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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either
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e in case 2) Reichenbach postulated X 1 Y'|Z.
e every statistical dependence is due to a causal relation, we
also call 2) “causal”.

e distinction between 3 cases is a key problem in scientific
reasoning and the focus of this talk.



Causal inference problem, general form spines, cymour, scheines, pear

e Given variables Xi,..., X,

e infer causal structure among them from n-tuples iid drawn
from P(Xi,...,Xp)
e causal structure = directed acyclic graph (DAG)
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Causal Markov condition (3 equivalent versions) tauien et

¢ local Markov condition: every node is conditionally
independent of its non-descendants, given its parents

parents of X
non-descendants

o

. Q descendants

(information exchange with non-descendants involves parents)
¢ global Markov condition: describes all ind. via d-separation
e Factorization: P(Xi,...,X,) = [[; P(Xj|PA))

(every P(Xj|PA;) describes a causal mechanism)



Causal inference from observational data

Can we infer G from P(Xi,..., X,)?

e MC only describes which sets of DAGs are consistent with P

e n! many DAGs are consistent with any distribution
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e reasonable rules for preferring simple DAGs required



Ca Usal fa ithfu | neSS Spirtes, Glymour, Scheines, 1993

Prefer those DAGs for which all observed conditional
independences are implied by the Markov condition

e Idea: generic choices of parameters yield faithful distributions

e Example: let X | Y for the DAG

e not faithful, direct and indirect influence compensate

e Application: PC and FCl infer causal structure from
conditional statistical independences



Justifying faithfulness

Unfaithful distributions occur with probability zero if

e nature chooses each P(X;j|PA;) independently

e each P(X;|PA;) is chosen from a probability density in
parameter space (e.g. uniform distribution)

here the parameter space of each conditional is a subset of R¥
with k 1= {x;}{rai}

C. Meek: Strong completeness and faithfulness in Bayesian networks. (UAI 1995)



However, we will argue...

e There are cases of obvious parameter tuning that do not
generate additional independences
(= faithfulness is too weak)

o Not every violation of faithfulness is due to parameter tuning
since we do not believe in densities on the parameter space
(= faithfulness is too strong)



Why faithfulness is too weak

Let X be binary and Y real-valued.

e Let Y be Gaussian and X =1 for all y above some threshold
and X = 0 otherwise.

p(y:x=0)

e Y — X is plausible: simple thresholding mechanism

e X — Y requires a strange mechanism:
look at P(Y|X =0) and P(Y|X =1)!



not only P(Y|X) itself is strange...

but also what happens if we change P(X):

Hence, reject X — Y because it requires tuning of P(X) relative
to P(Y|X). Faithfulness would accept both causal directions.



Why faithfulness is too strong

Consider deterministic relations

Y = £(X)

e unfaithful because Y L Z|X
e but there is no adjustment between P(X), P(Y|X), P(Z|Y)
e only P(Y|X) is 'non-generic’

We don’t want to reject non-generic conditionals, we only want to
reject non-generic relations between conditionals
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Algorithmic independence of conditionals

The shortest description of P(Xi,...,X,) is given by separate
descriptions of P(X;|PA;).

(Here, description length = Kolmogorov complexity)

Janzing, Schélkopf: Causal inference using the algorithmic Markov condition, IEEE TIT (2010).

Lemeire, Janzing: Replacing causal faithfulness with the algorithmic independence of conditionals, Minds &

Machines (2012).
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Short introduction into Kolmogorov complexity
Kolmogorov 1965, Chaitin 1966, Solomonoff 1964
of a binary string x

e K(x) = length of the shortest program with output x

e interpretation: number of bits required to describe the rule
that generates x

neglect string-independent terms; use £ instead of =

e K(x) is uncomputable

probability-free definition of information content
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Conditional Kolmogorov complexity

K(y|x): length of the shortest program that generates y from
the input x.

number of bits required for describing y if x is given

K(y|x*) length of the shortest program that generates y from

x*, i.e., the shortest compression x.

