Computability and Efficiency in Learning An Ockham's Razor Account

Nina Gierasimczuk

Institute for Logic, Language and Computation University of Amsterdam

CFE Workshop on the Logic of Simplicity Carnegie Mellon University June 8th, 2013

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

EPISTEMIC SPACES

LEARNING AND LEARNABILITY

Computational Assumptions

Ockham's Razor & Conclusive Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ockham's Razor & Limiting Learning

OUTLINE

EPISTEMIC SPACES

LEARNING AND LEARNABILITY

Computational Assumptions

Ockham's Razor & Conclusive Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ockham's Razor & Limiting Learning

EPISTEMIC SPACES

An agent's uncertainty is represented by an epistemic space (S, Φ) , where:

- ▶ $S = \{s_0, s_1, \ldots\}$ of epistemic possibilities, or possible worlds, and
- $\Phi \subseteq \mathcal{P}(S)$ a family of propositions.

 Φ represent facts or observables being true or false in possible worlds.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

success of learning \sim converging to the truth

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

success of learning \sim converging to the truth

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- with certainty
- in the limit
- gradually
- ▶ ...

LEARNING AIMS AT RESOLVING UNCERTAINTY

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

LEARNING VIA UPDATE

LEARNING VIA UPDATE

LEARNING VIA UPDATE

LEARNING VIA UPDATE: AND WHAT NOW?

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

LEARNING VIA UPDATE: TOWARDS STABLE TRUE BELIEF

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

LEARNING VIA UPDATE: TOWARDS STABLE TRUE BELIEF

EPISTEMIC SPACES

LEARNING AND LEARNABILITY

Computational Assumptions

Ockham's Razor & Conclusive Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ockham's Razor & Limiting Learning

EPISTEMIC SPACES AND LEARNING

- Learner L receives information about a possible world (the actual one).
- The information is an open-ended (infinite) sequence of propositions.
- ▶ Data stream $\varepsilon = (\varepsilon_1, \varepsilon_2 ...)$ is a data stream for $s \in S$ just in case

$$\{\varepsilon_n \mid n \in \mathbb{N}\} = \{p \in \Phi : s \in p\}.$$

- We write $\varepsilon \upharpoonright n$ for the sequence $(\varepsilon_1, \ldots, \varepsilon_n)$.
- Learner *L* is a function that on input of an epistemic space (S, Φ) and a finite sequence of observations $\sigma = (\sigma_0, \ldots, \sigma_n)$ outputs a hypothesis, i.e.,

$$L((S, \Phi), \sigma) \subseteq S.$$

EPISTEMIC SPACES AND LEARNING

- Learner L receives information about a possible world (the actual one).
- ▶ The information is an open-ended (infinite) sequence of propositions.
- ▶ Data stream $\varepsilon = (\varepsilon_1, \varepsilon_2 \ldots)$ is a data stream for $s \in S$ just in case

$$\{\varepsilon_n \mid n \in \mathbb{N}\} = \{p \in \Phi : s \in p\}.$$

- We write $\varepsilon \upharpoonright n$ for the sequence $(\varepsilon_1, \ldots, \varepsilon_n)$.
- Learner *L* is a function that on input of an epistemic space (S, Φ) and a finite sequence of observations $\sigma = (\sigma_0, \ldots, \sigma_n)$ outputs a hypothesis, i.e.,

$$L((S, \Phi), \sigma) \subseteq S.$$

EPISTEMIC SPACES

Learning and Learnability

Computational Assumptions

Ockham's Razor & Conclusive Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ockham's Razor & Limiting Learning

DEFINITION

Learner $L : \mathbb{N}^* \to \mathbb{N}$ is a computable function.

DEFINITION

An epistemic space (S, Φ) , $S = \{s_0, s_1, s_2, ...\}$, and $\Phi = \{p_0, p_1, p_2, ...\}$, is uniformly decidable just in case there is a computable function $f : S \times \Phi \rightarrow \{0, 1\}$ such that:

$$f(s,p) = egin{cases} 1 & ext{if } s \in p, \ 0 & ext{if } s \notin p. \end{cases}$$

UNIFORM DECIDABILITY AND AGENCY

- ► In epistemic logic uniform decidability is is guaranteed by finiteness.
- ▶ However the problem is non-trivial, e.g., in scientific scenarios.
- Epistemic space represents the uncertainty of a TM-representable mind.
- Subjective perspective on problem posing.
- ► Simple and appealing condition vs properties of convergence to knowledge.

