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What is the Problem?

Theoretical: P(Xi,...,Xs) AN DAG Go
AR
ST
. iid observations from  , estimated
Practical: LI

P(X1,...,Xs) DAG G,
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Consider the world of Structural Equation Models

Assume P(Xi,...,Xs) has been generated by

Xl - ﬂ(X3; Nl) @
X2 = N2 \
X3 = (X2, N3)

X = f(Xa, X3, Ng) Ce)—> (%)

e N; jointly independent

e Gy has no cycles

Can the directed acyclic graph be recovered from P(Xi,...,X4)?
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Consider the world of Structural Equation Models

Assume P(Xi,...,Xs) has been generated by

Xl - ﬂ(X3; Nl) @
X2 = N2 \
X3 = (X2, N3)

X = f(Xa, X3, Ng) Ce)—> (%)

e N; jointly independent

e Gy has no cycles

Can the directed acyclic graph be recovered from P(Xi,...,Xs)? No.
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Consider the world of Structural Equation Models

Proposition
Given a distribution P, we can find a SEM generating P for each graph G,
such that P is Markov with respect to G.

JP: Restricted Structural Equation Models for Causal Inference, PhD Thesis 2012 (and probably others?)
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Consider the world of Structural Equation Models

Proposition
Given a distribution P, we can find a SEM generating P for each-graph-G-
such-that-Pis-Markov-with-respect-to-G a lot of graphs.

JP: Restricted Structural Equation Models for Causal Inference, PhD Thesis 2012 (and probably others?)
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Consider the world of Structural Equation Models

Assume P(Xi,...,Xs) has been generated by

X1 =h((X3)+ M @
Xo = N>

X3 = (X)) + N3 \

Xo = f2(Xo, X3) + Na ()%

e V; jointly independent

e Go has no cycles

Additive Noise Models.
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Consider the world of Structural Equation Models

Assume P(Xi,...,Xs) has been generated by

X1 =H(X3)+ M @

Xo =Ny
X3 = (X)) + N3 \
Xy = f4(X2,X3)+N4 @ : @

o N; ~ N(0,0?) jointly independent

e Go has no cycles

Additive Noise Models with Gaussian noise.
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Consider the world of Structural Equation Models

Assume P(Xi,...,Xs) has been generated by

X1 =H(X3)+ M @
X, = Ny

X3 = (X)) + N3 \

Xs = fo(Xo, X3) + Na ()%

o N; ~ N(0,0?) jointly independent

e Go has no cycles

Additive Noise Models with Gaussian noise.
Can the DAG be recovered from P(Xi,...,Xs)?
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Consider the world of Structural Equation Models

Assume P(Xi,...,Xs) has been generated by

X1 =H(X3)+ M @

Xo =Ny
X3 = (X)) + N3 7\
Xy = f4(X2,X3)+N4 @ : @

o N; ~ N(0,0?) jointly independent

e Go has no cycles

Additive Noise Models with Gaussian noise.
Can the DAG be recovered from P(Xi,...,Xa)? Yes iff f; nonlinear.

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, to appear in JMLR
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Consider the world of Structural Equation Models

/ “GALLISCHES DORF ~\\ BELGAE

E LEINBONUML
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Consider the world of Structural Equation Models
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Consider the world of Structural Equation Models
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Consider the world of Structural Equation Models

Proposition
Given a Gaussian distribution P, we can find a linear Gaussian SEM
generating P for each graph G, such that P is Markov with respect to G.

A. Hauser: Causal Inference from Interventional Data, PhD Thesis 2013 (and probably others?)
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Consider the world of Structural Equation Models
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Does X cause Y or vice versa?

Consider a distribution generated by

Y = f(X) + Ny X—>

with Ny, X 2 A7
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Does X cause Y vice versa?

Consider a distribution generated by

Y = f(X) + Ny X—>

with Ny, X 2 A7

Then, if f is nonlinear, there is no

X =g(Y)+ X<—©O)

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, to appear in JMLR
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Does X cause Y or vice versa?

Consider a distribution corresponding to

Y = X3+ Ny ®_>®

with Ny, X 79 A7

with

X ~ N(1,0.5%)
Ny ~ N(0,0.4?)
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Does X cause Y or vice versa?
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Does X cause Y vice versa?
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Does X cause Y or vice versa?