subtle difference: x can be generated from x* but not vice
versa because there is no algorithmic way to find the shortest
compression
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Algorithmic mutual information

Chaitin, Gacs

Information of x about y (and vice versa)

K(x) + K(y) — K(x,y)

o I(x:y):=
L K(x) = K(xly*) = K(y) — K(y|x")

o Interpretation: number of bits saved when compressing x, y
jointly rather than compressing them independently
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e replace strings x,y (=objects) with random variables X, Y
¢ replace Kolmogorov complexity with Shannon entropy

e replace algorithmic mutual information /(x : y) with statistical
mutual information /(X;Y)
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Causal Principle

If two strings x and y are algorithmically dependent then either

e every algorithmic dependence is due to a causal relation

e algorithmic analog to Reichenbach’s principle of common
cause

e distinction between 3 cases: use conditional independences on
more than 2 objects

DJ, Scholkopf IEEE TIT 2010
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Apply the causal principle to conditionals

K(P(X;j|PA))) denotes the length of the shortest program
computing P(x;j|pa;j) from (x;, pa;).

e If nature chooses each mechanism P(Xj|PA;) independently
they are algorithmically independent, e.g.,

I(P(X{|PA) : P(X1|PA1), P(Xa|PAy),...) 0 V.

e equivalent to

K(P(X1,..., X)) = zn: K(P(Xj|PA;))
j=1

(shortest description of the joint is given by separate
descriptions of the causal conditionals)
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If X — Y then
I(P(X): P(Y|X)) =0

and, equivalently,

K(P(X,Y)) £ K(P(X))+ K(P(Y|X)).
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Note:
K(P(X,Y)) £ K(P(X))+ K(P(Y|X)).

implies
K(P(X)) + K(P(Y|X)) < K(P(Y)) + K(P(X]Y)) .

but not vice versa.

20



Principle of independent conditionals is stronger

Assume

K(P(X)) + K(P(Y]X))

K(P(X,Y)) < { K(P(Y))+ K(P(X]Y))

Then we reject both DAGs X — Y and Y — X.
(e.g. if X < Z — Y is the true structure)

e Occam’s Razor chooses the simplest model from the given
class although the class may be inappropriate

e Our principle is (in principle) able to detect this
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Revisiting the motivating example

Knowing P(Y|X), there is a short description of P(X), namely
"the unique distribution for which > P(Y|x)P(x) is Gaussian'.
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Bayesian view on Independent Conditionals vs. Faithfulness

Replace uniform prior with Solomonoff’s prior:

e preferring simple structures is crucial for inference
(e.g. if you are supposed to infer how 101010... continues)
e string x occurs with probability proportional to 2-K(X)
e the conditional P(X;|PA;) occurs with probability
2—K(P(Xj|PA))
e simple conditionals get high probability.
Lemeire & Janzing: Replacing causal faithfulness with algorithmic independence of conditionals, Minds &

Machines, 2012.
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Then algorithmic dependences become unlikely:

For general objects:

e let x, y be strings describing two objects.

o if generated independentl, the pair (x,y) occurs with
probability 2~ K(x)2=K(y)

e if generated jointly, it occurs with probability 2—K(x.y)

e hence K(x,y) < K(x) + K(y) indicates generation in a joint
process

For conditionals: let x and y be descriptions of P(X;|PA;) and
P(X2|PAz), respectively
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Example for simple conditionals

unbiased input:

P(x)=1/2
identity:
|1 fory=x
Plylx) = { 0 otherwise
AND-gate:
|1 forz=xAy
Plzlx.y) = { 0  otherwise
XOR-gate:
|1 forz=xdy
Plzlxy) = { 0 otherwise
linear Gaussian model with simple parameter values:

e~ (y—x)?