<i>(S'</i> , Φ')
$t_1 : p_1, p_3, p_4$
$t_2: p_2, p_4, p_5$
$t_3: p_1, p_3, p_5$
$t_4: p_1, p_3, p_4, p_6$

(<i>S</i> , Φ)

(<i>S</i> ′, Φ′)		
$egin{array}{c} t_1:1,3,4\ t_2:2,4,5\ t_3:1,3,5\ t_4:1,3,4,6 \end{array}$		

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

(<i>S</i> , Φ)		
$s_1: 1, 3, 4$ $s_2: 2, 4, 5$		
$s_3: 1, 3, 5$		
<i>s</i> ₄ :4,6		

(<i>S</i> ′, Φ′)		
$ t_1: 1, 3, 4 t_2: 2, 4, 5 t_2: 1, 3, 5 $		
$t_3 : 1, 3, 5$ $t_4 : 1, 3, 4, 6$		

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Conclusive Learnability

Conclusive Learnability

- Certainty in finite time.
- Only one answer,
- based on certainty.
- No chance to change later.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(<i>S</i> , Φ)

(S', Φ')		
$t_1 : 1, 3, 4t_2 : 2, 4, 5t_3 : 1, 3, 5t_4 : 1, 3, 4, 6$		

Limiting Learnability	(S', Φ')
 No certainty. 	t. 134
 Sequence of answers, 	$t_1 : 1, 5, 4$ $t_2 : 2, 4, 5$
 based on reliability. 	$t_3 : 1, 3, 5$
 Always a chance to change. 	$t_4: 1, 3, 4, 6$

CONCLUSIVE VS LIMITING LEARNING

Limiting Learnability

- No certainty.
- Sequence of answers,
- based on reliability.
- Always a chance to change.

Conclusive Learnability

- Certainty in finite time.
- Only one answer,
- based on certainty.
- No chance to change later.

Search for a notion of simplicity that would guarantee that

always choosing the simplest theory compatible with experience and hanging on to it while it remains the simplest is both necessary and sufficient for efficiency of inquiry

Search for a notion of simplicity that would guarantee that

always choosing the simplest theory compatible with experience and hanging on to it while it remains the simplest is both necessary and sufficient for efficiency of inquiry

Efficient Inquiry \rightarrow Efficient Conjecturing \rightarrow Solution A.S.A.P.

- ▶ Conclusive Learning → Fastest Learning
- Limiting Learning \rightarrow Conservative Learning

OUTLINE

EPISTEMIC SPACES

LEARNING AND LEARNABILITY

Computational Assumptions

Ockham's Razor & Conclusive Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

OCKHAM'S RAZOR & LIMITING LEARNING

The range of learning function L is extended by ? ("I do not know").

DEFINITION

Learning function L is once defined on (S, Φ) iff for any stream ε for any world in S there is exactly one $n \in \mathbb{N}$ such that $L(\varepsilon | n)$ is not an ?-answer.

CONCLUSIVE LEARNABILITY: DEFINITION

DEFINITION

Take an epistemic space (S, Φ) .

A world s_m ∈ S is conclusively learnable in a computable way by a function L if L is computable, once-defined, and for every data stream ε for s_m, there exists a finite stage k such that L((S,Φ), ε₀,..., ε_k) = {s_m}.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CONCLUSIVE LEARNABILITY: DEFINITION

DEFINITION

Take an epistemic space (S, Φ) .

- A world s_m ∈ S is conclusively learnable in a computable way by a function L if L is computable, once-defined, and for every data stream ε for s_m, there exists a finite stage k such that L((S,Φ), ε₀,..., ε_k) = {s_m}.
- The epistemic space (S, Φ) is said to be conclusively learnable in an computable way by L if L is computable and all its worlds in S are conclusively learnable in an computable way by L.
- Finally, the epistemic space (S, Φ) is conclusively learnable in an computable way just in case there is a computable learning function that can conclusively learn it.

CONCLUSIVE LEARNABILITY: CHARACTERIZATION

DEFINITION

Take (S, Φ) . A set $D_i \subseteq \Phi$ is a definite finite tell-tale set (DFTT) for s_i in S if:

- 1. D_i is finite,
- 2. $s_i \in \bigcap D_i$, and
- 3. for any $s_j \in S$, if $s_j \in \bigcap D_i$ then $s_i = s_j$.

