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Graphical Models

• Defines a joint distribution 𝑃 𝑋 over a set of variables 
𝑋 = 𝑋1, … , 𝑋𝑛

• A graphical model ℳ =< 𝐺,Θ >
– 𝐺 =< 𝑋, 𝐸 > is a directed acyclic graph.
– Θ = {Θ1, … , Θ𝑛} where Θ𝑖 defines the conditional distribution 
𝑃(𝑋𝑖|𝜋𝑖) where 𝜋𝑖 are the parents of 𝑋𝑖 in 𝐺.

• Learning: Assume we see many draws from 𝑃 𝑋 .

𝑋1 𝑋2

𝑋3

𝑃 𝑋1 = 𝑓1 𝑋1, Θ1
𝑃 𝑋2 = 𝑓2 𝑋2, Θ2

𝑃 𝑋3 𝑋1, 𝑋2 = 𝑓3(𝑋3, 𝑋1, 𝑋2, Θ3)



Graphical Models

• Explaining away type reasoning

– What is probability of Burglary given AlarmSound?

– What is probability of Burglary given AlarmSound
and a NewsReport of an earthquake?

Burglary?Earthquake?

NewsReport? AlarmSound?



Graphical Models

• Explaining away type reasoning

– What is probability of Burglary given AlarmSound?

– What is probability of Burglary given AlarmSound
and a NewsReport of an earthquake?

– What if the NewsReport said the earthquake was 
after the Alarm went off?
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Modeling temporal event streams

A temporal event stream is 
a time-stamped stream of labeled events.

This type of data is pervasive:
datacenter event logs, search queries, …

Want to model:
What events will happen when, 

based on what events have happened when.

𝑡



Temporal Event Sequences:
Event Logs from a Datacenter 

𝑡2:15 pm 2:30 pm 2:45 pm 3:00 pm

SendTechReimageFailCDriveFail

LinkFailCDriveFail

QueueOverflow
LinkFailHotmailAuthFail

QueueOverflowQueueOverflowQueueOverflow
SQLTimeout

SQLTimeout

SQLTimeout

LinkFail
LinkFail QueueOverflow

ℒ is the set of possible events (i.e., things that can happen)

𝒟 = 𝑡1, 𝑙1 , 𝑡2, 𝑙2 , 𝑡3, 𝑙3 , … 𝑡𝑛, 𝑙𝑛 where 𝑙 ∈ ℒ and 𝑡𝑖 < 𝑡𝑖+1



Marked point processes

Treat data as a realization of a marked point process:
𝑥 = 𝑡1, 𝑙1 , … , 𝑡𝑛, 𝑙𝑛

Forward in time likelihood:

𝑝 𝑥 = 

𝑖=1

𝑛

𝑝(𝑡𝑖 , 𝑙𝑖|ℎ𝑖)

where the history ℎ𝑖 = ℎ𝑖(𝑥) = 𝑡1, 𝑙1 , … , 𝑡𝑖−1, 𝑙𝑖−1

Any 𝑝(𝑡𝑖 , 𝑙𝑖|ℎ𝑖) can be  represented via conditional intensities 𝜆𝑙 𝑡𝑖 ℎ𝑖 :

𝑝 𝑡𝑖 , 𝑙𝑖 ℎ𝑖 = 

𝑙

𝜆𝑙 𝑡𝑖 ℎ𝑖
𝕝 𝑙=𝑙𝑖 𝑒−  0

𝑡𝑖 𝜆𝑙 𝜏 ℎ𝑖 𝑑𝜏



Proof sketch

Given pdf 𝑝(𝑡) define:

𝜆 𝑡 ≜
𝑝(𝑡)

1 −  0
𝑡
𝑝 𝜏 𝑑𝜏

𝑃(𝑡)

Then,
𝑃′ 𝑡 = 𝜆 𝑡 1 − 𝑃 𝑡

Calculus:

