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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

X Y X

Z

Y X Y

1) 2) 3)

• in case 2) Reichenbach postulated X ⊥⊥ Y |Z .

• every statistical dependence is due to a causal relation, we
also call 2) “causal”.

• distinction between 3 cases is a key problem in scientific
reasoning and the focus of this talk.
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Causal inference problem, general form Spirtes, Glymour, Scheines, Pearl

• Given variables X1, . . . ,Xn

• infer causal structure among them from n-tuples iid drawn
from P(X1, . . . ,Xn)

• causal structure = directed acyclic graph (DAG)

X1

X2

X3 X4
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Causal Markov condition (3 equivalent versions) Lauritzen et al

• local Markov condition: every node is conditionally
independent of its non-descendants, given its parents

Xj

non-descendants

descendants

parents of Xj

(information exchange with non-descendants involves parents)

• global Markov condition: describes all ind. via d-separation

• Factorization: P(X1, . . . ,Xn) =
∏

j P(Xj |PAj)

(every P(Xj |PAj) describes a causal mechanism)
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Causal inference from observational data

Can we infer G from P(X1, . . . ,Xn)?

• MC only describes which sets of DAGs are consistent with P

• n! many DAGs are consistent with any distribution

X

Y Z

Z

X Y

Y

Z X

X

Z Y

Z

Y X

Y

X Z

• reasonable rules for preferring simple DAGs required
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Causal faithfulness Spirtes, Glymour, Scheines, 1993

Prefer those DAGs for which all observed conditional
independences are implied by the Markov condition

• Idea: generic choices of parameters yield faithful distributions

• Example: let X ⊥⊥ Y for the DAG

X

Y Z

• not faithful, direct and indirect influence compensate

• Application: PC and FCI infer causal structure from
conditional statistical independences
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Justifying faithfulness

Unfaithful distributions occur with probability zero if

• nature chooses each P(Xj |PAj) independently

• each P(Xj |PAj) is chosen from a probability density in
parameter space (e.g. uniform distribution)

here the parameter space of each conditional is a subset of Rk

with k := {xj}{paj}

C. Meek: Strong completeness and faithfulness in Bayesian networks. (UAI 1995)
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However, we will argue...

• There are cases of obvious parameter tuning that do not
generate additional independences
(⇒ faithfulness is too weak)

• Not every violation of faithfulness is due to parameter tuning
since we do not believe in densities on the parameter space
(⇒ faithfulness is too strong)
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Why faithfulness is too weak

Let X be binary and Y real-valued.

• Let Y be Gaussian and X = 1 for all y above some threshold
and X = 0 otherwise.

• Y → X is plausible: simple thresholding mechanism

• X → Y requires a strange mechanism:
look at P(Y |X = 0) and P(Y |X = 1) !
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not only P(Y |X ) itself is strange...

but also what happens if we change P(X ):

Hence, reject X → Y because it requires tuning of P(X ) relative
to P(Y |X ). Faithfulness would accept both causal directions.
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Why faithfulness is too strong

Consider deterministic relations

X Y Z

Y = f (X )

• unfaithful because Y ⊥⊥ Z |X
• but there is no adjustment between P(X ), P(Y |X ), P(Z |Y )

• only P(Y |X ) is ’non-generic’

We don’t want to reject non-generic conditionals, we only want to
reject non-generic relations between conditionals

10



Algorithmic independence of conditionals

The shortest description of P(X1, . . . ,Xn) is given by separate
descriptions of P(Xj |PAj).

(Here, description length = Kolmogorov complexity)

Janzing, Schölkopf: Causal inference using the algorithmic Markov condition, IEEE TIT (2010).

Lemeire, Janzing: Replacing causal faithfulness with the algorithmic independence of conditionals, Minds &

Machines (2012).
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Short introduction into Kolmogorov complexity

Kolmogorov 1965, Chaitin 1966, Solomonoff 1964

of a binary string x

• K (x) = length of the shortest program with output x

• interpretation: number of bits required to describe the rule
that generates x

• neglect string-independent terms; use
+
= instead of =

• K (x) is uncomputable

• probability-free definition of information content
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Conditional Kolmogorov complexity

• K (y |x): length of the shortest program that generates y from
the input x .