THEOREM (MUKOUCHI 82, LANGE & ZEUGMANN 82)

 (S, Φ) is conclusively learnable in an computable way just in case there is a computable function $f : S \to \mathcal{P}^{<\omega}(\Phi)$ s.t. f(s) is a DFTT for s.

CONCLUSIVE LEARNABILITY: CHARACTERIZATION

DEFINITION

Take (S, Φ) . A set $D_i \subseteq \Phi$ is a definite finite tell-tale set (DFTT) for s_i in S if:

- 1. D_i is finite,
- 2. $s_i \in \bigcap D_i$, and
- 3. for any $s_j \in S$, if $s_j \in \bigcap D_i$ then $s_i = s_j$.

THEOREM (MUKOUCHI 82, LANGE & ZEUGMANN 82)

 (S, Φ) is conclusively learnable in an computable way just in case there is a computable function $f : S \to \mathcal{P}^{<\omega}(\Phi)$ s.t. f(s) is a DFTT for s.

a world is conclusively learnable

if it makes true a finite conjunction of propositions

that together is false everywhere else

DEFINITION

Take (S, Φ) and $x \in \Phi$. The eliminative power of x with respect to (S, Φ) is determined by a function $El_{(S,\Phi)} : \Phi \to \mathcal{P}(\mathbb{N})$, such that:

$$El_{(S,\Phi)}(x) = \{i \mid s_i \notin x \& s_i \text{ in } S\}.$$

Additionally, for $X \subseteq \Phi$ we write $El_{(S,\Phi)}(X)$ for $\bigcup_{x \in X} El_{(S,\Phi)}(x)$.

eliminative power of a proposition is the complement of its extension

DEFINITION (FIN-ID PROBLEM)

Instance: A finite epistemic space (S, Φ) , a world s_i in S. **Question:** Is s_i conclusively learnable within (S, Φ) ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

THEOREM FIN-ID Problem is in P.

MINIMALITY OF DFTT'S: TWO KINDS

set	a minimal DFTT	minimal-size DFTTs
$\{5,7,8\} \\ \{6,8,9\} \\ \{5,7,9\} \\ \{8,10\}$	{7,8} {8,9} {7,9} {10}	$ \{5,8\} \text{ or } \{7,8\} \\ \{6\} \\ \{5,9\} \text{ or } \{7,9\} \\ \{10\} $

finding a minimal DFTT is easy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

finding a minimal DFTT is easy

PROPOSITION Let (S, Φ) be a conclusively learnable finite epistemic space. Finding a minimal DFTT of s_i in (S, Φ) can be done in polynomial time w.r.t. card $(\{x|s_i \in x\})$.

finding a minimal-size DFTT is (most probably) harder

finding a minimal-size DFTT is (most probably) harder

DEFINITION (MIN-SIZE DFTT PROBLEM)

Instance: (S, Φ) , $s_i \in S$, and $k \leq card(\{p|s_i \in p\})$. **Question:** Is there a DFTT X_i of s_i of size $\leq k$?

THEOREM The MIN-SIZE DFTT Problem is NP-complete.

finding a minimal-size DFTT is (most probably) harder

DEFINITION (MIN-SIZE DFTT PROBLEM)

Instance: (S, Φ) , $s_i \in S$, and $k \leq card(\{p|s_i \in p\})$. **Question:** Is there a DFTT X_i of s_i of size $\leq k$?

THEOREM The MIN-SIZE DFTT Problem is NP-complete.

teaching efficiently might be hard

Learners taking a more prescribed course of action by basing their conjectures on symptoms (DFTTs).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Learners taking a more prescribed course of action by basing their conjectures on symptoms (DFTTs).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Learners taking a more prescribed course of action by basing their conjectures on symptoms (DFTTs).

Objection: infinite collections of DFTTs. Solution: f_{dftt} , which for a finite X and s_i says if X is a DFTT of s_i .

If (S, Φ) is conclusively learnable then there is f_{dftt} that for each world recognizes at least one DFTT.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. conclusive learnability = preset conclusive learnability
- 2. preset learners are exactly those that react solely to the content

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fastest learner:

conclusively learns a world s_i as soon as objective 'ambiguity' disappears; settles on the right world as soon as any DFTT for it has been given.