𝑃 𝑡 = 1 − 𝑒−  0
𝑡
𝜆 𝜏 𝑑𝜏

𝑝 𝑡 = 𝜆 𝑡 𝑒−  0
𝑡
𝜆 𝜏 𝑑𝜏

Given 𝑝 𝑡, 𝑙 = 𝑝 𝑡 𝑝(𝑙|𝑡) define
𝜆𝑙 𝑡 ≜ 𝜆 𝑡 𝑝 𝑙 𝑡

Then

𝑝 𝑡, 𝑙′ = 𝑝 𝑡 𝑝 𝑙′ 𝑡 = 𝜆𝑙′ 𝑡 𝑒
−  𝑙  0

𝑡
𝜆𝑙 𝜏 𝑑𝜏



Conditional intensities

𝑡

𝑝 𝑡𝑖 , 𝑙𝑖 ℎ𝑖 = 

𝑙

𝜆𝑙 𝑡𝑖 ℎ𝑖
𝕝 𝑙=𝑙𝑖 𝑒−  0

𝑡𝑖 𝜆𝑙 𝜏 ℎ𝑖 𝑑𝜏



Conditional intensities

𝑡
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𝜆∎ 𝑡 ℎ
𝑡
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𝑝 𝑡𝑖 , 𝑙𝑖 ℎ𝑖 = 

𝑙
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𝕝 𝑙=𝑙𝑖 𝑒−  0

𝑡𝑖 𝜆𝑙 𝜏 ℎ𝑖 𝑑𝜏



Conditional intensities
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Conditional intensities
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Conditional intensities
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Conditional intensities
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Conditional intensities
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Conditional intensities
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Conditional intensities

𝑡
𝜆∎ 𝑡 ℎ

𝜆∎ 𝑡 ℎ
𝑡

𝑡

𝑝 𝑡𝑖 , 𝑙𝑖 ℎ𝑖 = 

𝑙

𝜆𝑙 𝑡𝑖 ℎ𝑖
𝕝 𝑙=𝑙𝑖 𝑒−  0

𝑡𝑖 𝜆𝑙 𝜏 ℎ𝑖 𝑑𝜏



Conditional intensities
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Conditional intensities
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Conditional intensities
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Conditional intensities

𝑡
𝜆∎ 𝑡 ℎ

𝜆∎ 𝑡 ℎ
𝑡

𝑡
1) Behavior of different event types specified separately 
2) Highlights dependency of each event types on history



Event Sequence Notation

Example: ℒ = {𝑎, 𝑏, 𝑐}
𝒟 = 𝑡1, 𝑙1 , … 𝑡𝑛, 𝑙𝑛

e.g., 1, 𝑎 , 3, 𝑏 , 𝑡3 = 5, 𝑎 , 8, 𝑐

ℎ𝑖 = ℎ(𝑡, 𝒟) is the history up to i

ℎ3 = 1, 𝑎 , 3, 𝑏 , (5, 𝑎)

ℎ 𝐴 is the filtered history for 𝐴 ⊆ ℒ

𝒟 𝑎 = { 1, 𝑎 , 5, 𝑎 }



Graphical Event Models

A Graphical Event Model (GEM) is a pair 𝐺, Θ
Vertices for each event type ℒ = 𝑎, 𝑏, 𝑐
Edges represent potential dependencies
Θ𝑙 ∈ Θ parameterizes intensity function for 𝑙

𝜆𝑎 𝑡 ℎ, Θ𝑎 = 𝜆𝑎 𝑡 ℎ 𝜋𝑎 , Θ𝑎

𝜆𝑏 𝑡 ℎ, Θ𝑏 = 𝜆𝑏 𝑡 ℎ 𝜋𝑏 , Θ𝑏

𝜆𝑐 𝑡 ℎ, Θ𝑐 = 𝜆𝑐 𝑡 ℎ 𝜋𝑐 , Θ𝑐



Learning Graphical Event Models

• Specify functional form(s) for intensities 
𝜆𝑙with separate parameters for each event

• Likelihood factors according to ℒ so we can 
learn each intensity function separately.

– Bayesians also require factorization of prior

• Search over space of directed graphs

– Add/remove parents that improve the score



Piecewise-Constant CIMs (PCIM)

• Idea: restrict 𝜆𝑙 𝑡𝑖|ℎ𝑖 to be piecewise 
constant in 𝑡 for all event sequences

• A state function 𝜎(𝑡, ℎ)maps histories to a 
discrete set of states Σ

• A PCIM is a pair ℳ = 𝑆, Θ where

– Structure S= 𝜎𝑙 𝑡, ℎ , Σ𝑙 𝑙∈ℒ

– Parameters Θ = Θ𝑙 𝑙∈ℒ and Θ𝑙 = 𝜆𝑙𝑠 𝑠∈Σ𝑙



Piecewise-Constant CIMs

10 15 20 25 30 35

a:

b:

c:

𝜎𝑎(𝑡, ℎ)

𝜎𝑐(𝑡, ℎ)

