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Graphical Models

* Defines a joint distribution P(X) over a set of variables
X ={X, .., X,;}
 Agraphical model M =< G,0 >
— G =< X,E > is adirected acyclic graph.

— 0 ={04,...,0,} where 0; defines the conditional distribution
P(X;|m;) where 1; are the parents of X; in G.

e Learning: Assume we see many draws from P(X).

P(Xy) = f1(X1»@1)
P(X,) = fz(Xz:Gz)
P(X3|X1,X3) = f3(X3, X1, X3,03)




Graphical Models

* Explaining away type reasoning
— What is probability of Burglary given AlarmSound?

— What is probability of Burglary given AlarmSound
and a NewsReport of an earthquake?

Earthquake? Burglary?

NewsReport? AlarmSound?




Graphical Models

* Explaining away type reasoning
— What is probability of Burglary given AlarmSound?

— What is probability of Burglary given AlarmSound
and a NewsReport of an earthquake?

— What if the NewsReport said the earthquake was
after the Alarm went off?
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Graphical Event Models
Learning Graphical Event Models

Learning Causal Dependencies
— Causal Event Model < Graphical Event Models



Modeling temporal event streams

A temporal event stream is
a time-stamped stream of labeled events.

1 O

This type of data is pervasive:
datacenter event logs, search queries, ...

Want to model:
What events will happen when,
based on what events have happened when.



Temporal Event Sequences:
Event Logs from a Datacenter

LinkFail SQLTimeout  pjyeFail LinkFail

SQLTimeout Linkl_l-:r?;l] t HotmailAuthFail LinkFail QueueOverflow
QueueOverﬂo\?(/Q tRiEueoverflo@ueueOverflow CQuigaedlleRéonwageFail SendTech
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2:15 pm 2:30 pm 2:45 pm 3:00 pm

L is the set of possible events (i.e., things that can happen)
D = {(tl) ll)t (tz, lZ)r (t3; l3)l (tn; ln)} where [ € L and ti < ti+1



Marked point processes

Treat data as a realization of a marked point process:
X = (tlr ll)) rery (tnr ln)

Forward in time likelihood:

p(x) = ﬂpm,l ho)

where the history h; = h;(x) = (tl,ll) L (ti_, li—1)

Any p(t;, l;]h;) can be represented via conditional intensities A;(t;]h;):
ti )
p(t;, l;|hy) = nﬂz(tdhi)ﬂ(l:li)e_fo M(t)hy)adr
l



Proof sketch

Given pdf p(t) define:

p(t)
A(t) &
© 1-— fotp(r)dr
) P(t) ”
Then,
P'(t) = A®)[1 - P(®)]
Calculus:

P(t) = 1— e Jo Aar

p() = A(t)e™ oA
Given p(t, 1) = p(t)p(l|t) define
() = A()p]t)
Then .
p(t,1) = p(Op'1t) = Ay ()™ Tl 1D



Conditional intensities
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Conditional intensities
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Conditional intensities
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Conditional intensities

Au(tlh)

Au(t[h)

ti ]
p(t Ll = [ [autlnit=em b aEhoes
l

~+ VY &V &V



Conditional intensities

N

Au(t]h)

Au(t[h)

1) Behavior of different event types specified separately
2) Highlights dependency of each event types on history

~ VY VY ~ VY



Event Sequence Notation

Example: £ = {a, b, ¢}
D ={(ty, 1), - (o, 1)}

eg.,{(1,a),(3,b),(t3 =5,a),(8,c)}
h; = h(t,D) is the history up to i
h’3 — {(1) Cl), (3) b)) (5’ Cl)}

|h] 4 is the filtered history for A € L

[D]a — {(11 Cl), (5) Cl)}



Graphical Event Models

©00

A Graphical Event Model (GEM) is a pair (G, ©)
Vertices for each event type £L = {a, b, c}
Edges represent potential dependencies
®; € O parameterizes intensity function for [

Aa(tlh; ®a) — Aa(t
Ay (tlh, 0p) = 2Ap(t
Ac(tlh; ®c) — Ac(t

h
h
h




Learning Graphical Event Models

e Specify functional form(s) for intensities
A;with separate parameters for each event

* Likelihood factors according to L so we can
learn each intensity function separately.

— Bayesians also require factorization of prior

* Search over space of directed graphs
— Add/remove parents that improve the score



Piecewise-Constant CIMs (PCIM)

* |dea: restrict A;(t;|h;) to be piecewise
constant in t for all event sequences

* A state function a(t, h) maps histories to a
discrete set of states X

 APCIMis a pair M = (S, ®) where
— Structure S= {(g;(t, h), Z;) }ier
— Parameters © = {0,};c, and 0; = {Aj5}¢es,



Constant CIMs
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Piecewise-Constant CIM

* APCIM (CIM) M = (S, 0) (where ® = {04, ..., O}
and 0; = {A;5}sex,) has likelihood

p@0) = [ || |2 ettt
leEL seX;

c(l,s) is the count of event [ when g;(t,h) = sinD
d(l, s) is the total duration of g;(t,h) = sinD



Piecewise-Constant CIM

Product of Gammas is conjugate prior, even though the likelihood
isn’t a product of exponentials!

