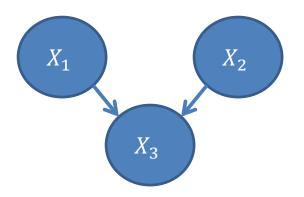
Graphical Event Models and Causal Event Models

Chris Meek Microsoft Research

Graphical Models

- Defines a joint distribution P(X) over a set of variables
 X = {X₁, ..., X_n}
- A graphical model $\mathcal{M} = \langle G, \Theta \rangle$
 - $-G = \langle X, E \rangle$ is a directed acyclic graph.
 - $\Theta = \{\Theta_1, \dots, \Theta_n\}$ where Θ_i defines the conditional distribution $P(X_i | \pi_i)$ where π_i are the parents of X_i in G.
- Learning: Assume we see many draws from P(X).



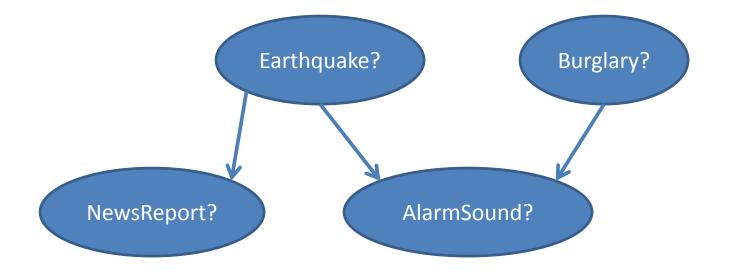
$$P(X_1) = f_1(X_1, \Theta_1)$$

$$P(X_2) = f_2(X_2, \Theta_2)$$

$$P(X_3 | X_1, X_2) = f_3(X_3, X_1, X_2, \Theta_3)$$

Graphical Models

- Explaining away type reasoning
 - What is probability of Burglary given AlarmSound?
 - What is probability of Burglary given AlarmSound and a NewsReport of an earthquake?



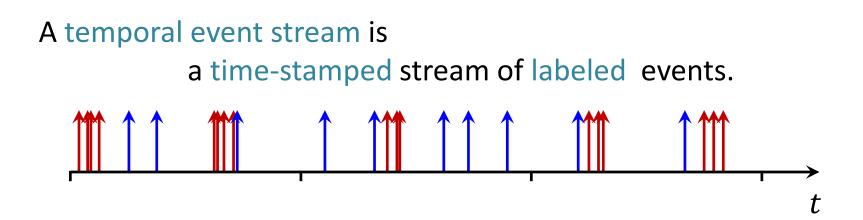
Graphical Models

- Explaining away type reasoning
 - What is probability of Burglary given AlarmSound?
 - What is probability of Burglary given AlarmSound and a NewsReport of an earthquake?
 - What if the NewsReport said the earthquake was after the Alarm went off?

Outline

- Temporal Event Sequences
- Graphical Event Models
- Learning Graphical Event Models
- Learning Causal Dependencies
 - Causal Event Model ⇔ Graphical Event Models

Modeling temporal event streams



This type of data is pervasive:

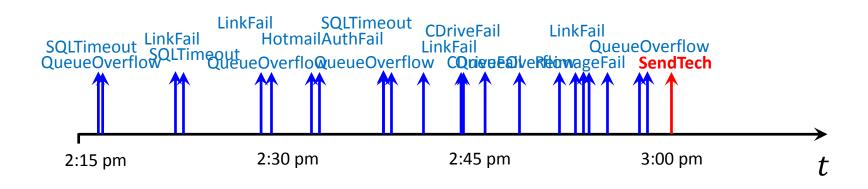
datacenter event logs, search queries, ...

Want to model:

What events will happen when,

based on what events have happened when.

Temporal Event Sequences: Event Logs from a Datacenter



 \mathcal{L} is the set of possible events (i.e., things that can happen) $\mathcal{D} = \{(t_1, l_1), (t_2, l_2), (t_3, l_3), \dots (t_n, l_n)\}$ where $l \in \mathcal{L}$ and $t_i < t_{i+1}$

Marked point processes

Treat data as a realization of a marked point process: $x = (t_1, l_1), ..., (t_n, l_n)$

Forward in time likelihood:

$$p(x) = \prod_{i=1}^{n} p(t_i, l_i | h_i)$$

where the history $h_i = h_i(x) = (t_1, l_1), \dots, (t_{i-1}, l_{i-1})$

Any $p(t_i, l_i | h_i)$ can be represented via conditional intensities $\lambda_l(t_i | h_i)$: $p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i)^{\mathbb{I}(l = l_i)} e^{-\int_0^{t_i} \lambda_l(\tau | h_i) d\tau}$

Proof sketch

Given pdf p(t) define:

$$\lambda(t) \triangleq \frac{p(t)}{1 - \underbrace{\int_{0}^{t} p(\tau) d\tau}_{P(t)}}$$

