetical causal relations
among the variables, or both simultaneously. Causal representations
are common in fMRI applications, but Neumann et al., explicitly
reject such an interpretation, and seek to represent only distributional
features.
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In the simplest case, such graphs have no directed cycles (they
are directed acyclic graphs, or DAGs). Two nodes, X, Y, in a DAG are
said to be adjacent if X—Y or X« Y occurs in the graph. The vertices
of a DAG represent random variables, and depending on the range
of values of the variables, a DAG may be associated with a family
of probability distributions, for example multinomial or Gaussian
distributions, and appropriate parameters (e.g., linear coefficients
and disturbance variances). Specification of the parameter values
(e.g., linear coefficient values, or conditional probability values) then
determines a particular joint distribution on the possible assignments
of values to all variables. The topology of the DAG represents a set of
restrictions on the joint probability distribution on those variables
characterized (in kinship terminology) by a Markov property: Let X
be any variable in DAG G. For every allowed assignment of values to the
variables of G, conditional on the values of its parents, X is independent
in probability of all variables that are not descendants of X in G.!

In causal terminology: Conditional on its direct causes as represented
in G, X is independent of all variables in G that are not effects of X.

Equivalently, the joint probability of an allowable assignment
of values to the variables is always equal to the product, over all
variables, of the probability of the value of each variable conditional
on the values assigned to its parents. The graphical topology of a DAG
thus encodes the set of conditional independence relations shared by
all probability distributions appropriate for the DAG. The conditional
independence relations encoded by a DAG can be calculated by purely
graphical algorithms; for example, Pearl's (1988) d-separation
algorithm. When a DAG captures all and only the conditional in-
dependence relations in a distribution, we say the DAG represents
the distribution, or, equivalently, that the DAG and distribution are
faithful to one another.

Two directed acyclic graphs (DAGs) are said to be Markov
equivalent if, by the Markov property, they imply the same set of
conditional independence relations among their variables. For exam-
ple, the graphs X—Y—Z, X<~Y—Z and X« Y «Z constitute the
Markov equivalence class encoding that X is independent of Z
conditional on Y, commonly abbreviated: XL Z|Y. A Markov
equivalence class of DAGs is commonly represented by a mixed
graph (called a CPDAG by Neumann et al., and often called a pattern in
the computer science literature) with a directed edge X — Y provided
X— Y occurs in every DAG in the class, and an undirected edge X-Y if
X—Y occurs in some DAG in the class and X < Y also occurs in some
DAG in the class. All Markov equivalent graphs have the same
adjacencies, but as the example indicates, not necessarily the same
directions for all edges. If in all graphs in a Markov equivalence class
X—Yoccurs,and Z is adjacent to Y but not adjacent to X, then the edge
joining Y and Z has the same direction in all DAGs in the Markov
equivalence class.

Directed graphs faithful to a probability distribution also rep-
resent probabilistic dependence relations for some kinds of random
variables and parameterizations of the distributions. For example, if
there is a directed path from X to Y in a DAG, and, as in the Neumann
et al., paper, all variables are binary (in which case the DAG and a
specification of the probability distribution has come to be known as
a Bayes net), then X and Y are dependent unconditionally. The same
is true for linear models with independent noises, but is not true in
general for models with categorical variables taking 3 or more values.

! Independence of random variables is defined in terms of independence of
measurable subsets of their values. In the Neumann case, the variables range over two
values, {0,1}, and all subsets of values are measurable. Independence of variables X and
Y thus means pr(X=0, Y=0)=pr(X=0)pr(Y=0), and pr(X=1, Y=0)=pr(X=1)
pr(Y=0); etc. Conditional independence of variables similarly means, by definition,
conditional independence for all measurable sets of values of the variables. Thus, for
binary variables, X and Y are independent conditional on Z if and only if pr(X=0,
Y=0|Z=0)=pr(X=0| Z=0)pr(Y=0|Z=0), and pr(X=0, Y=0|Z=1)=pr(X=0|
Z=1)pr(Y=0|Z=1), etc.

The Neumann et al. meta-analyses

Neumann et al. “propose a new exploratory method for the
discovery of partially directed functional networks from fMRI meta-
analysis data. The method performs structure learning of Bayesian
networks in search of directed probabilistic dependencies between
brain regions...we infer with our method possible functional inter-
dependencies between brain regions from observational data alone”
(p. 1372). A more precise goal can be surmised from their effort to
validate their method: Assuming that the functional dependencies
of each individual imaging study could be represented by an
(unknown) Bayes net, from the combined data infer a graphical
object each of whose edges occurs in at least one of the individual
Bayes nets, and, so far as possible, includes all such edges. Further, we
assume that Neumann et al. intended that the resulting graphical
objects would at least preserve some of the statistical interpretability
of Bayes nets, for example, that directed paths between variables
indicate statistical association of the terminal nodes. In what follows
we show that their method cannot reliably achieve these goals, and
we describe the special conditions under which the goals are feasible.
In particular, we show that their method cannot distinguish, on the
one hand, between edges and pathways that are due to functional
associations of brain areas and, on the other hand, edges and path-
ways that are artifacts of pooling studies from different subjects under
different experimental conditions.

