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Simplicity, Induction and the Causal Truth

Model Selection and Simplicity

Ockham’'s Razor

Ockham: “choose the simplest model compatible with the data”.

Figure : Third and Twelfth Degree Fitted Polynomials
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Model Selection: Finding True Structure

m How could a fixed simplicity bias help one find the true model?

m Truth means getting the counterfactual predictions right.

m E.g. causal direction.
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‘—The Over-fitting Argument

The Frequentist Story

The Over-fitting Argument

m Preferring the simpler theory minimizes out-of-sample
prediction error at small sample sizes.
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‘—The Over-fitting Argument

The Frequentist Story

The Over-fitting Argument

m Preferring the simpler theory minimizes out-of-sample
prediction error at small sample sizes.

m But accuracy in the sample population does not imply
accuracy in the manipulated population.

m Anyway, what is the over-fitting argument?
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‘—The Over-fitting Argument

The Frequentist Story

The Over-fitting Argument

Suppose the true model is:

y=f(x)+e,

where Var(e) = 02 and o is known.
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‘—The Over-fitting Argument

The Frequentist Story

The Over-fitting Argument

The true risk of an estimator is the expected distance from the
true predictor:

E[(F(x) = f(x))?].

How can we estimate the true risk of our estimator?
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‘—The Over-fitting Argument

The Frequentist Story

The Over-fitting Argument

Suppose the sample is: (x1, 1), (X2, ¥2), - (X, Yi)-

The in-sample error is given by:

Z(f x;) = ¥i)?

But that is bound to underestimate the true risk.
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The Over-fitting Argument

The Frequentist Story

The Over-fitting Arugment

True Risk = E [ in-sample error | + complexity + noise.

E[(7(x) — f(x)] = E[Z('A‘(Xi)—yi)2

i=1

A 202df(?) + no?.

df(f) = UzzCov (xi), yi)-
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‘—The Over-fitting Argument

The Frequentist Story

The Over-fitting Argument

m True Risk - E [ in-sample error | = complexity + noise.

m So:
in-sample error + complexity + noise

is an unbiased estimate of the true risk!
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The Over-fitting Argument

The Frequentist Story

The Over-fitting Argument

m So why not do the following?

Let ?M be the maximum likelihood estimator for model M:;

select the model M* that minimizes the unbiased estimate of
the risk of using fi;

then output the estimate .

m Call the estimator just defined by that whole procedure as i

m e.g. AIC, ERM, cross-validation, etc.
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‘—The Over-fitting Argument

The Frequentist Story

The Over-fitting Argument

m But the Ockham estimator £* is not the estimator IA‘M of the
M so chosen.

m It chooses different fi's on different samples!
m What does the risk of the £* estimator actually look like?
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‘—The Over-fitting Argument

The Frequentist Story

The Over-fitting Argument

m Let Xi,...X, ~ N (i, 02) where o is known. Suppose we are
interested in estimating L.

m Let:

fo = 0;
pmie = X
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‘—The Over-fitting Argument

The Frequentist Story

The over-fitting argument as a decision

m In what sense do Ockham-like methods “minimize risk”?

m As a frequentist, it's cheating to appeal to area!
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‘—The Over-fitting Argument

The Frequentist Story

Not about the truth

m Even if the over-fitting argument were an argument, it
wouldn't pertain to estimates of policy outcomes.

m The estimate of risk is unbiased only in the training
distribution.

m Banning ash trays doesn't prevent lung cancer.
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‘—The Bayesian Story

The Bayesian Story

Beg the Question

m Simpler theories are more “probably true”.

m But that just is a personal bias toward simplicity!
m Why should we have one?
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The Bayesian Story

The Bayesian Story

Or Subtly Beg the Question

m Suppose:

m My = {6},

m My ={601,...,0,};
m P(D|6) =1,

m P(D|6) =1,

m P(D | 6) = 0;

= P(D |0, ~0.

m P(My) =~ P(M,).
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‘—The Bayesian Story

The Bayesian Story

Bayes Theorem

P(My | D) _ P(D | Mo)
P(My | D) P(D| M)’
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‘—The Bayesian Story

The Bayesian Story

Total Probability

P(Mo | D) _ 3254 P(D | 60)P(60) _ P(6) _
P(My | D)~ 3L, P(D | 6:)P(6i) — P(61)

n.

m The outcome is just the prior ratio P(6y)/P(01).
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‘—The Bayesian Story

The Bayesian Story

The Bad Paradox of Indifference

m Ignorance whether blue generates “knowledge” against green.