Then,

$$P'(t) = \lambda(t)[1 - P(t)]$$

Calculus:

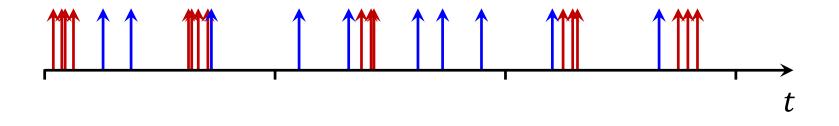
$$P(t) = 1 - e^{-\int_0^t \lambda(\tau)d\tau}$$

$$p(t) = \lambda(t)e^{-\int_0^t \lambda(\tau)d\tau}$$
Given $p(t,l) = p(t)p(l|t)$ define
$$\lambda_l(t) \triangleq \lambda(t)p(l|t)$$

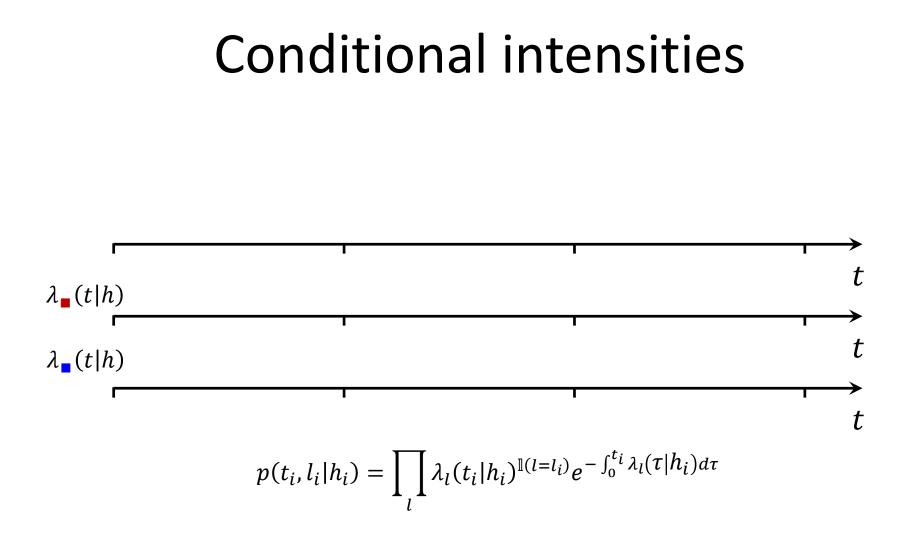
Then

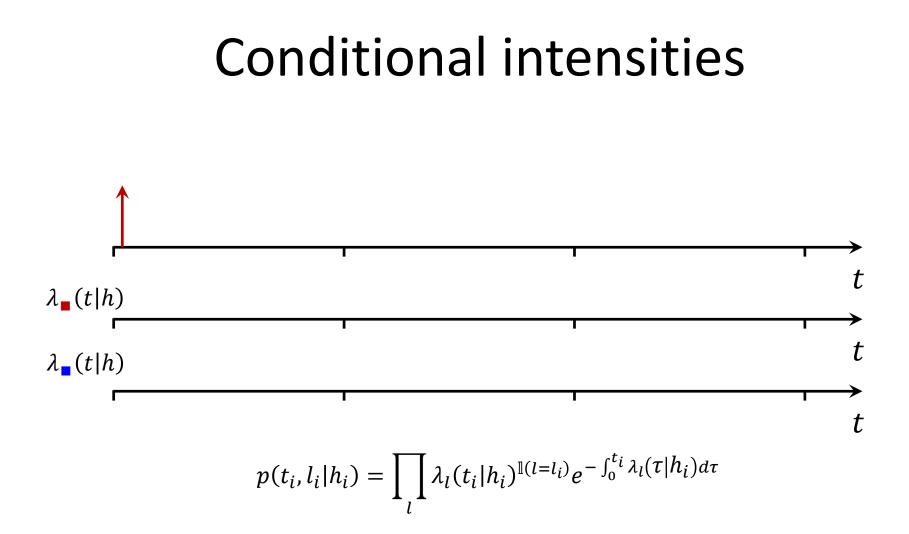
$$p(t,l') = p(t)p(l'|t) = \lambda_{l'}(t)e^{-\sum_l \int_0^t \lambda_l(\tau)d\tau}$$