Neumann et al. carry out a search for graphical representations
separately on four groups of fMRI data with variables from several
brain regions. The number of regions in a group varies from 5 to 10.
The data are extracted from BrainMap and represent a sample from
2050 fMRI contrasts. Each case specifies a value (active/not active) for
the regions. 100 samples are drawn from the data for each group, with
sample sizes varying from 196 to 569 for the respective groups, and
their search procedure is applied. An edge is postulated if it occurs in
more than 50% of the trials.

Neumann et al, use a heuristic iterative search strategy for
graphs, starting with an empty graph and adding the edge that most
increases the posterior probability of the model, estimated via a Monte
Carlo Markov Chain procedure. Their resulting graphs are shown in
Figs. 1-3 (their Figs. 10-12).

Dotted edges represent associations that do not quite meet the
50% criterion. About the undirected edges, for example in Fig. 1,
Neumann et al. write that: “the directionality between rdPMC and
cerebellum bilaterally could not be determined due to graph equiv-
alence” (Neumann et al. (2010), p. 1381). On each sampled data set,
their search algorithm always produces a DAG, which they convert
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Fig. 1. Neumann et al.'s Fig. 10. See text for description.
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Fig. 2. Neumann et al.'s Fig. 11. See text for description.
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Fig. 3. Neumann et al.'s Fig. 12. See text for description.

to a description—a pattern or a CPDAG—of a Markov equivalence
class, which may contain an undirected edge. A directed or undirected
edge is postulated if it occurs in at least 50% of the patterns thus
obtained.

Neumann et al. warrant their procedure by a simulation study
using data from the graphs in Fig. 4 (their Fig. 7) and by a simulation
study with data from the two graphs shown in Fig. 5 (their Fig. 6). All
variables are binary.

They consider samples of 1000 from a single random parameter-
ization (that is, a specification of the probability tables giving the
probability of each value of a variable conditional on each assignment
of values to its parents) of each graph, and combine the samples in
various proportions. They repeat each experiment with a given
proportion 100 times, keeping the parameterization fixed. They infer
an edge if it occurs in at least 50% of the trials for a given proportionate
combination. They recover either the edges in the graph most
frequently represented in the combination, or, when the proportions
are equal or nearly equal, they recover the union of the edges of the
two graphs. All of the edges of Fig. 5 are recovered by their procedure
when the source graphs are equinumerous, and all but one of the
edges of Fig. 4.

Neumann et al., do not claim that the graphical objects they obtain
with their procedure are always DAGs, or descriptions of Markov
equivalence classes of DAGs. That leaves open the question of how to
interpret the graphical objects they obtain: what dependence and
independence relations are characterized by a graphical objects found
by their procedure? We argue that the directed edges and directed
paths in the Newmann graphs cannot be interpreted as meaning there
are associations of the variables connected by that edge or path in any
of the individual studies they aggregate, nor, when two variables
measured only in different studies are related by a directed edge or
directed path in the Newmann graph, does it mean that the activity
of the brain ever produces associations of those variables. While
Neumann et al. do not give a causal interpretation of their graphs, they
surely intended to capture associations produced by brain activity,
not artifacts of their aggregation.

Interpreting the graphical objects from the Neumann
meta-analyses

None of their empirical results shown in Figs. 1-3 are graphs
of Bayes nets, nor do any of them characterize a unique Markov
equivalence class. In Markov equivalence classes, if there is an edge
X—Y, and Z is adjacent to Y but not to X, then the Y-Z adjacency
must be oriented. Thus, in Fig. 1, both of the undirected edges must
be oriented in any Markov equivalence class that agrees with the
directed edges and adjacencies. Similarly, in Fig. 2, the rIPS and lins

X1 X2 X1—> X2
NV X
X3 X4 X3 X4

Fig. 4. Unmixed graphs from Neumann et al.'s Fig. 6.