Blue non-Blue
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‘—The Bayesian Story

The Bayesian Story

The Good Bayes Factor Argument for Simplicity

m Ignorance whether My generates “knowledge” against 6.

My M;
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‘—The Bayesian Story

The Bayesian Story

Circularity

m The Bayesian arguments for Ockham'’s razor pass along a
prior bias toward simplicity.

m The prior bias is not reliable unless one assumes that the
simple model is true.
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‘—The Bayesian Story

The Simulation Story

Doggone it, Ockham Smells the Truth on Simulated Samples!

m Did you generate the data from a model with parameters set
by an uninformative prior density?

m If so, you are just doing a Monte-Carlo simulation of the
Bayesian simplicity bias just described.
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‘—The Bayesian Story

The CMU Transcendental Deduction

Just assume whatever's nececessary

m At least it's honest.

m Also, it is hopeless to expect a method to work when an
illusion is perfect forever.

m But strong faithfulness is another matter (Uhler 2014)!
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‘—Straightest Convergence

Pursuit of Truth

The Status Quo

m All linear Gaussian search strategies rely heavily on Ockham'’s
razor.

m Wouldn't it be nice to have a non-circular argument that
Ockham's razor is the best strategy for finding the true
model?
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Straightest Convergence

Pursuit of Truth

Reliability as Most Direct Approach to the Truth

m In some cases, it is impossible to find the causal truth reliably
in the short run.

m Other methods besides Ockham's razor find the truth in the
long run.

m Perhaps Ockham's razor is best in some intermediate sense.

Uniform
Consistency —
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Straightest Convergence

Pursuit of Truth

Optimally Direct Pursuit

op—
=
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Straightest Convergence

Pursuit of Truth

Needlessly Indirect Pursuit

S
==
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Straightest Convergence

Optimal Pursuit of Truth

Inductive Justification

Deductive inference is direct.

Inductive inference is indirect.

|
|
m But it should still be as direct as possible!
|

Measures of indirectness are course reversals and loop length.

=<
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‘—Straightest Convergence

Optimal Pursuit of Truth

Reversals

m Saying A and then saying B inconsistent with A.

m Saying A, then saying B inconsistent with A, and then saying
C that entails A.
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Straightest Convergence

Optimal Pursuit of Truth

Reversals in Chance

m The chance of saying A goes down and the chance of an
answer inconsistent with A goes up.

Loops in Chance

m The chance of saying A goes down, the chance of saying B
inconsistent with A goes up, and then the chance of saying C
that entails A goes up.
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‘—Straightest Convergence

Statistical Reversals

Bivariate Normal Mean Problem

How many mean components are non-zero?
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‘—Straightest Convergence

BIC, no correlation.

(Click to play movie)
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‘—Straightest Convergence

BIC, with correlation.

(Click to play movie)
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‘—Straightest Convergence

Bayes, no correlation.

(Click to play movie)
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‘—Straightest Convergence

Bayes, with correlation.

(Click to play movie)
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‘—Straightest Convergence

Agnostic Bayes, no correlation.

(Click to play movie)
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‘—Straightest Convergence

Agnostic Bayes, with correlation.

(Click to play movie)
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‘—Straightest Convergence

Improved BIC, no correlation.

(Click to play movie)
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‘—Straightest Convergence

Improved BIC, with correlation.

(Click to play movie)
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‘—Straightest Convergence

To see the simulations:

www.andrew.cmu.edu/user/kk3n/ockham/probsims/statsims.html
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Causation

Simplicity

Simplicity as Topology

m Let A, B be sets of sampling distributions.

m Topologize faithful distributions by total variation metric.

m Define the pre-order:

A< B < ACbdry(B).

The statistical problem of induction.