,Bls ajo—1
(A |a , ) = /1 ls e_:BlSAlS
P Ais1s lgls F(als) Ls

Closed-form posterior:
p(/llslals» ,BZS»D» S) — p()[lslals + C(l' S)» ,Bls + d(l» S) )

Closed-form marginal likelihood:
dls
(o +c(l,s))
(DIS) = 1_[ (D) (D) = s
p . Vis Vis ['(a) (B + d(l, s))asteds)




Piecewise-Constant CIM

Defining PCIM Structures Example
i ,h — i?
+ LetB={fi(t,h), .., [n()} Jeh)=s
where f;(t, h) is a basis ”O/ \’Aes
state function (BSF) AW =T foh) =s
* A family of structures 5 (B) Ay
no yes
is obtained by combining \
BSFs. We use decision trees o(t,h) =s o(t,h) =t

but one could use decision s it

graphs.



Piecewise-Constant CIM

Example Types of basis state functions f(t, h)

* Event-type specific state functions

— f(t,h) = f(t,|[h];) depends only on the history of a
specific event type

e Windowed state functions

— f(t,h) = f(t, {h}(t_s,t_e)) depends only on the
history during a window relative to time ¢.

 Historical state functions

— f(t, h) depends on the “last” events that have
happened but not their times.



Piecewise-Constant CIM
A:_H Ll

Ain Bin Cin
[t-1, t) [t-1, t) [t-1, t)
FR
no yes no yes no yes
|
Ain Ain Bin Bin Cin
[t=2,t=1) [t=5,t] [t=2,t=1) [t=5,t] [t=2,t=1)
FRY
no

oo oe®e®

oq(t, h) op(t, h) o.(t, h)



Piecewise-Constant CIM:Learning

We use a Bayesian Model selection approach to
choose S € §(B)

* Foreachl € L
— Start with empty decision tree (i.e., Vt,Vh g;(t, h) = k)

— For each leaf in decision tree
* Evaluate each possible split (f € B, s)
* Choose split that most improves the marginal likelihood

Alternatively one could use MCMC to average over
S(B).



Example: Arepootrqir d€cision tree

S 216 Event types

[30 min]
true

SuccReboot

[30min]
false

Unhealth
VersionCheck A=0
[30 min] true
Healthy
VersionCheck
[30 min]



Learning Causal Graphical Models

Directed Acyclic Assumption (DAG) causal model can be
represented by a directed acyclic graph G = (X, E)

Data Assumption: world is described by some P(X) and
the observed world is some P(0) O € X

Reliable Information Assumption (Reliable) the world
provides reliable information about independencies
among observed variables O C X.

« I(A,C,B) means A is independent of B given C



Learning Causal Graphical Models

Assumptions that connect observed world P and causal
model G

Causal Markov Assumption (CMA):
Ifd;(A4,B,C) = I(A,B,C)

Note 1: d; (A, B, C) is d-separation: a vertex separation criterion
Note 2: A graphical model “non-causal” Markov w.r.t. P(X) it defines

Causal Faithfulness Assumption (CFA):
If I,(A,B,C) = d;(A,B, ()



Learning Causal Graphical Models

Learning Scenarios
— Complete data: All variables observed (X = 0)

— Causal sufficiency: No pair of observed variables
have unobserved common ancestors.

— General case: O € X

Goal: In each learning scenario, use independence
facts to identify causal information common to every
graph with those independencies/separation facts.



Learning Causal Graphical Models

Mantra: “Correlation does not imply causation”

Complete data: Indistinguishable

o0 0O

General case: Also indistinguishable




Learning Causal Graphical Models

Interesting general case result

Under the assumptions
DAG, Reliable, CMA and CFA
If the only independence facts we
observe to hold are
I1(A,0,B),I(A,C,D),I(B,C,D)
then C is a cause of D.




Learning Causal GEMs

Step 1: Change the separation criterion from d-separation
to 0-separation

5(A,C,B)inG = (L, E)ifandonlyifd(4,C,B) in G
where GB = (£,E8)and €8 = {(l,, ;) € €|l ¢ B}

Step 2: Change from independence tests to factorization
(process independence) tests

Step 3: Assume analog of CMA, CFA, Reliable
Step 4: Prove things



Learning Causal GEMs

Learning Scenarios
— Complete data: All variables observed (X = 0)
* Result: Can recover the structure.
— Causal sufficiency: No pair of observed variables have

unobserved common ancestors.
* Result: Can recover the structure over 0. (all causes)

— G@General case: 0O €€ X

* |In Progress:
— Some sufficient conditions for cause
—  Some sufficient conditions for non-cause
—  Some sufficient conditions for existence of unmeasured common
cause




Open Issues

Characterize what one can learn in the general case

Justification of using Process Independence to
learn cause (e.g., completeness of d-separation)

Principled approaches to testing process
independence statements.

Consistency of score learning for process
independence.

Relaxing assumptions such as the reliability
assumption