X1 X2 X1—» X2
N N
X3 X4 X3 X4

Fig. 5. Unmixed graphs from Neumann et al.'s Fig. 7.

adjacency must be oriented. In Fig. 3, the IIPMC-rlns adjacency must
be oriented; the ACC-rdPMC adjacency must be oriented; and the
IIns-rlns adjacency must also be oriented. These facts suggest that
their empirical graphs represent, not Markov equivalence classes, but
sets of Markov equivalence classes of the original DAGs; each such
Markov equivalence class can be characterized by giving alternative
directions to undirected edges—in other words, alternative sets of
conditional independence and conditional dependence relations. That
interpretation is not tenable because of a further problem: for binary
variables, the existence of a directed path between two variables in
a member of a Markov Equivalence class indicates that the variables
are associated in every distribution faithful to the DAGs in the Markov
equivalence class. In the graphs obtained by the Neumann et al.
procedure, directed paths from one variable to another cannot always
be understood to imply that the variables are associated. The data
Neumann et al. use are assembled from a variety of studies with
different stimulus conditions and different subject groups. If in one
experiment X and Y are dependent but both are independent of Z, and
in another experiment X is independent of Y and Z but Y and Z are
dependent, with DAG representations for the respective empirical
cases by X—Y Z, and X Y—Z, X and Z will be independent in each
experimental case. But their search, if it succeeds as they intend, will
produce a graphical object with a directed path X—Y—Z. In other
words, directed paths in their graphical objects cannot generally be
interpreted to mean that the variables connected by such paths are
actually dependent in any brain activity.

Is it at least the case that if the Neumann et al. procedure produces
a graph with a directed or undirected edge between two variables,
then in principle—say in the large sample limit—the adjacent variables
are associated in one of the individual experiments? It is not. With
elementary algebra, Yule (1903) showed that, except in special
circumstances, combining two or more distinct distributions in each
of which two binary variables are independent yields a distribution in
which the two variables are dependent.? Sufficient conditions for
independence in a distribution p =kp; + (1 —k) p, (0<k<1) formed
from joint distributions p, and p, both defined on random variables
X, Y are that p;(X=1)=po(X=1) or that p;(Y=1) =pa(Y=1).

Yule's point applies as well to conditional independence relations.
Let p(X)Y,Z)=kp;+ (1 —Kk) po, and let X,Y be independent condi-
tional on Z in both p1 and p2. Then for k not equal to O or 1, X, Y
are independent conditional on Z in p if and only if p;(X|Z)p(Y|Z) +
P2(X|Z)p2(YIZ) = p1(X|Z)p2(YIZ) + p2(X|Z)p1(Y]|Z). Related considera-
tions hold for categorical variables with more than two values. Yule's
point suggests that, except in special cases, meta-analysis searches
of the kind Neumann et al. conduct using combined data sets from
two or more fMRI time series cannot be correct in the large sample
limit.

For Gaussian distributions, vanishing covariances and vanishing
correlations are preserved under what Yule called the “mixture of
records” when the means of corresponding variables are the same
in both distributions, but vanishing partial covariances and partial
correlations, which mark conditional independence in Gaussian

2 Yule's point is the converse of Simpson's (1951) later but better known “paradox.”
In Yule's case two variables that are independent conditional on each value of a third
variable are nonetheless jointly dependent; in Simpson's two variables that are
dependent conditional on each value of a third variable are nonetheless jointly
independent. Yule's phenomenon holds for most combinations of probability
distributions; Simpson's depends on combining separate distributions in special
proportions.
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distributions, are not preserved under mixing except under specific
conditions.

Yule's argument shows that mixing samples can result in novel
dependencies if the sample size is sufficiently large. Search proce-
dures will in such circumstances asymptotically return a superset of
edges of the union of the sets of edges in the Bayes nets describing the
separate distributions, with consequent loss of information about the
orientations of edges. A mixed distribution may not be representable
by any DAG, may be representable by a DAG that is not the union
of the graphs of the component distributions, and may even be
representable by a DAG that reverses edges in a component graph. We
give some examples and then consider the case more generally.

Consider the two graphs in Fig. 5, used in the Neumann et al.
simulations. The Neumann et al. search returns the union of the edges
in the two graphs, but Yule's argument shows that is an artifact of the
sample size, the example, and the search procedure. Mixing two
distinct distributions for binary variables each represented by one of
the graphs in Fig. 5 results in a distribution represented only by a
complete graph, in which every pair of edges is adjacent. Such graphs
are members of a single Markov equivalence class, and that is what a
correct search procedure would find, probability 1, in the large sample
limit. For a simpler example with the same point, consider mixing two
distinct distributions over binary variables represented by the same
graph, X— Y« Z. The result of a correct (for single data sets) search
over the combined data is the Markov equivalence class representing
all acyclic complete directed graphs on X, Y, and Z. The results of
course vary with sample size and the parameter values for the joint
distributions. In contrast, if the distributions are Gaussian with zero
means, mixing two data sets faithful to X— Y« Z yields that very
graph. But combinations of Gaussian distributions have their own
problems. For example, consider two Gaussian distributions with zero
means, each respectively represented by one of the graphs in Fig. 6.