DEFINITION

 (S, Φ) is conclusively learnable in the fastest way if and only if there is a learning function L such that, for each ε and for each $i \in \mathbb{N}$,

$$\begin{split} \mathcal{L}(\varepsilon \upharpoonright n) &= i \quad \text{iff} \quad \exists D_i^j \in \mathbb{D}_i \ (D_i^j \subseteq \mathsf{set}(\varepsilon \upharpoonright n)) \ \& \\ \neg \exists D_i^k \in \mathbb{D}_i \ (D_i^k \subseteq \mathsf{set}(\varepsilon \upharpoonright n-1)). \end{split}$$

Such L is a fastest learning function.

THEOREM

There is a uniformly decidable epistemic space that is conclusively learnable, but is not conclusively learnable in the fastest way.

fastest conclusive learnability is properly included in conclusive learnability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof, part 1

DEFINITION (SMULLYAN 1958)

Let $A, B \subset \mathbb{N}$. A separating set is $C \subset \mathbb{N}$ such that $A \subset C$ and $B \cap C = \emptyset$. In particular, if A and B are disjoint then A itself is a separating set for the pair, as is B. If a pair of disjoint sets A and B has no computable separating set, then the two sets are computably inseparable.

Let A and B be two disjoint r.e. computablely inseparable sets, such that:

- $x \in A$ iff $\exists y Rxy$ with R computable, and
- ▶ $x \in B$ iff $\exists y Sxy$ with S computable.

For each x there is at most one y, s.t. Rxy and at most one y, s.t. Sxy. We define $(S_i)_{i \in \mathbb{N}}$:

$$S_i = \{2i, 2i+1\} \cup \{2j \mid Rji\} \cup \{2j+1 \mid Sji\}.$$

PROOF: ILLUSTRATION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The idea is that $S_i = \{2i, 2i + 1\}$ except that, for some *m*, *Rim* or *Sim* may be true, and then $2i \in S_m$ or $2i + 1 \in S_m$, respectively.

Note that:

- There can be at most one such m, and for that m only one of Rim or Sim can be true.
- ▶ Since *A* and *B* are computably inseparable there is no computable *f* that makes the choice for each *i*.

Except for such intruders the languages are disjoint.

The argument:

- $\{2i, 2i+1\}$ is a DFTT for S_i .
- ▶ But, $\{2i+1\}$ is a DFTT for S_i if $i \notin B$, and $\{2i\}$ is a DFTT for S_i if $i \notin A$.
- However, a computable function that would give the minimal DFTTs of S_i gives a computable separating set of A and B.

► And this is impossible, since A and B are computablely inseparable.

So there cannot be a computable fastest learner!

OUTLINE

EPISTEMIC SPACES

LEARNING AND LEARNABILITY

Computational Assumptions

Ockham's Razor & Conclusive Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ockham's Razor & Limiting Learning

LIMITING LEARNABILITY: DEFINITION

DEFINITION

Take an epistemic space (S, Φ) .

A world s_m ∈ S is limiting learnable in a computable way by a function L if L is computable, and for every data stream ε for s_m, there exists a finite stage n such that for all k > n, L((S,Φ), ε₀,..., ε_k) = {s_m}.

LIMITING LEARNABILITY: DEFINITION

DEFINITION

Take an epistemic space (S, Φ) .

- A world s_m ∈ S is limiting learnable in a computable way by a function L if L is computable, and for every data stream ε for s_m, there exists a finite stage n such that for all k > n, L((S,Φ), ε₀,..., ε_k) = {s_m}.
- The epistemic space (S,Φ) is said to be limiting learnable in an computable way by L if L is computable and all its worlds in S are limiting learnable in an computable way by L.
- Finally, the epistemic space (S, Φ) is limiting learnable in an computable way just in case there is a computable learning function that can limiting learn it.

DEFINITION

A learner L is conservative if, for each sequence σ and x

$$L(\sigma) \in \bigcap content(\sigma^{\wedge}\langle x \rangle) \text{ implies } L(\sigma^{\wedge}\langle x \rangle) = L(\sigma).$$

Theorem

There is a uniformly decidable (S, Φ) that is computably limiting learnable, but not by a computable conservative learner.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RESTRICTIVENESS OF CONSERVATIVITY: PROOF, PART 1

Take $j \in \mathbb{N}$, $s_j \in S$, and φ_j . Think of φ_j as of a (not necessarily successful) learner. Take a text for s_j , $t^i = \langle j, 0 \rangle$, $\langle j, 1 \rangle$, $\langle j, 2 \rangle$, $\langle j, 3 \rangle$, ... If φ_j happens to identify s_j , then on some $t^j \upharpoonright n + 1$, φ_j will output j (obviously, if φ_j does not identify s_j , this does not have to happen).