0 _
=
o ]
—
>-
m_
© 1 oo CC:
T T T T T T T
-0.5 0.0 0.5 1.0 1.5 2.0 2.5
X
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Does X cause Y or vice versa?

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
gam(X ~ s(Y))$residuals
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Does X cause Y or vice versa?

15

10
o

Regress each variable on the other and check whether the residuals are
independent of the input/independent/explanatory variable.

| o - v U v Y R oy -~~~ 0 |
T T T T T T T

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

gam(X ~ s(Y))$residuals
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Does X cause Y or vice versa?
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Does X cause Y or vice versa?
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F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012
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Does X cause Y or vice versa?
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Does X cause Y or vice versa?

Confertinnaru

HEADLINES New Posts Most Popular Lis
Forbes- "™ e

Subseribe to thy + Follow

PHARMA & HEALTHCARE

Chocolate And Nobel Prize:
R g In Study

2 - 4 comments, 2 called-out + Comment Now  + Follow Comments

You don’t have to be a genius to like chocolate,
but geniuses are more likely to eat lots of
chocolate, at least according to a new paper
published in the August New England Journal of
Medicine. Franz. Messerli renorts a hishlv

F. H.
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Does X cause Y or vice versa?

No (not enough) data for chocolate

Jonas Peters (ETH Zurich) Simplicity of Additive Noise Models 7th June 2014



Does X cause Y or vice versa?

... but we have data for coffee!
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cause Y or vice versa?
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Does X cause Y or vice versa?
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Coffee — Nobel Prize: Dependent residuals (p-value of 5.1 -1078).
Nobel Prize — Coffee: Dependent residuals (p-value of 3.1-10712).

= Model class too small? Causally insufficient?
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Does X cause Y or vice versa?
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Correlation: 0.698
p-value: < 2.2-10716

Coffee — Nobel Prize: Dependent residuals (p-value of 5.1 -1078).
Nobel Prize — Coffee: Dependent residuals (p-value of 3.1-10712).

= Model class too small? Causally insufficient?
Question: When is a p-value too small?

Jonas Peters (ETH Zurich)
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Does X cause Y or vice versa?

Regress each variable on the other and check whether the residuals are
independent of the input/independent/explanatory variable.

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
gam(X ~ s(Y))$residuals
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Does X cause Y or vice versa?

— o
Method No. 1: Testing for independent residuals

Regress each variable on the other and check whether the residuals are
independent of the input/independent/explanatory variable.

> I & B I
~> translates to p > 2 variables.

Nice: correct (in population), no distributional assumption about noise.
Problem: does not scale well to large p although it's O(p?) ind. tests.

~ | o v 0P O 0 TUVT pUyeUegRL e O cov o Y |
T T T T T T T

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

gam(X ~ s(Y))$residuals
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Does X cause Y or vice versa?

{Q:Y -> X}
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Does X cause Y or vice versa?

{Q:Y -> X}
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Does X cause Y or vice versa?

{Q:Y -> X}

Method No. 2: Minimizing KL

Estimate the direction that corresponds to the closest subspace (details
follow).
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Does X cause Y or vice versa?

{Q:Y -> X}

Q*=arginf KL(P||Q)
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Does X cause Y or vice versa?

Proposition

Assume P(X,Y) is generated by
Y = BX% + Ny

with independent X ~ N(0,0%) and Ny ~ N(0, 0%, ).

Jonas Peters (ETH Zurich) Simplicity of Additive Noise Models 7th June 2014



Does X cause Y or vice versa?

Proposition
Assume P(X,Y) is generated by
Y = BX% + Ny

. . 2 2
with independent X ~ N (0,0%) and Ny ~ N(0, oy, ).
Then

inf  KL(P - .
QE{C\I)?Y%X} (Pl[Q)>0 if3+0
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Does X cause Y or vice versa?

Proposition
Assume P(X,Y) is generated by
Y = X%+ Ny

. . 2 2
with independent X ~ N(0,0%) and Ny ~ N (0, oy, ).
Then

1 oy
inf KL(PIO) = log [ 1+ 2822X
ocronxy KUPIIQ) =5 °g< +26° )

O'NY
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Does X cause Y or vice versa?

Proposition
Assume P(X,Y) is generated by

Y = f(X) + Ny

. . 2 2
with independent X ~ N(0,0%) and Ny ~ N (0, oy, ).
Then

inf KL(P|| Q) >
QRe{Q:Y—-X}
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Does X cause Y or vice versa?