• number of bits required for describing y if x is given

• K (y |x∗) length of the shortest program that generates y from
x∗, i.e., the shortest compression x .

• subtle difference: x can be generated from x∗ but not vice
versa because there is no algorithmic way to find the shortest
compression
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Algorithmic mutual information

Chaitin, Gacs

Information of x about y (and vice versa)

• I (x : y) := K (x) + K (y)− K (x , y)
+
= K (x)− K (x |y∗) +

= K (y)− K (y |x∗)

• Interpretation: number of bits saved when compressing x , y
jointly rather than compressing them independently
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Algorithmic mutual information: example

I(        :        ) = K(       )    
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Analogy to statistics:

• replace strings x , y (=objects) with random variables X ,Y

• replace Kolmogorov complexity with Shannon entropy

• replace algorithmic mutual information I (x : y) with statistical
mutual information I (X ;Y )
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Causal Principle

If two strings x and y are algorithmically dependent then either

x y x

z

y x y

1) 2) 3)

• every algorithmic dependence is due to a causal relation

• algorithmic analog to Reichenbach’s principle of common
cause

• distinction between 3 cases: use conditional independences on
more than 2 objects

DJ, Schölkopf IEEE TIT 2010
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Apply the causal principle to conditionals

K (P(Xj |PAj)) denotes the length of the shortest program
computing P(xj |paj) from (xj , paj).

• If nature chooses each mechanism P(Xj |PAj) independently
they are algorithmically independent, e.g.,

I (P(Xj |PAj) : P(X1|PA1),P(X2|PA2), . . . )
+
= 0 ∀j .

• equivalent to

K (P(X1, . . . ,Xn))
+
=

n∑
j=1

K (P(Xj |PAj))

(shortest description of the joint is given by separate
descriptions of the causal conditionals)
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Bivariate case

If X → Y then
I (P(X ) : P(Y |X ))

+
= 0

and, equivalently,

K (P(X ,Y ))
+
= K (P(X )) + K (P(Y |X )) .
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Relation to Occam’s Razor

Note:
K (P(X ,Y ))

+
= K (P(X )) + K (P(Y |X )) .

implies

K (P(X )) + K (P(Y |X )) ≤ K (P(Y )) + K (P(X |Y )) .

but not vice versa.
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Principle of independent conditionals is stronger

Assume

K (P(X ,Y )) ≤
{

K (P(X )) + K (P(Y |X ))
K (P(Y )) + K (P(X |Y ))

Then we reject both DAGs X → Y and Y → X .
(e.g. if X ← Z → Y is the true structure)

• Occam’s Razor chooses the simplest model from the given
class although the class may be inappropriate

• Our principle is (in principle) able to detect this
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Revisiting the motivating example

Knowing P(Y |X ), there is a short description of P(X ), namely
’the unique distribution for which

∑
x P(Y |x)P(x) is Gaussian’.
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Bayesian view on Independent Conditionals vs. Faithfulness

Replace uniform prior with Solomonoff’s prior:

• preferring simple structures is crucial for inference
(e.g. if you are supposed to infer how 101010... continues)

• string x occurs with probability proportional to 2−K(x)

• the conditional P(Xj |PAj) occurs with probability
2−K(P(Xj |PAj ))

• simple conditionals get high probability.

Lemeire & Janzing: Replacing causal faithfulness with algorithmic independence of conditionals, Minds &

Machines, 2012.
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Then algorithmic dependences become unlikely:

For general objects:

• let x , y be strings describing two objects.

