Simplicity, Induction and the Causal Truth

Kevin T. Kelly Konstantin Genin

Carnegie Mellon University kk3n@andrew.cmu.edu kgenin@andrew.cmu.edu

7th June 2014

Model Selection and Simplicity

Ockham's Razor

Ockham: "choose the simplest model compatible with the data".

Figure : Third and Twelfth Degree Fitted Polynomials

ъ

Model Selection: Finding True Structure

Question

How could a fixed simplicity bias help one find the true model?

- Truth means getting the counterfactual predictions right.
- E.g. causal direction.

The Frequentist Story

The Over-fitting Argument

 Preferring the simpler theory minimizes out-of-sample prediction error at small sample sizes.

The Frequentist Story

The Over-fitting Argument

- Preferring the simpler theory minimizes out-of-sample prediction error at small sample sizes.
- But accuracy in the sample population does not imply accuracy in the manipulated population.

The Frequentist Story

The Over-fitting Argument

- Preferring the simpler theory minimizes out-of-sample prediction error at small sample sizes.
- But accuracy in the sample population does not imply accuracy in the manipulated population.

Anyway, what is the over-fitting argument?

The Frequentist Story

The Over-fitting Argument

Suppose the true model is:

$$y=f(x)+\varepsilon,$$

where $Var(\varepsilon) = \sigma^2$ and σ is known.

The Frequentist Story

The Over-fitting Argument

The *true risk* of an estimator is the expected distance from the true predictor:

$$\mathsf{E}[(\hat{f}(x) - f(x))^2].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How can we estimate the true risk of our estimator?

The Frequentist Story

The Over-fitting Argument

Suppose the sample is: $(x_1, y_1), (x_2, y_2), ...(x_n, y_n)$.

The in-sample error is given by:

$$\sum_{i=1}^n (\hat{f}(x_i) - y_i)^2.$$

But that is bound to *underestimate* the true risk.

The Frequentist Story

The Over-fitting Arugment

True Risk = E [in-sample error] + complexity + noise.

$$E[(\hat{f}(x) - f(x))^2] = E\left[\sum_{i=1}^n (\hat{f}(x_i) - y_i)^2\right] + 2\sigma^2 df(\hat{f}) + n\sigma^2.$$

$$df(\hat{f}) = \frac{1}{\sigma^2} \sum_{i=1}^n Cov(\hat{f}(x_i), y_i).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The Frequentist Story

The Over-fitting Argument

True Risk - E [in-sample error] = complexity + noise.
So:

in-sample error + complexity + noise

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

is an unbiased estimate of the true risk!

The Frequentist Story

The Over-fitting Argument

So why not do the following?

- **1** Let \hat{f}_M be the maximum likelihood estimator for model M;
- 2 select the model M^* that minimizes the unbiased estimate of the risk of using \hat{f}_M ;

3 then output the estimate \hat{f}_{M^*} .

- Call the estimator just defined by that whole procedure as \hat{f}^* .
- e.g. AIC, ERM, cross-validation, etc.

The Frequentist Story

The Over-fitting Argument

- But the Ockham estimator \$\hat{f}^*\$ is not the estimator \$\hat{f}_M\$ of the M so chosen.
- It chooses different \hat{f}_M 's on different samples!
- What does the risk of the \hat{f}^* estimator actually look like?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Frequentist Story

The Over-fitting Argument

Let X₁,...X_n ~ N(μ, σ²) where σ is known. Suppose we are interested in estimating μ.

Let:

$$\hat{\mu}_0 = 0;$$

 $\hat{\mu}_{MLE} = \overline{X}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Frequentist Story

The over-fitting argument as a decision

- In what sense do Ockham-like methods "minimize risk"?
- As a frequentist, it's *cheating* to appeal to area!

The Frequentist Story

Not about the truth

 Even if the over-fitting argument were an argument, it wouldn't pertain to estimates of policy outcomes.

- The estimate of risk is unbiased only in the *training* distribution.
- Banning ash trays doesn't prevent lung cancer.

-The Bayesian Story

The Bayesian Story

Beg the Question

- Simpler theories are more "probably true".
- But that just is a personal bias toward simplicity!

Why should we have one?