No possible statistical technique could reliably rule out B if A
is true.
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‘— Causation

Ockham's Razor

Simplicity as Topology

m The =< order is only a pre-order, so simplicity cycles are
possible.

m But indistinguishability classes (i.c.’s) of linear Gaussian
distributions are locally closed.

m Then =< is a partial order.
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Causation

Ockham's Razor

Simplicity as Topology

m Let A, B be faithful sets of conditional dependencies.

m Let A*, B* be the corresponding sets of faithful, linear
Gaussian and discrete Bayes distributions.

m Then:

ACB & A*=<B*
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‘— Causation

Causal Simplicity

Linear Gaussian Simplicity, Three Variables

z

AN

z

J

X
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Ockham's Razor

Ambiguous Data: X 1L Y
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Causation

Ockham's Razor

m Output rules out some minimal i.c. compatible with current
information.

m Results in extra reversals.

m Qutput is not closed downward among i.c.’s compatible with
current information.

m Results in extra loops.
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‘— Causation

Ockham's Razor

Ambiguous Data: X 1L Y
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‘— Causation

Ockham's Razor

Horizontal

m Avoid skips!

m Minimizes worst-case reversals in each i.c..

m Avoid gaps!

m Minimizes worst-case loops in each i.c..
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Causation

Ockham's Razor in Chance

Skips in Chance

m Some chance in P of producing an answer false in P that is
not true in some simpler P’.

m Results in extra reversals in chance.

m Some chance in P of producing an answer false in some more
complex P and true in some even more complex P.

m Results in extra loops in chance.
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Causation

Ockham's Razor in Chance

Horizontal

m Avoid skips in chance!

m Forces simple acceptance zones to take precedence over
complex acceptance zones.

m Neyman-Pearson acceptance zone is a trivial case.

m Also forces the method to return disjunctions when sampling
distributions of equally simple worlds with different answers
overlap.

m Conjecture: Minimizes worst-case reversals in chance in each
i.c..
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Causation

Ockham's Razor in Chance

m Avoid gaps in chance!

m Forces simple acceptance zones to overlap complex
acceptance zones.

m Allows for greedy favoritism over equally simple models.

m Conjecture: Minimizes worst-case loops in chance in each
i.c..



Simplicity as Edge Count

Ambiguous Data: X 1L Y
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‘— Causation

Simplicity as Edge Count

Epistemic Trade-off

m Simplicity ranking allows for stronger conclusions and /ess
computation.

m Simplicity ranking excuses more reversals under its coarser
worst-case bounds.

m No difference for loops.
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‘— Causation

Example

Buy Gimme Pharmaceuticals.: N = 2000

nd F
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‘— Causation

Example

Gimme Pharmaceuticals faces Chapter 11: N = 50, 000

A 4—|sz
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‘— Causation

Example

Gimme Pharmaceuticals shares soar! N = 1,000, 000
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‘— Causation

Example

The Underlying Truth: Impossible?

.05

.0251

.005
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‘— Causation

Simulation Studies

The PC Algorithm (c. 2012)

Percentage
™~
-
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Sample Size

—=- Truth —— Reversed
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‘— Causation

Simulation Studies

The FCI Algorithm (c. 2012)
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‘— Causation

Simulation Studies

The CPC Algorithm (c. 2012)
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‘— Causation

Simulation Studies

The GES Algorithm (c. 2012)
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Discussion

Causal Discovery Nouveau

Non-Gaussian and Non-Linear

m Ironically, the standard case is the hardest case.

m Assuming that the model is non-Gaussian or non-linear, the
problem of induction disappears, under reasonable
assumptions.

m But if it doesn't disappear, linear Gaussian is in the boundary
of the other two possibilities.

m So Ockham's Razor says to favor the linear Gaussian case
until it is refuted!



Simplicity, Induction and the Causal Truth

‘— Discussion

Ockham and Expanded Faithfulness

Ockham Favors Linear Gaussian

m Assuming that the model is non-Gaussian or non-linear, the
problem of induction disappears.

m But if it doesn't disappear, linear Gaussian models are in the
boundary of the other two possibilities, so it is favored by
Ockham.
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Discussion

Faithfulness

Is it Ockham’s Razor?

m Typically, faithfulness rules out a boundary set of possibilities.

m Ockham's razor favors a boundary set of possibilities.

m Faithfulness is tied to the semantics of “cause” and takes
precedence over Ockham’s razor, which is a defeasible
inferential principle.

m Given that the causal mechanisms are causally sufficient, a
“dependence” among mechanisms requires a causal
meta-connection by a natural extension of the causal Markov
condition.
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