𝜎𝑏(𝑡, ℎ)

𝜆𝑎( ) = 0

State Functions (coloring)

𝜆𝑎( ) = 0.1 𝜆𝑎( ) = 10 … . 𝜆𝑐( ) = 10



Piecewise-Constant CIM

• A PCIM (CIM) ℳ = 𝑆, Θ (where Θ = {Θ1, … , Θ ℒ }

and Θ𝑙 = 𝜆𝑙𝑠 𝑠∈Σ𝑙) has likelihood

𝑝 𝒟|ℳ = 

𝑙∈ℒ

 

𝑠∈Σ𝑙

𝜆𝑙𝑠
𝑐(𝑙,𝑠)
𝑒−𝜆𝑙𝑠𝑑(𝑙,𝑠)

𝑐(𝑙, 𝑠) is the count of event 𝑙 when 𝜎𝑙 𝑡, ℎ = 𝑠 in 𝒟

𝑑(𝑙, 𝑠) is the total duration of 𝜎𝑙 𝑡, ℎ = 𝑠 in 𝒟



Piecewise-Constant CIM

Product of Gammas is conjugate prior, even though the likelihood 
isn’t a product of exponentials!

𝑝 𝜆𝑙𝑠 𝛼𝑙𝑠, 𝛽𝑙𝑠 =
𝛽𝑙𝑠
Γ 𝛼𝑙𝑠
𝜆𝑙𝑠
𝛼𝑙𝑠−1𝑒−𝛽𝑙𝑠𝜆𝑙𝑠

Closed-form posterior: 
𝑝 𝜆𝑙𝑠 𝛼𝑙𝑠, 𝛽𝑙𝑠, 𝒟, 𝑆 = 𝑝 𝜆𝑙𝑠 𝛼𝑙𝑠 + 𝑐(𝑙, 𝑠), 𝛽𝑙𝑠 + 𝑑(𝑙, 𝑠)

Closed-form marginal likelihood:

𝑝 𝒟 𝑆 = 

𝑙𝑠

𝛾𝑙𝑠 𝒟 𝛾𝑙𝑠 𝒟 =
𝛽𝑙𝑠
𝛼𝑙𝑠

Γ 𝛼𝑙𝑠

Γ 𝛼𝑙𝑠 + 𝑐(𝑙, 𝑠)

𝛽𝑙𝑠 + 𝑑(𝑙, 𝑠)
𝛼𝑙𝑠+𝑐(𝑙,𝑠)



Piecewise-Constant CIM

Defining PCIM Structures

• Let ℬ = 𝑓1 𝑡, ℎ , … , 𝑓𝑛(, )
where 𝑓𝑖 𝑡, ℎ is a basis 
state function (BSF)

• A family of structures 𝒮(ℬ)
is obtained by combining 
BSFs. We use decision trees 
but one could use decision 
graphs.

Example

𝑓𝑖 𝑡, ℎ = 𝑠𝑖?

𝑓𝑗 𝑡, ℎ = 𝑠𝑗?

no yes

no yes

𝜎𝑙 𝑡, ℎ = 𝑟
𝜆𝑙𝑟

𝜎𝑙 𝑡, ℎ = 𝑠
𝜆𝑙𝑠

𝜎𝑙 𝑡, ℎ = 𝑡
𝜆𝑙𝑡



Piecewise-Constant CIM

Example Types of basis state functions 𝑓 𝑡, ℎ

• Event-type specific state functions
– 𝑓 𝑡, ℎ = 𝑓(𝑡, ℎ 𝑙) depends only on the history of  a 

specific event type

• Windowed state functions

– 𝑓 𝑡, ℎ = 𝑓 𝑡, ℎ 𝑡−𝑠,𝑡−𝑒 depends only on the 
history during a window relative to time 𝑡.

• Historical state functions
– 𝑓 𝑡, ℎ depends on the “last” events that have 

happened but not their times.



Piecewise-Constant CIM

𝜎𝑎(𝑡, ℎ) 𝜎𝑐(𝑡, ℎ)𝜎𝑏(𝑡, ℎ)



Piecewise-Constant CIM:Learning

We use a Bayesian Model selection approach to 
choose 𝑆 ∈ 𝒮 ℬ

• For each 𝑙 ∈ ℒ
– Start with empty decision tree (i.e., ∀𝑡, ∀ℎ 𝜎𝑙 𝑡, ℎ = 𝑘)

– For each leaf in decision tree
• Evaluate each possible split (𝑓 ∈ ℬ, 𝑠)

• Choose split that most improves the marginal likelihood

Alternatively one could use MCMC to average over 
𝒮 ℬ .