In a mixed distribution, X and Z will be independent, but will be
dependent conditional on Y, and the mixed distribution will be
represented by the graph in Fig. 7.

In sum, the procedure Neumann et al. use does not preserve
Markov properties, and the directed edges and directed paths in their
graphical output cannot be generally interpreted as marking real
associations. We have no principle for reading the statistical content
of their output.

When Markov properties are preserved in combined distributions

Consider more generally whether the Markov property holds
for the combined distribution of a collection of units if it holds for
distinct sub-populations of the collection. The sub-populations can
vary in several different ways. They might share the same graph, but
have different parameter values and hence different distributions.
They might have different graphs, but all be subgraphs of one acyclic
supergraph. Or they might have different graphs, and not be sub-
graphs of one acyclic supergraph. To describe the interactions
more generally, represent the parameter for each variable V by an
exogenous variable directed into V. Consider the case of a linear
model:

Y =aX + ey.

X->Y Z X Y->Z

Fig. 6. Unmixed graphs, in example with Gaussian distributions with zero means.

X->Y<Z

Fig. 7. The mixed distribution for the distributions in Fig. 6.

Suppose that for each unit in the population, the value of the
coefficient is the value of the random variable coeffx_.y. Treat the
parameter as a regular random variable, and treat the parameters as
if they were ordinary causes which, when included in a graphical
representation, satisfy the Markov condition. If every system in the
population has the same value for the coefficient, then coeffx_. y
is independent of everything and can be left out of the graph
representing the population. On the other hand, if coeffx _, yis different
for different members of the population, then the graph is:
X— Y« coeffx_ y. Note that the model as a whole is no longer linear,
because coeffy multiplies X rather than being added to X. If the value
of coeffx_ y varies among units but is independent of X and ey, then
it can also be marginalized out of the graph without affecting the
Markov Condition for the non-parameter variables.

Suppose we have a binary model, X — Y, where 0y — gjx —o =
P(Y=0|X=0)=a and 6y _ox—1=P(Y=0[X=1)=Db. Again, if a
and b are different for different units in the population, then the
graph can be represented as in Fig. 8, assuming that 6y —ox —o and
0y —oix —1 are independent of each other and of all of the other
non-descendants of Y. Note also that the model as a whole is not
binary any more, as 6y —gjx —o and 6y —qjx —1 are continuous.

Suppose now we mix together different populations Popy, ...,Popy.
Suppose in each population that there is a DAG, Gy, ...,G,, respectively,
and that the union of the DAGs is also a DAG G. G now contains all
of Gy, ..., G,—each of these can be considered a specialization of G
in which the parameters take on a certain value. For example, if it
is a linear model, and G contains X— Y, but G; is a subDAG of G in
which the edge X — Y is missing, then coeffy . y=0 in G;. Suppose we
mix together populations with DAGs G, and G,, and that G, isXY—Z,
but G, is X— Y—Z. Suppose that coeffy_, 7 is the same in Pop; and
Pop,. Then coeffx . y=0 in Pop; but not in Pop,. However, coeffx .y
and coeffy _, 7 are not correlated because coeffy _, ; is the same for both
populations. So if these two populations are mixed, the Markov
Assumption is true for the combined population and the combined
non-parameter causal graph X—Y—Z The graph with the para-
meters included is shown in Fig. 9.

In this graph, the independence of X and Z conditional on Y is
preserved. The same reasoning holds when all units in the population
have a different coefficient, as long as the coefficients are independent
of each other.

If, by contrast, coeffy_ , is different in Pop1l and Pop2, then
coeffx .y and coeffy _, ; are correlated. So if these two populations are
mixed, the Markov Conditions does not hold for the distribution of
the combined population and the combined causal graph X—Y—Z.
If we include the parameter variables, and assume that the Markov
Assumption applies to coeffyx_. y and coeffy_, 7, from the fact that they
are correlated we can write coeffx_y — coeffy_ z (The analysis is
essentially the same if coeffy . y— coeffy_. 7 or coeffx .y« coeffy_. z.)
It follows that X and Z are dependent conditional on Y, and X is

eY | X=0 eY | X=1

NV

XY

Fig. 8. X— Y, where X and Y are binary, treating parameters as random variables.

coeffy_,, coeff,.,,

\

X->Y-=Z

Fig.9.X — Y— Z, for the linear case, treating parameters as random variables, where the
coefficients are independent.
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not independent of Z conditional on Y. This arrangement is shown in
Fig. 10.