P(ylx) = \/12;
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Simple conditionals do occur in nature

unbiased input: physical two-level system with high
temperature (each level occurs with probability 1/2)

AND: rainbow requires rain and sun
OR: problems with one of our organs results in sickness

Determinism: frequency of a pendulum determined by mass
and length

Symmetries: Let v be the velocity vector of a particle, then
p(y) is a rotation invariant Gaussian in thermal equilibrium

26



Likely violations of faithfulness

by combining simple ('non-generic') conditionals:

P(x) = 1/2

=XaY yields Z L Y
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Similarities with faithfulness

Y « Z=aX+ Uz

Y =X + BZ + Uy

o faithfulness forbids aff = —v

e also forbidden by algorithmic independence of conditionals
unless «v is simple, i.e., a =1 and § = —v
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Although Kolmogorov complexity is uncomputable...

we apply the principle of algorithmically independent conditionals:

¢ find notions of dependence of conditionals that capture
essential aspects

e use it as a foundation /justification of new inference rules
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Justifying additive noise based causal inference

Assume Y = f(X) + E with E 1L X as in Jonas Peters’ talk

e Then P(Y) and P(X]Y) are related:

872|O ()__872|0 (x| )_Lib (x|y)

= 88722 log p(y) can be computed from p(x|y) knowing f'(xo)
for one specific xg

e Given P(X]Y), P(Y) has a short description.

e We reject Y — X provided that P(Y) is complex

Hoyer, Janzing, Mooij, Peters, Scholkopf, NIPS (2008) (for the inference method)

Janzing, Steudel, OSID (2010) (for the justification)
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| nferri ng determ | n IStiC Ca Usa I |ty Daniusis, Janzing,... UAI 2010, Janzing et al. Al 2012

e Problem: infer whether Y = f(X) or X = f~1(Y) is the right
causal model

e ldea: if X — Y then f and the density px are chosen
independently “by nature”

e Hence, peaks of px do not correlate with the slope of f

e Then, peaks of py correlate with the slope of 1

y
p(y) f(x)

p(x)

e corresponding method called 'information geometric causal
inference’
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How IGCl is related to description length

Let Y = f(X) with f : [0,1] — [0, 1] monotonous and bijective.
¢ IGCI considers f and P(X) dependent if

/p(x) log |f'(x)|dx >0

e Idea: at most 1/c of x-values satisfy |f'(x)| > ¢

)
a . x

at most 27" of the n-tuples satisfy + 37, log |f'(x)| > c.
e description length of xi,..., x, reduced by nc bits compared
to a generic n-tuple

e f contains information about P(X) because it belongs to a
small set of distributions.

D. Janzing, B. Steudel, N. Shajarisales, B. Schélkopf: Justifying information-geometric causal inference, to appear

in Chervonencis Festschrift
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Common root of exististing causal inference methods

detect dependences between conditionals P(X;|PA;)

¢ Independence-based approach: reject DAGs that violate
faithfulness

¢ Additive noise models: reject DAGs if other DAGs admit an
additive noise model

¢ Information-geometric causal inference: reject X — Y
with Y = f(X) if p(x) is large where f has large slope

e future methods?

Goal: getting closer to 'algorithmic independence’?
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How could standard machine learning
benefit from causality?
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Task: predict y from x after observing some samples drawn from
P(X,Y).
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e Regression: continuous label Y

Classification plane
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Goal: predict y from x after observing labeled data
(x1,¥1),---,(xn,yn) and unlabeled data xp1, ..., Xp1k
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Goal: predict y from x after observing labeled data

(x1,¥1),---,(xn,yn) and unlabeled data xp1, ..., Xp1k
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source: http://en.wikipedia.org/wiki/Semi-supervised_learning

e Can we have a more accurate prediction of Y by taking into
account the unlabeled points?
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When can SSL work?
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source: http://en.wikipedia.org/wiki/Semi-supervised_learning

e Can we have a more accurate prediction of Y by taking into
account the unlabeled points?

e The distribution of the unlabeled data P(X) has to carry
information relevant to the estimation of P(Y|X).
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SSL in Causal and Anti-Causal settings

The task is to predict Y from X

o 0 o 0

causal setting: predict effect from cause anticausal setting: predict cause from effect
e.g., predict splice sites from DNA sequence e.g, breast tumor classification,
image segmentation

Schélkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012



SSL in Causal and Anti-Causal settings

The task is to predict Y from X

o 0 o 0

causal setting: predict effect from cause anticausal setting: predict cause from effect
e.g., predict splice sites from DNA sequence e.g, breast tumor classification,
image segmentation

SSL pointless because P(X) SSL can help because P(X) and P(Y|X)
contains no information about P(Y'|X) contain information about each other

Schélkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
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Known SSL assumptions link P(X) to P(Y|X)

e SSL smoothness assumption: E(Y|X) should be smooth in
regions where P(X) is large.

o Cluster assumption: points lying in the same cluster are likely
to have the same Y.

o Low density separation: The decision boundary should lie in a
region where P(X) is small.

The above assumptions can indeed be viewed as linking
properties of P(X) to properties of P(Y|X).
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Results: Meta-analysis

We didn't perform new experiments, instead checked our
hypothesis analyzing results of other papers.
@ Dataset categorization as:

o Anticausal/Confounded: (a) at least one X; is an effect of Y,
or (b) at least one X; and Y are confounded.

e (Causal: Y is the effect of the X;'s.

e Unclear: incomplete documentation or lack of domain
knowledge.

® Check performance of semi-supervised vs. supervised learning
in each category.
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Table 1. Categorization of eight benchmark datasets of Section 5 i-supervised ification) as Anticausal/Confounded. Causal or Unclear

[Category  [Dataset Reason of
[2241c The class causes the 241 features.
201d The class (binary) and the features are confounded by a variable with 4 staes.
Digitl [The positive or negative angle and the features are confounded by the variable of conti 1
founded|;gp, The class and the features are confounded by the 10-state variable of all digits.
co The six-state class and the features arc confounded by the 24-state variable of all objects.
[Causal_[Secstr ‘The amino acid i the cause of the secondary structure.
[Unclear [BCI, Text Jinclear which s the cause and which the cffect.

[O. Chapelle et al., 2006] Semi-Supervised Learning.
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Semi-supervised classification: 8 benchmark datasets

‘Table 1. Categorization of eight benchmark datasets of Section 5 (Semi-supervised classification) as Anticausal/Confounded. Causal or Unclear

Category | Dataset Reason of categorization
@24l The class causes the 241 features.
|nticausa [22414 The class (binary) and the features are confounded by a variable with 4 states.
Digitl The positive or negative angle and the features are confounded by the variable of continuous angle.
(Confounded|{;gpg The class and the features are confounded by the 10-state variable of all digits.
cor The six-state class and the featurs are confounded by the 24-state variable of all objects.
(Causal [secstr ‘The amino acid is the cause of the secondary structure,
[Unclear [BCL Text Unclear which is the cause and which the effect

[O. Chapelle et al., 2006] Semi-Supervised Learning.
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Semi-supervised classification: 26 UCI datasets

Table 2. C: of 26 UCI datasets of Section 5 1p d ion) as Anticausal/Confounded, Causal or Unclear
Category | Dataset Reason of categorization
o The class of the fumor (benign or malignant) causes some of the features of the tumor (e.z..
reast-w N
thickness, size. shape etc.).
Whether or not a person has diabetes affects some of the features (e.g.. glucose concentration. blood pressure).
diabetes
but also is an effect of some others (e.g. age, number of times pregnant).
- The class (die or survive) and many of the features (e.¢., atigue, anorexia, liver big) are confounded by the
Ihepatitis i~
presence or absence of hepatitis. Some of the features. however, may also cause death.
is The size of the plant is an effect of the category it belongs to,
Cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g.. wage.
iincrease, number of working hours per week, number of paid vacation days, employer’s help during employee ’s
long
fabor term disability). Moreover, the features and the class may be confounded by elements of the character of the
employer
|Anticausal/ /and the employee (e.¢.. abilty to cooperate).
. Jeter The class (letter) is a cause of the produced image of the letter.
The attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
mushroom
taxonomy of the mushroom (23 species)
[segment The class of the image is the cause of the features of the image.
[sonar The class (Mine or Rock) causes the sonar signals.
[vehicle The class of the vehicle causes the features of ts silhouette.
This dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g.. having handicapped
iinfants or being part of religious groups in school can cause one’s vote, being democrat or republican can
vote causally
iinfluence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class
Crime and the class may be confounded, c.g., by the environment in which one grew up.
[vowel The class (vowel) causes the features.
waveform-5000 The class of the wave causes its attributes.
|balance-scale The features (weight and distance) cause the class.
Causal  fla-vskp The board-description causally influences whether white will win
splice The DNA sequence causes the splice sites.
breast-cancer. colic, colic.ORIG,
e : I some of these datasets, it is nclear whether the class label has been generated or defined based on the features
(Unelear - Jeredi-, creditg. hear-e. Beart-h. ¢ Tonospere, Credit Approval Sick)
Iheart-statlog. ionosphere, sick pete. PP
[Y. Guo et al., 2006] An extensive empirical study on semi-supervised learning.
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Semi-supervised classification: 26 UCI datasets
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Semi-supervised regression: 31 UCI datasets