Proposition
Assume P(X,Y) is generated by

Y = f(X) + Ny

. . 2 2
with independent X ~ N(0,0%) and Ny ~ N (0, oy, ).
Then

oe{ai)'?LX} KL(P|| Q) > KL (P(Y)||N(0,varY))
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Does X cause Y or vice versa?

Assume P(X,Y) is generated by

Y = f(X) + Ny

. . 2 2
with independent X ~ N(0,0%) and Ny ~ N (0, oy, ).
Then

oe{ai)'?LX} KL(P|| Q) > KL (P(Y)||N(0,varY))

@ gives us finite sample guarantees

@ model misspefication: how much non-Gaussianity can we allow for
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Does X cause Y or vice versa?

Assume P(X,Y) is generated by

Y = f(X) + Ny

. . 2 2
with independent X ~ N(0,0%) and Ny ~ N (0, oy, ).
Then

oe{ai)'?LX} KL(P|| Q) > KL (P(Y)||N(0,varY))

@ gives us finite sample guarantees
@ model misspefication: how much non-Gaussianity can we allow for
@ Question: infocrg.y_xy KL(P|[Q) =...7
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Can we reconstruct the whole causal network?
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Can we reconstruct the whole causal network?

let P(Xi,...,Xy,) be generated by an additive noise model (+Gaussian)

Xi = fi(Xea,) + N;

with jointly independent N; ~ N(0,0?) and differentiable, non-linear f;.
Then we can identify the corresponding DAG from P(X1,...,Xp).

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, to appear in JMLR
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Can we reconstruct the whole causal network?

Theorem

let P(Xi,...,Xy,) be generated by an additive noise model (+Gaussian)

Xi = fi(Xea,) + N;

with jointly independent N; ~ N(0,0?) and differentiable, non-linear f;.
Then we can identify the corresponding DAG from P(X1,...,Xp).

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, to appear in JMLR

Surprising: This follows from identifiability in the bivariate case.
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Can we reconstruct the whole causal network?

Theorem

let P(Xi,...,Xy) be generated by a causal additive model (+Gaussian)

Xi = Z fi k(Xk) + N;
kePA.

with jointly independent N; ~ N'(0,0?) and differentiable, non-linear f; y.
Then we can identify the corresponding DAG from P(X1,...,Xp).

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, to appear in JMLR

Surprising: This follows from identifiability in the bivariate case.
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Can we reconstruct the whole causal network?

Given P,(X1,...,Xs). What now?
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Can we reconstruct the whole causal network?

Given P,(X1,...,Xs). What now?
Consider model classes

Q¢ :={Q : Q generated by a causal additive model CAM with DAG G}
Optimize

min_inf KL(P,|| Q)
DAG G Q€Qg¢

Jonas Peters (ETH Zurich) Simplicity of Additive Noise Models 7th June 2014



Can we reconstruct the whole causal network?

Given P,(X1,...,Xs). What now?
Consider model classes

Q¢ :={Q : Q generated by a causal additive model CAM with DAG G}
Optimize

min_inf KL(P,|| Q)
DAG G QeQg¢

p
max.

— E log var(residualsppc
likelihood DAG G g ( PA; ax)
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Can we reconstruct the whole causal network?

Given P,(X1,...,Xs). What now?
Consider model classes

Q¢ :={Q : Q generated by a causal additive model CAM with DAG G}
Optimize

min_inf KL(P,|| Q)
DAG G QeQ¢

p
max.

— E log var(residualsppc
likelihood DAG G g ( PA; ax)

Wait, there is no penalization on the number of edges!
~ fully connected graph, i.e. orderings
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Can we reconstruct the whole causal network?

There are
18676600744432035186664816926721

DAGs with 13 nodes.
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Can we reconstruct the whole causal network?

There are
18676600744432035186664816926721

DAGs with 13 nodes. There are only :-)

6227020800

orderings.

Idea: find causal order

Find the order of variables that maximizes likelihood and then perform
classical variable selection. This is consistent
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Can we reconstruct the whole causal network?

There are
18676600744432035186664816926721

DAGs with 13 nodes. There are only :-)

6227020800

orderings.

Idea: find causal order

Find the order of variables that maximizes likelihood and then perform
classical variable selection. This is consistent (but intractable).

P. Bithlmann, JP and J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regression, submitted
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Can we reconstruct the whole causal network?