The same analysis applies when we mix together populations
with DAGs G; and G, when that Gy is X Y—Z, but G, is X—>Y Z.
Then coeffx_,y=0 and coeffy_, ;70 in Pop; and coeffx_ y#0 and
coeffy_, =0 in Pop,. In that case coeffx_. y and coeffy_. ; have to be
correlated, and X is not independent of Y conditional on Z, no matter
what the proportions of Pop1 and Pop2 in the mixture are (other than
the extremes of k=0 or k=1).

Now suppose we mix together four populations with DAGs G,
through G4, and that G, isXY—Z, Gy isX—YZ G3isX - Y—Z and G4
isX'YZ. Thenitis possible to find mixing proportions to make coeffx _, y
and coeffy_, ; independent, in which case X is independent of Z
conditional on Y in the mixed population, and the Markov Condition
applies to the combined graph X— Y—Z. For example, mixing the
four sub-populations in equal proportions is a sufficient but
unnecessary condition for making coeffyx .y and coeffy_. ; indepen-
dent. Arbitrary proportions of each population in the mixture,
however, would lead to coeffx_y and coeffy_,, being dependent.
The same analysis applies to cases where the combined graph is cyclic.

Suppose we mix just two sub-populations with graphs G; and G,
respectively, X— Y and Y— X, then coeffx_. y7 0 and coeffy . x=0 in
Pop1, and coeffy . y="0 and coeffy_, x # 0 in Pop2. Hence if these two
populations are mixed together, coeffx . y and coeffy _, x are dependent
no matter what the non-trivial proportions are. On the other hand, if
four populations are mixed together with graphs XY, X — Y, X <Y, and
X Y, then if the right mixing proportions are chosen, coeffx_,y and
coeffy ., x are independent. If this is the case, the Markov Condition
fails for the population distribution because the population as a whole
looks like a cyclic system.

Neumann et al.,, aim to recover the union of subsets of edges of
graphical models of binary variables for several data sets, provided the
individual graphs do not conflict in the directions of edges. Whether a
search on a finite sample from such a mixture will return the union of
edges depends on the individual graphs, the parameter values the
sample size, and the search procedure. In fMRI meta-analysis, the true
graphs are unknown and the parameter values are unknown.

Simulation studies

Neumann et al. warrant their method with simulations of two
mixed cases, each involving four variables, as illustrated in Figs. 4
and 5 above. In the first of these two simulation studies, the union
of the edges of the two graphs generating the combined samples
contains four of six possible adjacencies. Only two false positive
adjacency errors are logically possible in the mixed data. To see how
their procedure would do when we mix data from structures when
there is more possibility for error, and to compare the results on
mixed and unmixed data, we conducted our own simulation study.

We generated at random two sets of 10 directed acyclic graphs on
8 vertices with 8 edges. Each graph was parameterized by drawing
from a uniform distribution the conditional probability of each
variable given a value assignment of its parents. A data set of 1000
cases was then obtained by simulation from each of the 20
parameterized graphs. Over 100 repetitions for each pair of DAGs, a
sample with replacement of 500 cases was drawn from the 1000 case

coeffy_—coeff,.,,

\

X->Y-Z

Fig. 10. X— Y—Z, for the linear case, treating parameters as random variables, where
the coefficients are dependent.

Table 1

N=500, uncombined. Averages of true positive errors, false positive errors, false
negative errors, and false negative rate over simulation runs of 500 cases, for the case
where datasets are not combined pairwise, as described in the text. ‘TP’ records the
average number of edges in the output graph also contained in the graph generating the
data; ‘FP’ records the average number of edges in the output not contained in the input
graph, ‘FN’ records the average number of edges in the input graph that are not
contained in the output graph, and ‘FPR’ records the average of the number of false
positives to number of edges returned. For edge counts, an edge X —Y is counted as a
prediction of both X—Y and Y—X.