• if generated independentl, the pair (x , y) occurs with
probability 2−K(x)2−K(y)

• if generated jointly, it occurs with probability 2−K(x ,y)

• hence K (x , y)� K (x) + K (y) indicates generation in a joint
process

For conditionals: let x and y be descriptions of P(X1|PA1) and
P(X2|PA2), respectively
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Example for simple conditionals

• unbiased input:
P(x) = 1/2

• identity:

P(y |x) =

{
1 for y = x
0 otherwise

• AND-gate:

P(z |x , y) =

{
1 for z = x ∧ y
0 otherwise

• XOR-gate:

P(z |x , y) =

{
1 for z = x ⊕ y
0 otherwise

• linear Gaussian model with simple parameter values:

P(y |x) =
1√
2π

e−(y−x)2
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Simple conditionals do occur in nature

• unbiased input: physical two-level system with high
temperature (each level occurs with probability 1/2)

• AND: rainbow requires rain and sun

• OR: problems with one of our organs results in sickness

• Determinism: frequency of a pendulum determined by mass
and length

• Symmetries: Let v be the velocity vector of a particle, then
p(y) is a rotation invariant Gaussian in thermal equilibrium
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Likely violations of faithfulness

by combining simple (’non-generic’) conditionals:

X

Z

Y

= X ⊕ Y

P(x) = 1/2

yields Z ⊥⊥ Y
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Similarities with faithfulness

X

Y Z

Z = αX + UZ

Y = γX + βZ + UY

β

γ α

• faithfulness forbids αβ = −γ
• also forbidden by algorithmic independence of conditionals
unless α is simple, i.e., α = 1 and β = −γ

28



Although Kolmogorov complexity is uncomputable...

we apply the principle of algorithmically independent conditionals:

• find notions of dependence of conditionals that capture
essential aspects

• use it as a foundation/justification of new inference rules
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Justifying additive noise based causal inference

Assume Y = f (X ) + E with E ⊥⊥ X as in Jonas Peters’ talk

• Then P(Y ) and P(X |Y ) are related:

∂2

∂y2
log p(y) = − ∂2

∂y2
log p(x |y)− 1

f ′(x)

∂2

∂x∂y
log p(x |y) .

⇒ ∂2

∂y2 log p(y) can be computed from p(x |y) knowing f ′(x0)
for one specific x0

• Given P(X |Y ), P(Y ) has a short description.

• We reject Y → X provided that P(Y ) is complex

Hoyer, Janzing, Mooij, Peters, Schölkopf, NIPS (2008) (for the inference method)

Janzing, Steudel, OSID (2010) (for the justification)

30



Inferring deterministic causality Daniusis, Janzing,... UAI 2010, Janzing et al. AI 2012

• Problem: infer whether Y = f (X ) or X = f −1(Y ) is the right
causal model

• Idea: if X → Y then f and the density pX are chosen
independently “by nature”

• Hence, peaks of pX do not correlate with the slope of f
• Then, peaks of pY correlate with the slope of f −1

y

x

f(x)

p(x)

p(y)

• corresponding method called ’information geometric causal
inference’
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How IGCI is related to description length

Let Y = f (X ) with f : [0, 1]→ [0, 1] monotonous and bijective.

• IGCI considers f and P(X ) dependent if∫
p(x) log |f ′(x)|dx � 0

• Idea: at most 1/c of x-values satisfy |f ′(x)| > c

x

y

x0

f(x)

a)

at most 2−nc of the n-tuples satisfy 1
n

∑n
j=1 log |f ′(xj)| ≥ c .

• description length of x1, . . . , xn reduced by nc bits compared
to a generic n-tuple

• f contains information about P(X ) because it belongs to a
small set of distributions.

D. Janzing, B. Steudel, N. Shajarisales, B. Schölkopf: Justifying information-geometric causal inference, to appear

in Chervonencis Festschrift
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Common root of exististing causal inference methods

detect dependences between conditionals P(Xj |PAj)

• Independence-based approach: reject DAGs that violate
faithfulness

• Additive noise models: reject DAGs if other DAGs admit an
additive noise model

• Information-geometric causal inference: reject X → Y
with Y = f (X ) if p(x) is large where f has large slope

• future methods?

