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ETH Zürich:
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What is the Problem?

Theoretical: P(X1, . . . ,X5)
?−→ DAG G0

X1

X2 X3

X4 X5

Practical:
iid observations from ?−→

estimated
P(X1, . . . ,X5) DAG G0
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Consider the world of Structural Equation Models

Assume P(X1, . . . ,X4) has been generated by

X1 = f1(X3,N1)

X2 = N2

X3 = f3(X2,N3)

X4 = f4(X2,X3,N4)

• Ni jointly independent

• G0 has no cycles

X4

X2 X3

X1G0

Can the directed acyclic graph be recovered from P(X1, . . . ,X4)?

No.
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Can the directed acyclic graph be recovered from P(X1, . . . ,X4)? No.
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Consider the world of Structural Equation Models

Proposition

Given a distribution P, we can find a SEM generating P for each graph G,
such that P is Markov with respect to G.

JP: Restricted Structural Equation Models for Causal Inference, PhD Thesis 2012 (and probably others?)
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Consider the world of Structural Equation Models

Assume P(X1, . . . ,X4) has been generated by

X1 = f1(X3) +N1

X2 = N2

X3 = f3(X2) +N3

X4 = f4(X2,X3) +N4

• Ni jointly independent

• G0 has no cycles

X4

X2 X3

X1G0

Additive Noise Models.
Can the DAG be recovered
JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, to appear in JMLR

Jonas Peters (ETH Zurich) Simplicity of Additive Noise Models 7th June 2014
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Assume P(X1, . . . ,X4) has been generated by

X1 = f1(X3) +N1

X2 = N2

X3 = f3(X2) +N3

X4 = f4(X2,X3) +N4

• Ni ∼ N (0, σ2
i ) jointly independent

• G0 has no cycles

X4

X2 X3

X1G0

Additive Noise Models with Gaussian noise.

Can the DAG be recovered from P(X1, . . . ,X4)? Yes iff fi nonlinear.
JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, to appear in JMLR
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Consider the world of Structural Equation Models
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Consider the world of Structural Equation Models

GAUL GAUSS
“the LINEAR”
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Consider the world of Structural Equation Models

GAUL GAUSS
“the LINEAR”
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Consider the world of Structural Equation Models

Proposition

Given a Gaussian distribution P, we can find a linear Gaussian SEM
generating P for each graph G, such that P is Markov with respect to G.

A. Hauser: Causal Inference from Interventional Data, PhD Thesis 2013 (and probably others?)
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Consider the world of Structural Equation Models
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Does X cause Y or vice versa?

Consider a distribution generated by

Y = f (X ) + NY

with NY ,X
ind∼ N

X Y

Then, if f is nonlinear, there is no

X = g(Y ) +MX

withMX ,Y
ind∼ N

X Y

JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, to appear in JMLR
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Then, if f is nonlinear, there is no
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Does X cause Y or vice versa?

Consider a distribution corresponding to

Y = X 3 + NY

with NY ,X
ind∼ N

X Y

with

X ∼ N (1, 0.52)

NY ∼ N (0, 0.42)
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Does X cause Y or vice versa?
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Does X cause Y or vice versa?

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

0
5

10
15

gam(X ~ s(Y))$residuals

Y

Method No. 1: Testing for independent residuals

Regress each variable on the other and check whether the residuals are
independent of the input/independent/explanatory variable.
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Does X cause Y or vice versa?
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Does X cause Y or vice versa?

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012
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Does X cause Y or vice versa?

No (not enough) data for chocolate

... but we have data for coffee!
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Does X cause Y or vice versa?
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Correlation: 0.698
p-value: < 2.2 · 10−16

Coffee→ Nobel Prize: Dependent residuals (p-value of 5.1 · 10−78).
Nobel Prize→ Coffee: Dependent residuals (p-value of 3.1 · 10−12).

⇒ Model class too small? Causally insufficient?
Question: When is a p-value too small?
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Does X cause Y or vice versa?
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Method No. 1: Testing for independent residuals

Regress each variable on the other and check whether the residuals are
independent of the input/independent/explanatory variable.

 translates to p > 2 variables.
Nice: correct (in population), no distributional assumption about noise.
Problem: does not scale well to large p although it’s O(p2) ind. tests.
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Does X cause Y or vice versa?
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Does X cause Y or vice versa?
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Does X cause Y or vice versa?

Method No. 2: Minimizing KL

Estimate the direction that corresponds to the closest subspace (details
follow).
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Does X cause Y or vice versa?
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Does X cause Y or vice versa?

Proposition

Assume P(X ,Y ) is generated by

Y = βX 2 + NY

with independent X ∼ N (0, σ2X ) and NY ∼ N (0, σ2NY
).

Then

inf
Q∈{Q:Y→X}

KL(P ||Q) > 0 if β 6= 0 .

gives us finite sample guarantees

model misspefication: how much non-Gaussianity can we allow for

Question: infQ∈{Q:Y→X}KL(P ||Q) = . . . ?
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2
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Does X cause Y or vice versa?

Proposition

Assume P(X ,Y ) is generated by

Y = f (X ) + NY

with independent X ∼ N (0, σ2X ) and NY ∼ N (0, σ2NY
).

Then

inf
Q∈{Q:Y→X}

KL(P ||Q) ≥

KL (P(Y ) || N (0, varY ))
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Can we reconstruct the whole causal network?

Theorem

let P(X1, . . . ,Xp) be generated by an additive noise model (+Gaussian)

Xi = fi (XPAi
) + Ni

with jointly independent Ni ∼ N (0, σ2i ) and differentiable, non-linear fi .
Then we can identify the corresponding DAG from P(X1, . . . ,Xp).

JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, to appear in JMLR

Surprising: This follows from identifiability in the bivariate case.
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Can we reconstruct the whole causal network?

Given P̂n(X1, . . . ,X4). What now?

Consider model classes

QG := {Q : Q generated by a causal additive model CAM with DAG G}

Optimize
min

DAG G
inf

Q∈QG

KL(P̂n ||Q)

max.⇐⇒
likelihood

min
DAG G

p∑
i=1

log var(residualsPAG
i →Xi

)

Wait, there is no penalization on the number of edges!
 fully connected graph, i.e. orderings
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Can we reconstruct the whole causal network?

There are
18676600744432035186664816926721

DAGs with 13 nodes.

There are only :-)

6227020800

orderings.

Idea: find causal order

Find the order of variables that maximizes likelihood and then perform
classical variable selection. This is consistent (but intractable).

P. Bühlmann, JP and J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regression, submitted
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Can we reconstruct the whole causal network?

– 0.2 0.1 0.1 0.1 0.3

0.4 – 0.1 0.1 0.1 0.1

0.1 0.6 – – – 0.4

0.1 0.1 – – 0.1 0.1

0.1 0.1 – 0.1 – –

0.3 0.1 – 0.1 – – include best edge−→
recompute column

X1

X2

X3

X4

X5

X6

STEP 1: Greedy Addition. Include the edge that leads to the largest
increase of the log-likelihood.
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Can we reconstruct the whole causal network?

Theorem (Some correctness of greedy search for CAM)

Assume that the skeleton of the correct DAG does not contain any cycles
(plus some mild conditions/modifications).

Greedy addition then yields a correct causal order (in population).

JP, S. Balakrishnan and M. Wainwright: in progress.

STEP 1: Greedy Addition. Include the edge that leads to the largest
increase of the log-likelihood.
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Can we reconstruct the whole causal network?

X1

X2

X3

X4

X5

X6

remove edges−→
by variable selection

X1

X2

X3

X4

X5

X6

STEP 2: Variable Selection. For each node, remove non-relevant edges.

Jonas Peters (ETH Zurich) Simplicity of Additive Noise Models 7th June 2014



Can we reconstruct the whole causal network?

X1

X2

X3

X4

X5

X6

PNS−→
by variable selection

X1

X2

X3

X4

X5

X6

Easy to add for high-dim data:
STEP 0: Preliminary Neighbourhood Selection.
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Can we reconstruct the whole causal network?
Simulations

p = 100, n = 200, functions drawn from Gaussian Process
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Can we reconstruct the whole causal network?
Simulations

p = 100, n = 200, functions drawn from Gaussian Process
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JP and P. Bühlmann: Structural Intervention Distance (SID) for Evaluating Causal Graphs, arXiv

Jonas Peters (ETH Zurich) Simplicity of Additive Noise Models 7th June 2014



Can we reconstruct the whole causal network?
Simulations

p = 10, n = 200, linear functions
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Can we reconstruct the whole causal network?
Real Data: Arabidopsis thaliana

p = 39, n = 118, 20 most significant edges
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Can we reconstruct the whole causal network?
Real Data: Arabidopsis thaliana

p = 39, n = 118, stability selection: expected false positives ≤ 2
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Can we reconstruct the whole causal network?
Real Data: A ground truth?

Assume we are given observational data (j = 1 . . . 5000; k = 1 . . . 120)

Okj : expression level of gene j in observation k ,

and some interventional data (j = 1 . . . 5000; i = . . . in total 400 genes)

Aij : expression level of gene j under a knock-down of gene i .

How do we evaluate causal inference methods?
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Summary

Idea: Additive Noise Models

Structural assumptions like additive noise models lead to identifiability:

Xi = fi (Xpa(i)) + Ni

Idea: causal order + variable selection

Find the order of variables that maximizes likelihood (by greedily adding
edges) and then perform classical variable selection.

Open Questions

Identifiability (e.g. in terms of KL-distances) depending on
non-linearity, for example.

Hidden variables

Do the assumptions (roughly) hold in practice?

How do we evaluate causal inference methods?

Dankeschön!!

Jonas Peters (ETH Zurich) Simplicity of Additive Noise Models 7th June 2014



Summary

Idea: Additive Noise Models

Structural assumptions like additive noise models lead to identifiability:

Xi = fi (Xpa(i)) + Ni

Idea: causal order + variable selection

Find the order of variables that maximizes likelihood (by greedily adding
edges) and then perform classical variable selection.

Open Questions

Identifiability (e.g. in terms of KL-distances) depending on
non-linearity, for example.

Hidden variables

Do the assumptions (roughly) hold in practice?

How do we evaluate causal inference methods?

Dankeschön!!

Jonas Peters (ETH Zurich) Simplicity of Additive Noise Models 7th June 2014



Summary

Idea: Additive Noise Models

Structural assumptions like additive noise models lead to identifiability:

Xi = fi (Xpa(i)) + Ni

Idea: causal order + variable selection

Find the order of variables that maximizes likelihood (by greedily adding
edges) and then perform classical variable selection.

Open Questions

Identifiability (e.g. in terms of KL-distances) depending on
non-linearity, for example.

Hidden variables

Do the assumptions (roughly) hold in practice?

How do we evaluate causal inference methods?

Dankeschön!!
Jonas Peters (ETH Zurich) Simplicity of Additive Noise Models 7th June 2014