TP FP FN FPR
CPC, directed edge errors 335 1.40 4,65 0.31
GES, directed edge errors 3.40 1.20 4.60 0.29
CPC, adjacency errors 4.65 0.00 335 0.00
GES, adjacency errors 4.80 0.00 3.20 0.00

sample from each DAG, and the samples combined (Table 1). For each
combined sample for each graph pair, a Markov equivalence class
search was conducted, and the edges obtained that occurred in 50% or
more of the resulting Markov equivalence classes. The average, over
all graph pairs of the error rates for adjacencies in each graph pair
were calculated, counting an adjacency in the output of the procedure
as a false positive if it occurred in the Markov equivalence class of
neither of the paired graphs. Likewise, averages of edge error rates for
directed and undirected edges were calculated, counting a directed
edge in the output as a false positive if it occurred in the Markov
equivalence class of neither of the paired graphs, and an undirected
edge as a false positive if it occurred in the Markov equivalence class of
neither of the paired graphs. The false positive rate for each graph pair
was calculated as the percentage of edges in the output that are false
positives. False negatives were counted as edges in one or the other
paired Markov equivalence classes of DAGs that were not in the
output. An edge directed as A— B in the output but as A < B in both
source graphs was counted as a false positive and a false negative. The
Markov equivalence class search procedures were also run on 100
samples with replacement from the same samples of 1000 and of 500
for each of the 20 individual DAGs, and >50% rule applied to obtain
graphical objects (Table 2). Errors were counted in the same way.
The Metropolis-Hasting (MH) search procedure for DAGs and
CPDAGs that Neumann et al. used is heuristic and comparatively slow
and the scoring and stopping procedure chosen is not specified in
their paper. We used instead two correct search procedures, the
Conservative PC algorithm (CPC, Ramsey et al., 2006) and the Greedy
Equivalence Search (GES, Meek, 1997), implemented in the TETRAD
suite of search algorithms (Tetrad IV, 2010). Both procedures produce
patterns and neither requires the user to specify a stopping criterion.
CPC is provably asymptotically uniformly consistent under i.i.d.
sampling when there are no latent confounders of recorded variables.
CPC requires the user to specify an alpha value for tests of conditional
independence, set at .01 in our simulations. GES is asymptotically
consistent.® Either procedure tends to give better results than MH
with i.i.d. samples on reasonable finite samples, and the searches are

3 GES is consistent in the sense that its output converges probability 1 to the true
Markov equivalence class from i.i.d. samples from a distribution faithful to a DAG. CPC is
uniformly consistent in the sense that given i.i.d. samples from a distribution faithful to a
DAG, for all positive ¢, there exists an N such that the probability of the algorithm
producing the true Markov equivalence class on samples of size>N is greater than 1 —«.
On small i.i.d. samples from such a distribution, CPC produces graphs that represent
disjunctions of Markov equivalence classes, by noting explicitly where identifications of
collider paths (of the form X — Y < Z, for variables X, Y, and Z) are ambiguous because of
conditional independence information that conflicts with Markov properties. The
convergence results do not depend on whether the graphs are understood causally or
merely as a summary of distribution facts. For any DAG with binary variables and a
multinomial distribution, a result of Meek's (Spirtes, et al., 2000) shows the set of
probability distributions faithful to the DAG has probability 1 for any smooth measure
on the possible distributions.
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Table 2

N=1000, uncombined. Averages of true positive errors, false positive errors, false
negative errors, and false negative rate over simulation runs, for the case where
datasets are not combined pairwise, as described in the text. ‘TP’ records the average
number of edges in the output graph also contained in the graph generating the data;
‘FP’ records the average number of edges in the output not contained in the input graph,
‘FN’ records the average number of edges in the input graph that are not contained in
the output graph, and ‘FPR’ records the average of the number of false positives to
number of edges returned. For edge counts, an edge X — Y is counted as a prediction of
both X—Y and Y—X.

Table 3

N =500+ 500, combined: Averages of true positive errors, false positive errors, false
negative errors, and false negative rate over simulation runs, for the case where
datasets are combined in pairs, as described in the text. ‘TP’ records the average number
of edges in the output graph also contained in the graph generating the data; ‘FP’
records the average number of edges in the output not contained in the input graph,
‘FN’ records the average number of edges in the input graph that are not contained in
the output graph, and ‘FPR’ records the average of the number of false positives to
number of edges returned. For edge counts, an edge X—Y is counted as a prediction of
both X—Yand Y- X.

TP FP FN FPR TP FP FN FPR
CPC, directed edge errors 4.10 1.30 3.90 0.24 CPC, directed edge errors 2.46 2.85 12.86 0.52
GES, directed edge errors 3.50 1.40 4.50 0.28 GES, directed edge errors 2.14 2.52 13.18 0.52
CPC, adjacency errors 5.00 0.05 3.00 0.01 CPC, adjacency errors 434 1.01 10.98 0.16
GES, adjacency errors 5.00 0.15 3.00 0.03 GES, adjacency errors 3.98 0.71 11.34 0.15

roughly 20 times faster, reducing to an hour the 24 h that the entire
process would require with MH. The results of the simulation studies
are shown in the following tables. Data may be found at http://www.
phil.cmu.edu/projects/tetrad/on.metaanalysis/data.zip.