- 0201010103
04 - 01010101

Y & &

0.1 -

0101 - - 0101 /
0101 - 01 - -
0301 - =

01 - - include best edge
 best edg ©)

recompute column

STEP 1: Greedy Addition. Include the edge that leads to the largest
increase of the log-likelihood.
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Can we reconstruct the whole causal network?

Theorem (Some correctness of greedy search for CAM)

Assume that the skeleton of the correct DAG does not contain any cycles
(plus some mild conditions/modifications).

Greedy addition then yields a correct causal order (in population).

JP, S. Balakrishnan and M. Wainwright: in progress.

STEP 1: Greedy Addition. Include the edge that leads to the largest
increase of the log-likelihood.
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Can we reconstruct the whole causal network?

®
® 3@

/

@ remoge)d ges @/

by variable selection

F5—(9

STEP 2: Variable Selection. For each node, remove non-relevant edges.
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Can we reconstruct the whole causal network?

(e) DN
Q@W PNS )

by variable selection

Easy to add for high-dim data:
STEP 0: Preliminary Neighbourhood Selection.
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Can we reconstruct the whole causal network?

Simulations

p = 100, n = 200, functions drawn from Gaussian Process

400+
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Can we reconstruct the whole causal network?

Simulations

p = 100, n = 200, functions drawn from Gaussian Process
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JP and P. Biihimann: Structural Intervention Distance (SID) for Evaluating Causal Graphs, arXiv
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Can we reconstruct the whole causal network?

Simulations

p = 10, n = 200, linear functions

SHD to true CPDAG for p= 10 and n = 200

o]
o]
—_— —_—
—_— | —_— i

Jonas Peters (ETH Zurich)
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Can we reconstruct the whole causal network?

Real Data: Arabidopsis thaliana

p =39, n =118, 20 most significant edges

Chloroplast (MEP pathway) Cytoplasm (MVA pathway)

P ~
sz ) (oot ) (oosz)
A —

Wille et al.: Sparse graphical Gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome Biology, 5(11),

[ DPPS1,3 ] [ GGPPS3,4 ]
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Can we reconstruct the whole causal network?

Real Data: Arabidopsis thaliana

p = 39, n = 118, stability selection: expected false positives < 2

Chloroplast (MEP pathway) Cytoplasm (MVA pathway)
- AACT1 AACT2
HMGS
HMGR1 HMGR2

TS
MPDC1 MPDC2
S
.

1PPI2
<
Pad ~
Mitochondrion [ | >
i
1PPIL /[ eppst | [ FPPs2
/ (rors:)
D | \ |
|

| N
N\

' v

zegﬁg'ﬁ 1 [ PPDS1 ] [ PPDS2 ] [GGPPSLSQ] [ DPPSL3 ] [ GGPPS3,4 ]

Wille et al.: Sparse graphical Gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome Biology, 5(11),
7th June 2014
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Can we reconstruct the whole causal network?

Real Data: A ground truth?

Assume we are given observational data (j = 1...5000; k =1...120)

Oyj : expression level of gene j in observation k,
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Can we reconstruct the whole causal network?

Real Data: A ground truth?

Assume we are given observational data (j = 1...5000; k =1...120)

Oyj : expression level of gene j in observation k,

and some interventional data (j = 1...5000; / = ... in total 400 genes)

Ajj - expression level of gene j under a knock-down of gene i.
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Can we reconstruct the whole causal network?

Real Data: A ground truth?

Assume we are given observational data (j = 1...5000; k =1...120)

Oyj : expression level of gene j in observation k,

and some interventional data (j = 1...5000; / = ... in total 400 genes)

Ajj - expression level of gene j under a knock-down of gene i.

How do we evaluate causal inference methods?
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Idea: Additive Noise Models

Structural assumptions like additive noise models lead to identifiability:

Xi = fi(Xpa(iy) + Ni

Idea: causal order + variable selection

Find the order of variables that maximizes likelihood (by greedily adding
edges) and then perform classical variable selection.
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Idea: Additive Noise Models

Structural assumptions like additive noise models lead to identifiability:

Xi = fi(Xpa(iy) + Ni

Idea: causal order + variable selection

Find the order of variables that maximizes likelihood (by greedily adding
edges) and then perform classical variable selection.

Open Questions
e |dentifiability (e.g. in terms of KL-distances) depending on
non-linearity, for example.
@ Hidden variables
@ Do the assumptions (roughly) hold in practice?
@ How do we evaluate causal inference methods?
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