Conditional intensities

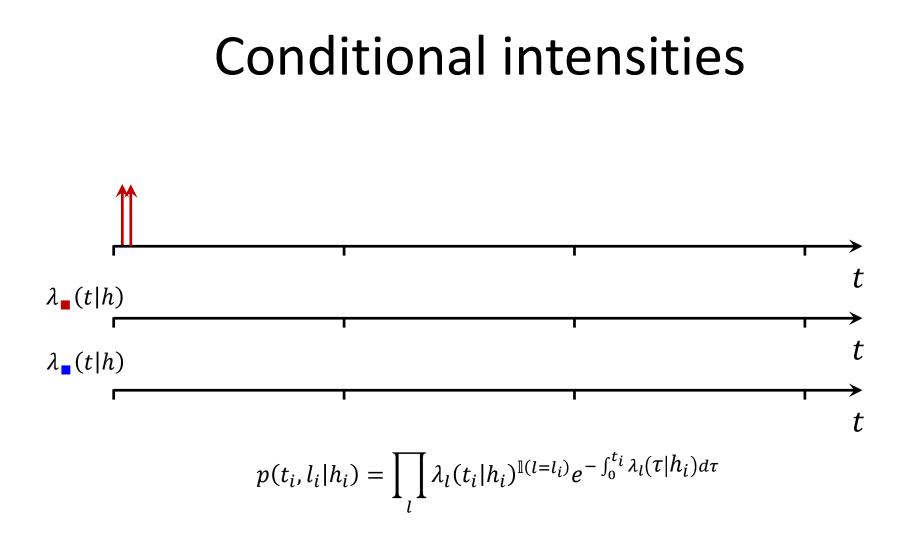


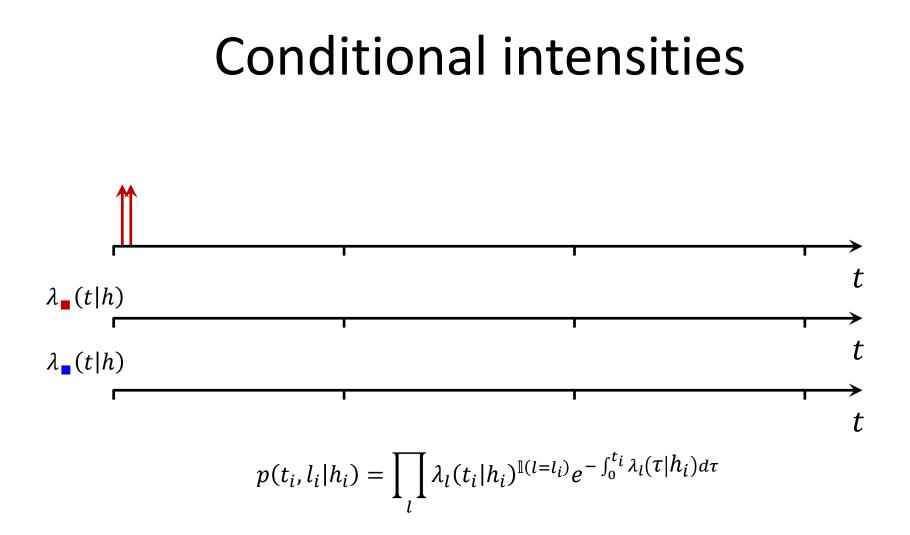
$$p(t_i, l_i|h_i) = \prod_l \lambda_l(t_i|h_i)^{\mathbb{I}(l=l_i)} e^{-\int_0^{t_i} \lambda_l(\tau|h_i) d\tau}$$