‘Table 3. Categorization of 31 datasets of Section 5 (Semi-supervised regression) as Anticausal/Confounded, Causal or Unclear

(Category | Dataset [Target vasiable Reason of categorization
lbreastTumor ftumor size lcausing predictors such as inv-nodes and deg-malig
lcausing predictors such as resting blood pressure and fasting blood
cholesterol cholesterol i & Bloodpr o
presence of heart disease in the |causing predictors such as chest pain type, resting blood pressure,
cleveland
IAndicausal/ patient land fasting blood sugar
lowbwt birth weight lcausing the predictor indicating low birth weight
(Confounded eh 8 e b 2 eh
lcausing predictors such as Serum bilirubia, Prothrombin time, and
pbe nistologie stage of disease
Abumin
» caus s
ollntion lage-adjusted mortality rate per _(causing the predictor number of 1960 SMSA population aged 65
[pellution or older
wisconsin time to recur of breast cancer _[causing predictors such as perimeter, smoothness, and concavity
city-cycle fuel consumption in ) )
autoMpg e ner gallon lcaused by predictors such as horsepower and weight
lcaused by predictors such as machine cycle time, maxinum main
cpu cpu relative performance
imemory. and cache memory
fisheatch fish weight lcaused by predictors such as fish length and fish width
[housing values in suburbs of _[caused by predictors such as pupil-teacher ratio and nitric oxides
housing
[Boston [concentration
Causal  machine cou __|cpu relative performance see remark on “cpu”
) lcaused by predictors such as number of examples, sumber of afributes.
meta Inormalized prediction error by p P
land entropy of classes
Value of piecewise linear
wLinear e o lcaused by all 10 involved predictors
sensory wine quality lcaused by predictors such as trellis
lervo e time of a servomechaniom ﬁ::;:y ‘predictors such as gain seftings and choices of mechanical

‘auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat): autoHorse (target: price of cars):

‘autoPrice (target: price of cars): baskball (target: points scored per minute);

cloud (target: period rainfalls in the cast target): echoMonths (target: number of months patient survived):;
Unclear  fiuitfly (arget: longevity of mail fruitflies):; pharynx (target: patient survival);

pyrim (quantitative structure activity relationships): sleep (target: total sleep in hours per day):

stock (target: price of one particular stock): strike (target: strike volume):

triazines (target: activity): veteran (survival in days)

[U. Brefeld et al., 2006] Efficient co-regularized least squares regression.



Semi-supervised regression: 31 UCI datasets
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e Accuracy is not significantly improved in causal datasets but
the performance is increased in most of the
anticausal/confounded datasets.
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Conclusions

independence of causal conditionals seems to be the leading
principle for causal inference

faithfulness is based on the same idea

we propose algorithmic independence, but in practice we rely
on computable notions of independence (including
faithfulness?)

recent causal inference algorithms already use computable
notions of independence other than faithfulness

failure of semi-supervised learning also defines independence
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Thank you for your attention!
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