Neumann et al. report that in models with six edges their procedure
produces few false positives but fails to capture all edges—they do not
detail how many are missing. We find for the simpler problem-
identifying variable pairs that are adjacent in one or the other source
graphs-with eight edges in each source graph, on average the searches
on the uncombined data for each graph are very accurate, producing
almost no false positives and omitting about three variable pairs.
With the combined data the accuracy decreases, producing more but
still few false positives, but a much larger number of false negatives
(Table 3). When directions of edges are considered, for the un-
combined data the number of false positives remains small, less than
two on average, and about half of the true directed edges are not found.
When the data are combined, however, the number of false positives
more than doubles, and the number of true edges not found more than
triples. Note that, a priori, the chance of false positives in combined
data is less than in the uncombined data, and the chance of false
negatives is greater. Our simulation results are not any estimate of the
actual error rates in the Neumann et al., analyses of real data. The
various error measures are generally unknown in real cases, and will
vary with the unknown true parameterizations, the unknown total
number of edges in the various sources, the sample sizes etc.

Discussion

Although Neumann et al., reject a causal interpretation of their
search results on the grounds that “causal relationships in general
cannot be inferred from observational data alone,”® proposals for
search procedures for neural processing mechanisms represented by
directed graphs are increasingly common. The graphical structure of a
DAG and a probability distribution over its variables can be
unambiguously associated with a family of distributions that would
result from various (usually hypothetical) exogenous interventions
on the represented variables (Spirtes et al, 1993; Pearl, 2000),
yielding a causal statistical model. Graphical causal models character-
ize abstract features of almost all forms of statistical models that have
been proposed to represent causal cascades among locally aggregated
neural activities in psychological tasks, including structural equation

4 Neumann et al. write: (p. 1382), “Further, it is important to note that directionality
in a Bayesian network does not imply causal relationships. In fact, causal relationships
in general cannot be inferred from observational data alone. This requires the
application of external intervention (Pearl, 2000), a fact that holds true for all directed
network models.” Pearl's book describes the experimental implications of causally
interpreted DAG models, however discovered, but does not make the claim Neumann
et al. attribute.

models, dynamic causal models, Granger causal models and others.
Contrary to Neumann et al., Spirtes et al., (1993, 2000), and a large
related literature in machine learning, prove that various search
procedures are consistent estimators of various causal relations from
observational data subject, as with all statistical estimators, to
sampling and distribution assumptions. We nonetheless agree with
Neumann et al. that their meta-analysis method does not discover
causal relations representable by a DAG or Markov equivalence class,
because it does not reliably discover the dependence and conditional
independence structures of component systems.

The problems we have advanced with regard to the Neumann
et al. study apply only to methods, like theirs, that attempt to infer
associations true of individuals by pooling data across individuals,
when those data are samples from different probability distributions.
Our particular objections to the Neumann et al. method do not apply
when, as is more common in imaging studies, the inferences are to
means of distributions, or when distribution parameters are esti-
mated separately on individual data and group averages of these
estimates are reported. We emphasize that whether a data analysis
procedure runs afoul of Yule's problem, or related issues, may require
careful thinking about the method and its assumptions. For example,
“random effects” models assume the sample is drawn from a
probability distribution that includes an independent distribution
over parameters; in that case, as shown above, pooling data is
unexceptionable if the assumption is correct. Again, independent
components methods, such as the LINGAM family of algorithms
(Shimizu et al., 2005) require sample sizes larger than those typically
provided in fMRI studies and it is therefore tempting to pool data from
separate experimental runs. There seem to be no analyses of how
robust such algorithms are when data are pooled. The effects of
mixing of records on clustering algorithms is difficult to assess, in part
because there is rarely an objective standard, even in simulation,
against which to judge the accuracy of a clustering.

When spurious edges or edge reversals will be obtained by mixing
data sets each of which is faithful to a graphical causal model—
although not necessarily the same one—is a complex, and usually
unknown, function of the actual causal structures in the respective
data sets, the ranges of the variables, the distributions in the several
data sets, the distribution of parameters, the sample sizes and the
search methods. If, for example, two binary variables are independent
in each of two data sets and the probabilities are not too dissimilar,
standard search procedures combining 1000 data cases from each
will preserve independence; if, in contrast, the probabilities for a
value of 1 for each of the two variables in the two data sets are
respectively (.9, .2) and (.2, .9) a spurious association is found from
mixing. Different results may obtain with different sample sizes and
proportions. For Gaussian systems which consist of dependent
variables with distributions faithful to a common DAG, the indepen-
dence of the distribution of linear coefficients across data sets is
sufficient to obtain correct results with centered variables. It is, we
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think, sometimes reasonable to assume that coefficients—whether
linear coefficients or conditional probabilities in categorical systems—
are invariant within subjects on repeated trials and independent
between subjects under similar experimental conditions, but selected
subgroups may have parameters that are dependent. We do not know
conditions for safely mixing samples from different, continuous, non-
Gaussian distributions. When combining samples from two distribu-
tions faithful to graphs containing edges directly oppositely between
the same two variables, the result will often be a spurious edge
between one of or both of the variables and other variables. Such
associations may result in misdirections of other edges.