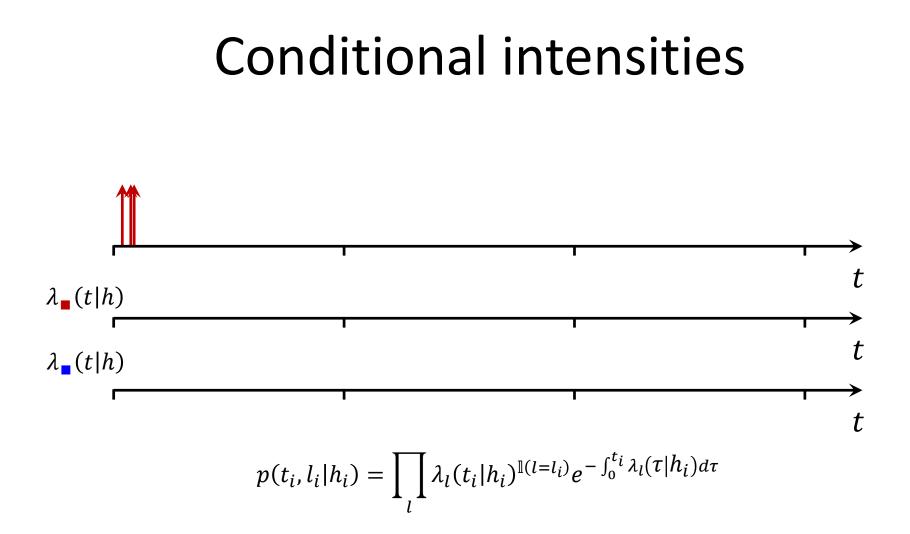


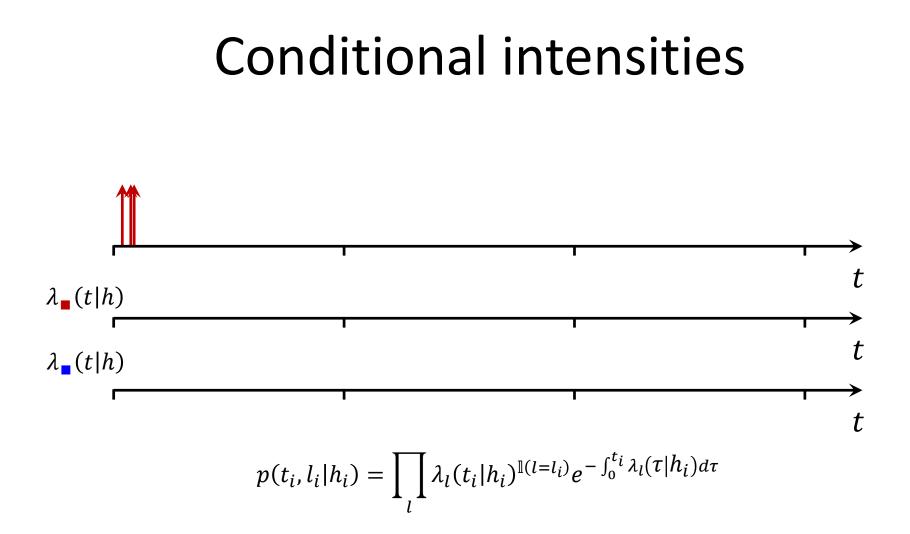


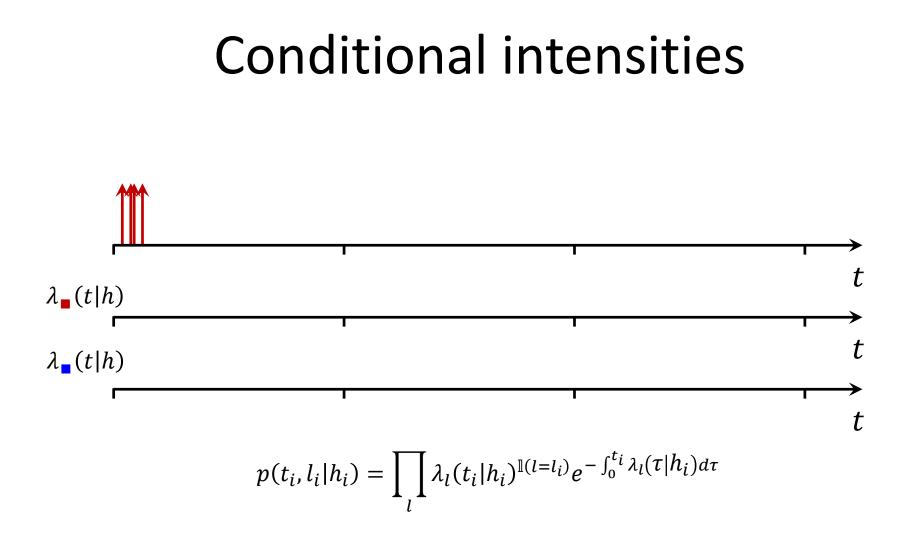


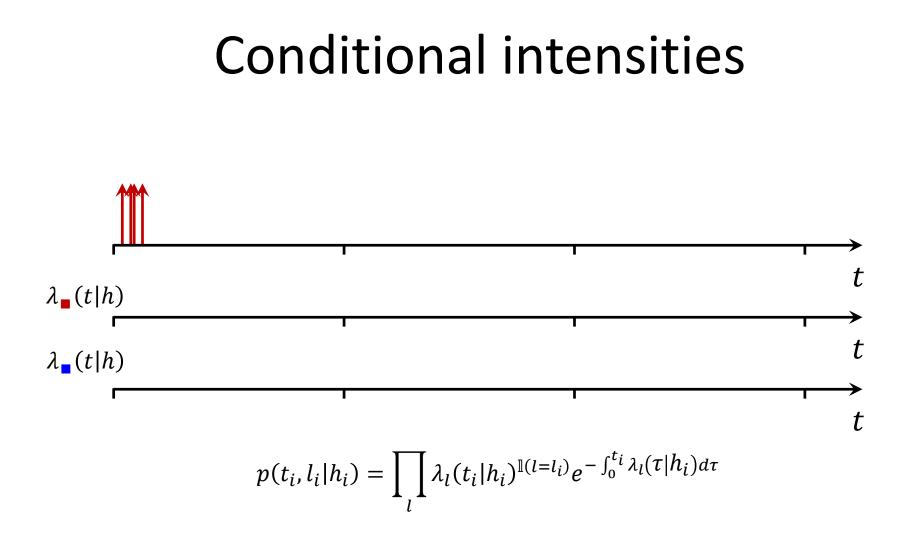


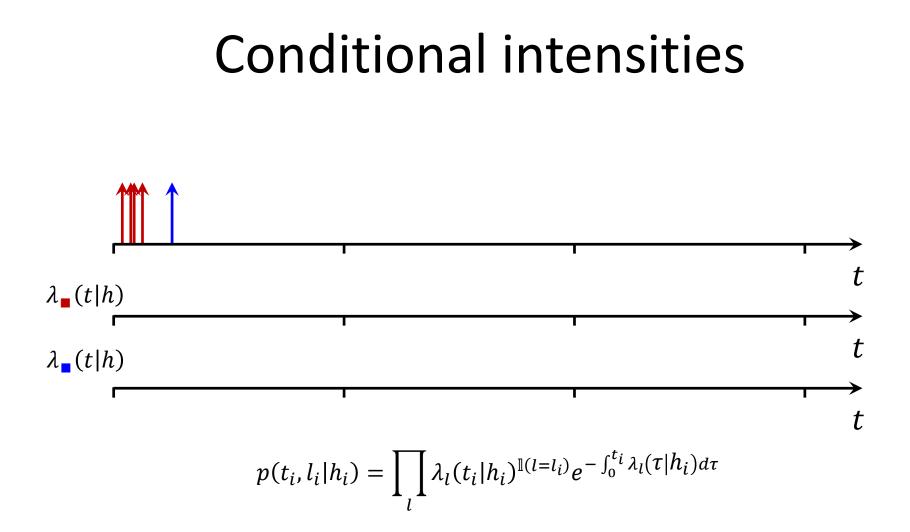


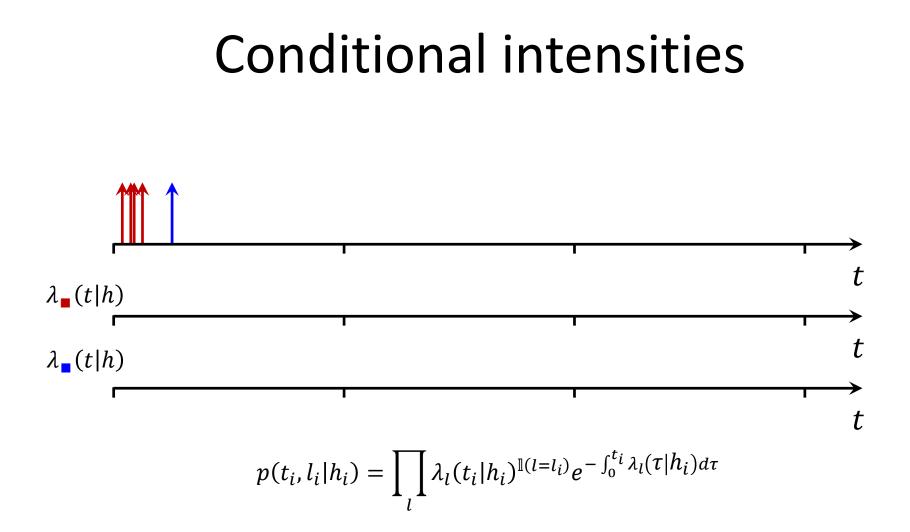




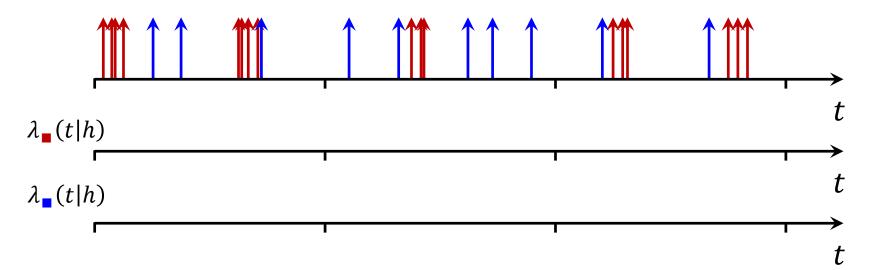








Conditional intensities



- 1) Behavior of different event types specified separately
- 2) Highlights dependency of each event types on history

Event Sequence Notation

Example:
$$\mathcal{L} = \{a, b, c\}$$

 $\mathcal{D} = \{(t_1, l_1), \dots (t_n, l_n)\}$

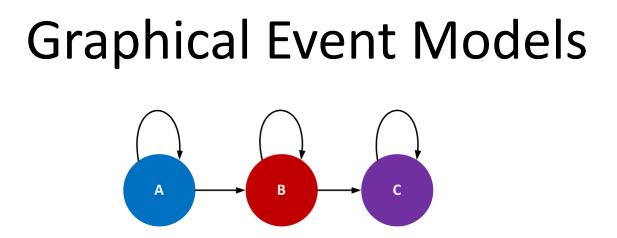
e.g., {(1,
$$a$$
), (3, b), ($t_3 = 5, a$), (8, c)}