The Bayesian Story

Or Subtly Beg the Question

- Suppose:
- $M_0 = \{\theta_0\};$
- $M_1 = \{\theta_1, ..., \theta_n\};$
- $P(D \mid \theta_0) \approx 1;$
- $P(D \mid \theta_1) \approx 1;$
- $P(D \mid \theta_2) \approx 0;$
- $P(D \mid \theta_n) \approx 0.$
- $P(M_0) \approx P(M_1)$.

The Bayesian Story

Bayes Theorem

$$\frac{\mathrm{P}(M_0 \mid D)}{\mathrm{P}(M_1 \mid D)} \approx \frac{\mathrm{P}(D \mid M_0)}{\mathrm{P}(D \mid M_1)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Bayesian Story

Total Probability

$$\frac{\mathrm{P}(M_0 \mid D)}{\mathrm{P}(M_1 \mid D)} \approx \frac{\sum_{i=0}^{0} \mathrm{P}(D \mid \theta_0) \mathrm{P}(\theta_0)}{\sum_{i=1}^{n} \mathrm{P}(D \mid \theta_i) \mathrm{P}(\theta_i)} \approx \frac{\mathrm{P}(\theta_0)}{\mathrm{P}(\theta_1)} = n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The outcome is just the *prior ratio* $P(\theta_0)/P(\theta_1)$.

The Bayesian Story

The Bad Paradox of Indifference

■ *Ignorance* whether blue generates *"knowledge"* against green.

-The Bayesian Story

The Bayesian Story

The Good Bayes Factor Argument for Simplicity

Ignorance whether M_0 generates "knowledge" against θ_1 .

The Bayesian Story

Circularity

- The Bayesian arguments for Ockham's razor pass along a prior bias toward simplicity.
- The prior bias is not *reliable* unless one *assumes* that the simple model is true.

The Simulation Story

Doggone it, Ockham Smells the Truth on Simulated Samples!

Did you generate the data from a model with parameters set by an uninformative prior density?

 If so, you are just doing a Monte-Carlo simulation of the Bayesian simplicity bias just described.

The CMU Transcendental Deduction

Just assume whatever's nececessary

- At least it's honest.
- Also, it is hopeless to expect a method to work when an illusion is *perfect* forever.
- But strong faithfulness is another matter (Uhler 2014)!

Pursuit of Truth

The Status Quo

All linear Gaussian search strategies rely heavily on Ockham's razor.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Wouldn't it be nice to have a non-circular argument that Ockham's razor is the best strategy for finding the true model?

Pursuit of Truth

Reliability as Most Direct Approach to the Truth

- In some cases, it is *impossible* to find the causal truth reliably in the *short* run.
- Other methods besides Ockham's razor find the truth in the long run.
- Perhaps Ockham's razor is best in some *intermediate* sense.

Pursuit of Truth

Optimally Direct Pursuit

Pursuit of Truth

Needlessly Indirect Pursuit

Optimal Pursuit of Truth

Inductive Justification

- Deductive inference is *direct*.
- Inductive inference is *indirect*.
- But it should still be as *direct as possible*!
- Measures of indirectness are course reversals and loop length.

Optimal Pursuit of Truth

Reversals

• Saying A and then saying B inconsistent with A.

Loops

 Saying A, then saying B inconsistent with A, and then saying C that entails A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimal Pursuit of Truth

Reversals in Chance

The chance of saying A goes down and the chance of an answer inconsistent with A goes up.

Loops in Chance

The chance of saying A goes down, the chance of saying B inconsistent with A goes up, and then the chance of saying C that entails A goes up.

Statistical Reversals

Bivariate Normal Mean Problem

How many mean components are non-zero?

≡▶ ≡ ∽੧⊙

Statistical Reversals

Bivariate Normal Mean Problem

How many mean components are non-zero?

Statistical Reversals

Bivariate Normal Mean Problem

How many mean components are non-zero?

≣▶ ≣ ∕0∢⊘

BIC, no correlation.

BIC, with correlation.

Bayes, no correlation.

Bayes, with correlation.

(Click to play movie)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Agnostic Bayes, no correlation.

Agnostic Bayes, with correlation.

(Click to play movie)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Improved BIC, no correlation.

Improved BIC, with correlation.

To see the simulations:

www.andrew.cmu.edu/user/kk3n/ockham/probsims/statsims.html

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simplicity

Simplicity as Topology

- Let A, B be sets of sampling distributions.
- Topologize faithful distributions by total variation metric.
- Define the pre-order:

$$A \preceq B \iff A \subseteq \operatorname{bdry}(B).$$

- The statistical problem of induction.
- No possible statistical technique could reliably rule out B if A is true.