It should be noted that the problem addressed in this paper—
finding causal relations or independence and dependence relations
using multiple samples from different distributions with different
graphical structures—is different from the problem of finding the
possible causal or independence structures when the data are
measures of different (but intersecting) sets of variables sampled
from the same distribution. The latter problem is solved in Tillman
et al. 2009. A related problem arises when the samples are from
different distributions but share a common directed graphical struc-
ture. Ramsey et al. (2010) offers a method for that problem.

A natural idea for searching for graphical models of mixed data is
to use a Bayesian hypermodel with a scoring search like that of GES.
Suppose there are N data sets. Let R be the union of the variables in
the data sets, and let @ = <01,... Oy>be a configuration, for each of the
N data sets, of all possible parameters relating the variables. For
example, in linear models, © will contain for each data set, k, and for
each member of R in that data set, a parameter ranging over variance
values, and for each ordered pair, <X, Y> of variables in k, a parameter
for the linear dependence of Y on X. Put a suitable prior distribution
over ©, compute posterior distributions conditional on ©, and search
iteratively for the best graphical model in each data set. Theissen et al.
(1997) have implemented such a procedure for Gaussian models.
They show that on simulated data from mixtures of three graphical
models (two of which are identical, and without any reversed edges
between the models) with varying sample sizes, from 93 to 3000, the
procedure tends to misidentify the number of components, but is
quite accurate in the total set of directed edges it finds. Unfortunately,
their simulated example is too specialized: there are only three data
generating models, two of the data generating graphs are identical,
there are no differences in edge directions between data generating
graphs, and all linear coefficients in the data generating models were
fixed at 1. Their procedure deserves further research for the linear
case; for models with binary or categorical valued variables, however,
the procedure seems infeasible for fMRI meta-analysis of the kind
Neumann et al. attempt: the parameter space © would be too large.

Another strategy is to unmix the sample distribution—decompose
it, for example, into a collection of covariance matrices—and then
apply a search procedure separately to each component (Figuieredo
and Jain, 2002; Verbeek et al., 2003). These procedures start either
with a one component Gaussian model and add components as
necessary, or with a large multi-component model and eliminate
components as needed, in both cases estimating parameters by
variants of expectation maximization. Simulation results are given
for small (3) component cases. It is not known how the procedures
would scale up to much larger numbers of data sets, or how well they
would perform with non-Gaussian distributions. These procedures
deserve further investigation.

Meta-analysis might also be approached by searching for graphical
causal structure on various individual time series and clustering the
results. For sparse graphs, with variable sets larger than the usual sets
of regions of interest identified in fMRI studies, search with CPC, GES
or related algorithms requires only a fraction of a second, and analysis
of thousands of series is quite feasible. Clustering can be done directly
on numerical representation of graphical structure using, for example,
hamming distances.

Conclusion

We believe, contrary to Neumann et al., that the chief point of
network representations obtained by search methods applied to
imaging data ought to be to guide inference to processing mechan-
isms, and that producing networks merely as a summary of joint
distributions is of little scientific value. To that end, the mathematical
facts of mixtures, together with individual variation and simulation
results of the kind we have illustrated, provide reasons to be skeptical
of meta-analyses that use conventional machine learning techniques
on combined samples from multiple fMRI studies with different
experimental paradigms, or with combinations of neurotypical and
neuroatypical groups. In such cases, we believe there is often
insufficient reason to believe that the causal pathways and distribu-
tion properties and sufficiently similar, or vary with appropriate
randomness, so as to preserve Markov properties when data are
combined. With multiple neurotypical subjects in a common experi-
mental paradigm it may be reasonable, although not necessarily
correct, to suppose that there is a common causal structure or super-
structure, and that parameters are independent between subjects.
It is more risky, we believe, to combine data from neuroatypicals
sharing a common clinical diagnostic syndrome-autistics or schizo-
phrenics for example-which may be the result of (or result in) varying
neurological processing anomalies. Neural processing may also
differ by age, sex and other biological conditions. In any case, the
application of search methods to multiple data sets requires careful
attention to the sometimes subtle conditions under which a pro-
cedure is reliable.
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