 $h_i = h(t, D)$ is the *history up to i*

$$h_3 = \{(1, a), (3, b), (5, a)\}$$

 $[h]_A$ is the *filtered history* for $A \subseteq \mathcal{L}$

$$[\mathcal{D}]_a = \{(1, a), (5, a)\}$$



A Graphical Event Model (GEM) is a pair $\langle G, \Theta \rangle$ Vertices for each event type $\mathcal{L} = \{a, b, c\}$ Edges represent potential dependencies $\Theta_l \in \Theta$ parameterizes intensity function for l

$$\lambda_{a}(t|h,\Theta_{a}) = \lambda_{a}(t|[h]_{\pi_{a}},\Theta_{a})$$
$$\lambda_{b}(t|h,\Theta_{b}) = \lambda_{b}(t|[h]_{\pi_{b}},\Theta_{b})$$
$$\lambda_{c}(t|h,\Theta_{c}) = \lambda_{c}(t|[h]_{\pi_{c}},\Theta_{c})$$

Learning Graphical Event Models

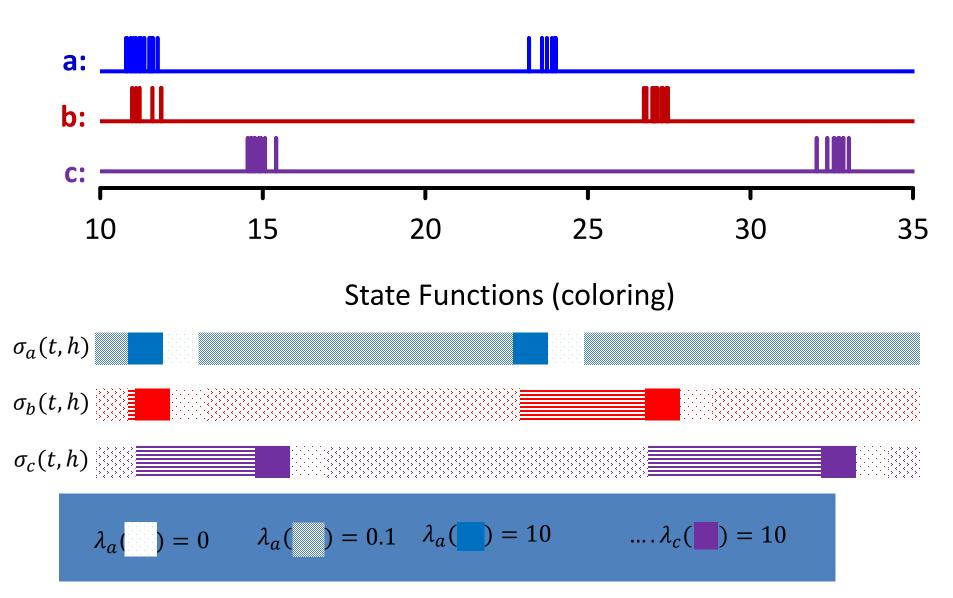
- Specify functional form(s) for intensities λ_l with separate parameters for each event
- Likelihood factors according to \mathcal{L} so we can learn each intensity function separately.

- Bayesians also require factorization of prior

Search over space of directed graphs
 Add/remove parents that improve the score

Piecewise-Constant CIMs (PCIM)

- Idea: restrict $\lambda_l(t_i|h_i)$ to be piecewise constant in t for all event sequences
- A state function $\sigma(t, h)$ maps histories to a discrete set of states Σ
- A PCIM is a pair $\mathcal{M} = \langle S, \Theta \rangle$ where
 - Structure S= { $\langle \sigma_l(t,h), \Sigma_l \rangle$ } $_{l \in \mathcal{L}}$
 - Parameters $\Theta = \{\Theta_l\}_{l \in \mathcal{L}}$ and $\Theta_l = \{\lambda_{ls}\}_{s \in \Sigma_l}$



• A PCIM (CIM) $\mathcal{M} = \langle S, \Theta \rangle$ (where $\Theta = \{\Theta_1, \dots, \Theta_{|\mathcal{L}|}\}$ and $\Theta_l = \{\lambda_{ls}\}_{s \in \Sigma_l}$) has likelihood $p(\mathcal{D}|\mathcal{M}) = \prod_{l \in \mathcal{L}} \prod_{s \in \Sigma_l} \lambda_{ls}^{c(l,s)} e^{-\lambda_{ls} d(l,s)}$

c(l, s) is the count of event l when $\sigma_l(t, h) = s$ in \mathcal{D} d(l, s) is the total duration of $\sigma_l(t, h) = s$ in \mathcal{D}

Product of Gammas is conjugate prior, even though the likelihood isn't a product of exponentials!

$$p(\lambda_{ls}|\alpha_{ls},\beta_{ls}) = \frac{\beta_{ls}}{\Gamma(\alpha_{ls})} \lambda_{ls}^{\alpha_{ls}-1} e^{-\beta_{ls}\lambda_{ls}}$$