Ockham's Razor

Simplicity as Topology

- The <u>≺</u> order is only a pre-order, so simplicity cycles are possible.
- But indistinguishability classes (i.c.'s) of linear Gaussian distributions are *locally closed*.

• Then \leq is a partial order.

Ockham's Razor

Simplicity as Topology

- Let A, B be faithful sets of conditional dependencies.
- Let A*, B* be the corresponding sets of faithful, linear Gaussian and discrete Bayes distributions.

Then:

$$A\subseteq B \iff A^* \preceq B^*.$$

Causal Simplicity

Linear Gaussian Simplicity, Three Variables

Ockham's Razor

Ambiguous Data: $X \perp Y$

Ockham's Razor

Skips

- Output rules out some *minimal* i.c. compatible with current information.
- Results in *extra reversals*.

Gaps

 Output is not closed downward among i.c.'s compatible with current information.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Results in *extra loops*.

Ockham's Razor

Ambiguous Data: $X \perp Y$

Ockham's Razor

Horizontal

Avoid skips!

Minimizes worst-case reversals in each i.c..

Vertical

- Avoid gaps!
- Minimizes worst-case loops in each i.c..

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ockham's Razor in Chance

Skips in Chance

- Some chance in P of producing an answer false in P that is not true in some simpler P'.
- Results in extra reversals in chance.

Gaps in Chance

- Some chance in P of producing an answer false in some more complex P and true in some even more complex P.
- Results in extra loops in chance.

Ockham's Razor in Chance

Horizontal

- Avoid skips in chance!
- Forces simple acceptance zones to take precedence over complex acceptance zones.
- Neyman-Pearson acceptance zone is a trivial case.
- Also forces the method to return disjunctions when sampling distributions of equally simple worlds with different answers overlap.
- **Conjecture:** Minimizes worst-case *reversals in chance* in each i.c..

Ockham's Razor in Chance

Vertical

- Avoid gaps in chance!
- Forces simple acceptance zones to overlap complex acceptance zones.
- Allows for greedy favoritism over equally simple models.
- Conjecture: Minimizes worst-case loops in chance in each i.c..

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Simplicity as Edge Count

Ambiguous Data: $X \not\!\!\perp Y$

Simplicity as Edge Count

Epistemic Trade-off

- Simplicity ranking allows for stronger conclusions and less computation.
- Simplicity ranking excuses more reversals under its coarser worst-case bounds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

No difference for loops.

Example

Buy Gimme Pharmaceuticals.: N = 2000

≡▶ ≡ ∽੧...

Example

Gimme Pharmaceuticals faces Chapter 11: N = 50,000

Example

Gimme Pharmaceuticals shares soar! N = 1,000,000

Example

The Underlying Truth: Impossible?

Simulation Studies

The PC Algorithm (c. 2012)

Simulation Studies

The FCI Algorithm (c. 2012)

Simulation Studies

The CPC Algorithm (c. 2012)

Simulation Studies

The GES Algorithm (c. 2012)

Discussion

Causal Discovery Nouveau

Non-Gaussian and Non-Linear

- Ironically, the standard case is the hardest case.
- Assuming that the model is non-Gaussian or non-linear, the problem of induction disappears, under reasonable assumptions.
- But if it doesn't disappear, linear Gaussian is in the boundary of the other two possibilities.

So Ockham's Razor says to favor the linear Gaussian case until it is refuted!

- Discussion

Ockham and Expanded Faithfulness

Ockham Favors Linear Gaussian

- Assuming that the model is non-Gaussian or non-linear, the problem of induction disappears.
- But if it doesn't disappear, linear Gaussian models are in the boundary of the other two possibilities, so it is favored by Ockham.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Discussion

Faithfulness

Is it Ockham's Razor?

- Typically, faithfulness *rules out* a boundary set of possibilities.
- Ockham's razor *favors* a boundary set of possibilities.
- Faithfulness is tied to the semantics of "cause" and takes precedence over Ockham's razor, which is a defeasible inferential principle.
- Given that the causal mechanisms are causally sufficient, a "dependence" among mechanisms requires a causal meta-connection by a natural extension of the causal Markov condition.