Goal: getting closer to ’algorithmic independence’?
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How could standard machine learning

benefit from causality?
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Supervised learning

Task: predict y from x after observing some samples drawn from
P(X ,Y ).
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Supervised learning

• Regression: continuous label Y
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• Classification: discrete label Y
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Semi-supervised learning (SSL)

Goal: predict y from x after observing labeled data
(x1, y1), . . . , (xn, yn) and unlabeled data xn+1, . . . , xn+k

Copyright: 2014 Oxford University Press
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Semi-supervised learning (SSL)

Goal: predict y from x after observing labeled data
(x1, y1), . . . , (xn, yn) and unlabeled data xn+1, . . . , xn+k

Copyright: 2014 Oxford University Press
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When can SSL work?

source: http://en.wikipedia.org/wiki/Semi-supervised learning

• Can we have a more accurate prediction of Y by taking into
account the unlabeled points?

• The distribution of the unlabeled data P(X ) has to carry
information relevant to the estimation of P(Y |X ).
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When can SSL work?

source: http://en.wikipedia.org/wiki/Semi-supervised learning

• Can we have a more accurate prediction of Y by taking into
account the unlabeled points?

• The distribution of the unlabeled data P(X ) has to carry
information relevant to the estimation of P(Y |X ).
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SSL in Causal and Anti-Causal settings

The task is to predict Y from X

X Y X Y

causal setting: predict effect from cause
e.g., predict splice sites from DNA sequence

anticausal setting: predict cause from effect
e.g, breast tumor classification,

image segmentation

SSL pointless because P(X )
contains no information about P(Y |X )

SSL can help because P(X ) and P(Y |X )
contain information about each other

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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SSL in Causal and Anti-Causal settings

The task is to predict Y from X

X Y X Y

causal setting: predict effect from cause
e.g., predict splice sites from DNA sequence

anticausal setting: predict cause from effect
e.g, breast tumor classification,

image segmentation

SSL pointless because P(X )
contains no information about P(Y |X )

SSL can help because P(X ) and P(Y |X )
contain information about each other

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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Known SSL assumptions link P(X ) to P(Y |X )

• SSL smoothness assumption: E (Y |X ) should be smooth in
regions where P(X ) is large.

• Cluster assumption: points lying in the same cluster are likely
to have the same Y .

• Low density separation: The decision boundary should lie in a
region where P(X ) is small.

The above assumptions can indeed be viewed as linking
properties of P(X ) to properties of P(Y |X ).
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Results: Meta-analysis

We didn’t perform new experiments, instead checked our
hypothesis analyzing results of other papers.

1 Dataset categorization as:
• Anticausal/Confounded : (a) at least one Xi is an effect of Y ,

or (b) at least one Xi and Y are confounded.
• Causal : Y is the effect of the Xi ’s.
• Unclear : incomplete documentation or lack of domain

knowledge.

2 Check performance of semi-supervised vs. supervised learning
in each category.
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Semi-supervised classification: 8 benchmark datasets

[O. Chapelle et al., 2006] Semi-Supervised Learning.
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[O. Chapelle et al., 2006] Semi-Supervised Learning.
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Semi-supervised classification: 26 UCI datasets

[Y. Guo et al., 2006] An extensive empirical study on semi-supervised learning.
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Semi-supervised classification: 26 UCI datasets
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Semi-supervised regression: 31 UCI datasets

[U. Brefeld et al., 2006] Efficient co-regularized least squares regression.
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Semi-supervised regression: 31 UCI datasets
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Conclusion of the meta-study

• Accuracy is not significantly improved in causal datasets but
the performance is increased in most of the
anticausal/confounded datasets.
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Conclusions

• independence of causal conditionals seems to be the leading
principle for causal inference

• faithfulness is based on the same idea

• we propose algorithmic independence, but in practice we rely
on computable notions of independence (including
faithfulness?)

• recent causal inference algorithms already use computable
notions of independence other than faithfulness

• failure of semi-supervised learning also defines independence
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Thank you for your attention!
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