Closed-form posterior:

 $p(\lambda_{ls} | \alpha_{ls}, \beta_{ls}, \mathcal{D}, S) = p(\lambda_{ls} | \alpha_{ls} + c(l, s), \beta_{ls} + d(l, s))$

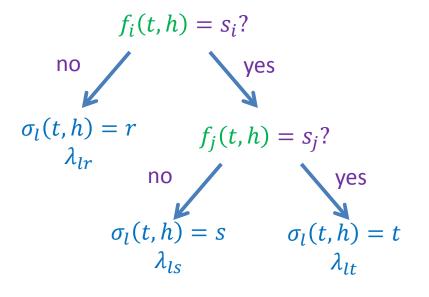
Closed-form marginal likelihood:

$$p(\mathcal{D}|S) = \prod_{ls} \gamma_{ls}(\mathcal{D}) \qquad \gamma_{ls}(\mathcal{D}) = \frac{\beta_{ls}^{\alpha_{ls}}}{\Gamma(\alpha_{ls})} \frac{\Gamma(\alpha_{ls} + c(l,s))}{(\beta_{ls} + d(l,s))^{\alpha_{ls} + c(l,s)}}$$

Defining PCIM Structures

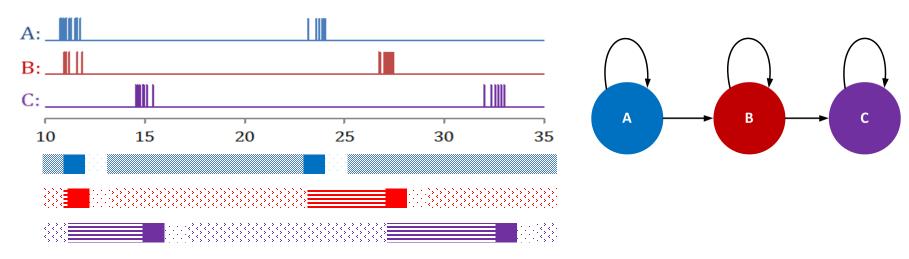
Example

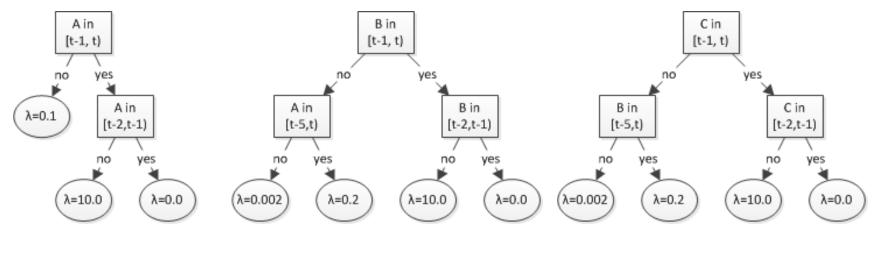
- Let $\mathcal{B} = \{f_1(t, h), \dots, f_n(,)\}$ where $f_i(t, h)$ is a basis state function (BSF)
- A family of structures S(B) is obtained by combining BSFs. We use decision trees but one could use decision graphs.



Example Types of basis state functions f(t, h)

- Event-type specific state functions
 - $-f(t,h) = f(t,[h]_l)$ depends only on the history of a specific event type
- Windowed state functions
 - $-f(t,h) = f(t, \{h\}_{(t-s,t-e)}) \text{ depends only on the history during a window relative to time } t.$
- Historical state functions
 - -f(t,h) depends on the "last" events that have happened but not their times.





 $\sigma_a(t,h)$

 $\sigma_b(t,h)$

 $\sigma_c(t,h)$

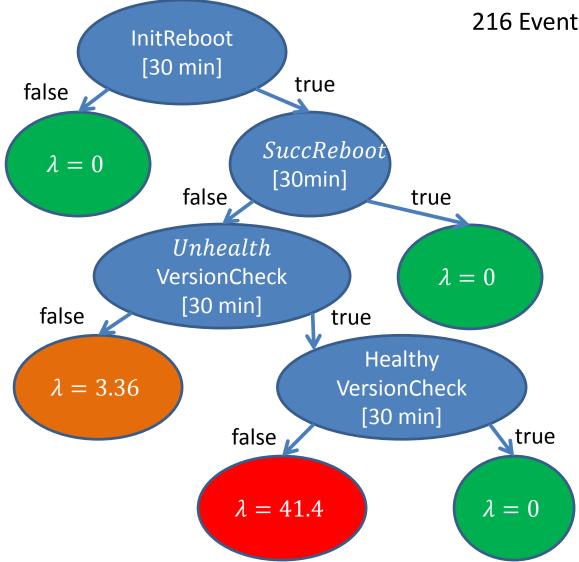
Piecewise-Constant CIM:Learning

We use a Bayesian Model selection approach to choose $S \in \mathcal{S}(\mathcal{B})$

- For each $l \in \mathcal{L}$
 - Start with empty decision tree (i.e., $\forall t, \forall h \sigma_l(t, h) = k$)
 - For each leaf in decision tree
 - Evaluate each possible split ($f \in \mathcal{B}, s$)
 - Choose split that most improves the marginal likelihood

Alternatively one could use MCMC to average over $\mathcal{S}(\mathcal{B})$.