Example: 𝜆𝑅𝑒𝑏𝑜𝑜𝑡𝐹𝑎𝑖𝑙 decision tree
216 Event types

InitReboot
[30 min]

𝜆 = 0
𝑆𝑢𝑐𝑐𝑅𝑒𝑏𝑜𝑜𝑡
[30min]

𝜆 = 0
𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ

VersionCheck
[30 min]

𝜆 = 3.36
Healthy

VersionCheck
[30 min]

𝜆 = 41.4 𝜆 = 0

false

false

false

false

true

true

true

true



Learning Causal Graphical Models

Directed Acyclic Assumption (DAG) causal model can be 
represented by a directed acyclic graph 𝐺 = 𝑋, 𝐸

Data Assumption: world is described by some 𝑃 𝑋 and 
the observed world is some 𝑃 𝑂 𝑂 ⊆ 𝑋

Reliable Information Assumption (Reliable) the world 
provides reliable information about independencies 
among observed variables 𝒪 ⊆ 𝑋.

• 𝐼(𝐴, 𝐶, 𝐵)means 𝐴 is independent of 𝐵 given 𝐶



Learning Causal Graphical Models

Assumptions that connect observed world 𝑃 and causal 
model 𝐺

Causal Markov Assumption (CMA): 
If 𝑑𝐺 𝐴, 𝐵, 𝐶 ⇒ 𝐼𝑃 𝐴, 𝐵, 𝐶

Note 1: 𝑑𝐺(𝐴, 𝐵, 𝐶) is d-separation: a vertex separation criterion
Note 2: A graphical model “non-causal” Markov w.r.t. 𝑃 𝑋 it defines

Causal Faithfulness Assumption (CFA): 
If 𝐼𝑃 𝐴, 𝐵, 𝐶 ⇒ 𝑑𝐺(𝐴, 𝐵, 𝐶)



Learning Causal Graphical Models

Learning Scenarios

– Complete data: All variables observed (𝑋 = 𝒪)

– Causal sufficiency: No pair of observed variables 
have unobserved common ancestors.

– General case: 𝒪 ⊆ 𝑋

Goal: In each learning scenario, use independence 
facts to identify causal information common to every 
graph with those independencies/separation facts.



Learning Causal Graphical Models

Mantra: “Correlation does not imply causation”

Complete data: Indistinguishable

General case: Also indistinguishable

A B A B

A B

H

A B

H

A B

H



Learning Causal Graphical Models

Interesting general case result

Under the assumptions 

DAG, Reliable, CMA and CFA

If the only independence facts we 

observe to hold are 

𝐼 𝐴, ∅, 𝐵 , 𝐼 𝐴, 𝐶, 𝐷 , 𝐼(𝐵, 𝐶, 𝐷)

then 𝐶 is a cause of 𝐷.

A B

C

D



Learning Causal GEMs

Step 1: Change the separation criterion from d-separation 
to 𝛿-separation

𝛿(A, C, B) in 𝐺 = ℒ, ℰ if and only if 𝑑(𝐴, 𝐶, 𝐵) in 𝐺𝐵

where 𝐺𝐵 = ℒ, ℰ𝐵 and ℰ𝐵 = 𝑙1, 𝑙2 ∈ ℰ|𝑙1 ∉ 𝐵

Step 2: Change from independence tests to factorization 
(process independence) tests

Step 3: Assume analog of CMA, CFA, Reliable

Step 4: Prove things



Learning Causal GEMs

Learning Scenarios

– Complete data: All variables observed (𝑋 = 𝒪)
• Result: Can recover the structure.

– Causal sufficiency: No pair of observed variables have 
unobserved common ancestors.
• Result: Can recover the structure over 𝒪. (all causes)

– General case: 𝒪 ⊆ 𝑋
• In Progress: 

– Some sufficient conditions for cause

– Some sufficient conditions for non-cause

– Some sufficient conditions for existence of unmeasured common 
cause



Open Issues

– Characterize what one can learn in the general case

– Justification of using Process Independence to 
learn cause (e.g., completeness of 𝛿-separation)

– Principled approaches to testing process 
independence statements.

– Consistency of score learning for process 
independence.

– Relaxing assumptions such as the reliability 
assumption