Example: $\lambda_{RebootFail}$ decision tree



216 Event types

Directed Acyclic Assumption (DAG) causal model can be represented by a directed acyclic graph $G = \langle X, E \rangle$

Data Assumption: world is described by some P(X) and the observed world is some $P(O) \ O \subseteq X$

Reliable Information Assumption (Reliable) the world provides reliable information about independencies among observed variables $\mathcal{O} \subseteq X$.

• *I*(*A*, *C*, *B*) means *A* is independent of *B* given *C*

Assumptions that connect observed world P and causal model G

Causal Markov Assumption (CMA): If $d_G(A, B, C) \Rightarrow I_P(A, B, C)$

Note 1: $d_G(A, B, C)$ is d-separation: a vertex separation criterion Note 2: A graphical model "non-causal" Markov w.r.t. P(X) it defines

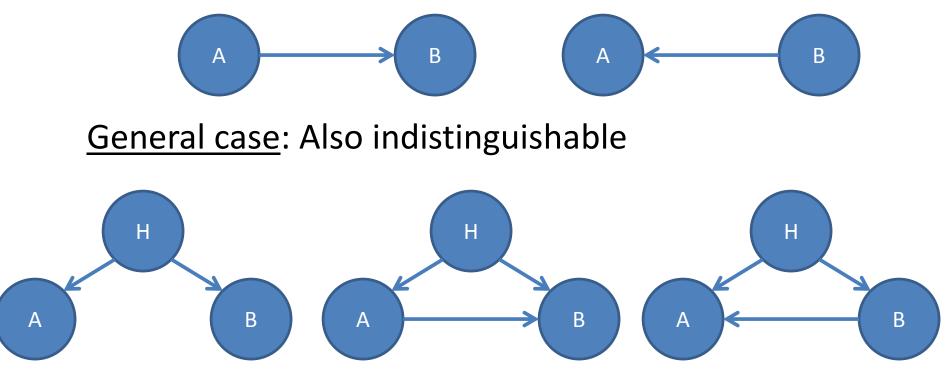
Causal Faithfulness Assumption (CFA): If $I_P(A, B, C) \Rightarrow d_G(A, B, C)$

Learning Scenarios

- <u>Complete data</u>: All variables observed (X = O)
- <u>Causal sufficiency</u>: No pair of observed variables have unobserved common ancestors.
- <u>General case</u>: $\mathcal{O} \subseteq X$

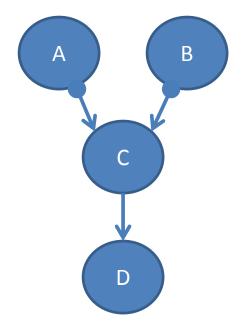
Goal: In each learning scenario, use independence facts to identify causal information common to every graph with those independencies/separation facts.

Mantra: "Correlation does not imply causation"



Interesting general case result

Under the assumptions DAG, Reliable, CMA and CFA If the only independence facts we observe to hold are $I(A, \emptyset, B), I(A, C, D), I(B, C, D)$ then C is a cause of D.



Learning Causal GEMs

Step 1: Change the separation criterion from d-separation to δ -separation

 $\delta(A, C, B)$ in $G = \langle \mathcal{L}, \mathcal{E} \rangle$ if and only if d(A, C, B) in G^B where $G^B = \langle \mathcal{L}, \mathcal{E}^B \rangle$ and $\mathcal{E}^B = \{ \langle l_1, l_2 \rangle \in \mathcal{E} | l_1 \notin B \}$

Step 2: Change from independence tests to factorization (process independence) testsStep 3: Assume analog of CMA, CFA, ReliableStep 4: Prove things

Learning Causal GEMs

Learning Scenarios

- <u>Complete data</u>: All variables observed (X = O)
 - Result: Can recover the structure.
- <u>Causal sufficiency</u>: No pair of observed variables have unobserved common ancestors.
 - Result: Can recover the structure over \mathcal{O} . (all causes)
- $\underline{General \, case}: \mathcal{O} \subseteq X$
 - In Progress:
 - Some sufficient conditions for cause
 - Some sufficient conditions for non-cause
 - Some sufficient conditions for existence of unmeasured common cause

Open Issues

- Characterize what one can learn in the general case
- Justification of using Process Independence to learn cause (e.g., completeness of δ -separation)
- Principled approaches to testing process independence statements.
- Consistency of score learning for process independence.
- Relaxing assumptions such as the reliability assumption