$$\mathbf{s}_{j}' = \begin{cases} \{\langle j, 0 \rangle, \dots, \langle j, n \rangle\} & \text{where } \langle n, k \rangle \text{ are the smallest s.t.} \\ \{\langle j, 0 \rangle, \dots, \langle j, n \rangle\} \subset W_{\varphi_{j}^{k}(lj^{\dagger} \uparrow n+1), k} \\ \{\langle j, 0 \rangle\} & \text{if such a pair does not exist.} \end{cases}$$

Assume, towards contradiction, that conservative learner *L* learns (S, Φ) in the limit. *L* is in fact φ_j for some $j \in \mathbb{N}$ and it identifies $s_j \in S$. Take $t^j = \langle j, 0 \rangle, \langle j, 1 \rangle, \langle j, 2 \rangle, \langle j, 3 \rangle, \ldots$, then there will be $s'_j = \{\langle j, 0 \rangle, \ldots, \langle j, n \rangle\}$ in *S*. Take the text $\langle j, 0 \rangle, \ldots, \langle j, n \rangle, \langle j, n \rangle, \langle j, n \rangle, \ldots$, for s'_j . On the first occurrence of $\langle j, n \rangle, \varphi_j$ will output *i* for s_j , and since the rest does not contradict s_j, φ_j will not retract (because it is conservative). Hence, φ_j will not identify s'_j . Contradiction. It remains to be shown that (S, Φ) is limit learnable by a computable *L*. Depending on the first element seen by *L*:

- ⟨j, m⟩, with m ≠ 0, then L will output an index of s_j on any sequence σ extending ⟨j, m⟩, unless it is the case that {⟨j, 0⟩, ..., ⟨j, n⟩} ⊂ W_{φ^k_j(t^j n+1),k} for some ⟨n, k⟩ ≤ lh(σ). If it is so, it can be determined if all elements of σ are members of s'_j (since both σ and s'_j are finite). If that is the case L outputs s'_j and continues doing so as long as all the elements of the input sequence are elements of s'_i. If that is not the case L switches back to s_j.
- 2. (j, 0), then L conjectures s'_j as long as (j, 0) is the only pair seen, otherwise L switches to s_j and continues according to the behavior described before.

CONCLUSIONS

- Complexity of learning/teaching strategies in conclusive learning.
- Complexity of min-DFTT and min-size DFTT related concepts.
- > The notion of preset learner in conclusive learning.
- Fastest learning is restrictive wrt to conclusive learnability.
- Conservative learning is restrictive wrt to limiting learnability

even if computable convergence to certainty or safe belief is possible

CONCLUSIONS

- Complexity of learning/teaching strategies in conclusive learning.
- Complexity of min-DFTT and min-size DFTT related concepts.
- > The notion of preset learner in conclusive learning.
- Fastest learning is restrictive wrt to conclusive learnability.
- Conservative learning is restrictive wrt to limiting learnability

even if computable convergence to certainty or safe belief is possible it may not be computably reachable just when objective ambiguity disappears

CONCLUSIONS

- Complexity of learning/teaching strategies in conclusive learning.
- Complexity of min-DFTT and min-size DFTT related concepts.
- The notion of preset learner in conclusive learning.
- Fastest learning is restrictive wrt to conclusive learnability.
- Conservative learning is restrictive wrt to limiting learnability

even if computable convergence to certainty or safe belief is possible it may not be computably reachable just when objective ambiguity disappears or when the learner is conservative in his mind changes

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

BR intuitive, determinate manners of updating models FLT no prescribed ways of learning but often restricted by computability

Compare the two aspects: determinateness and computability.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you!

Gierasimczuk, N. (2009).Bridging Learning Theory and Dynamic Epistemic Logic, Synthese 169 (2009), pp. 371-384.

Gierasimczuk, N. (2010). Knowing Ones Limits. Logical Analysis of Inductive Inference. PhD thesis, Universiteit van Amsterdam.

Baltag, A., Gierasimczuk, N., Smets, S. (2011). Belief Revision as a Truth-Tracking Process, in: Krzysztof R. Apt (Ed.): Proceedings of TARK 2011, ACM 2011.

Degremont, C. and Gierasimczuk, N. (2011). Finite identification from the viewpoint of epistemic update. Information and Computation, 209(3):383-396.

Gierasimczuk, N. and De Jongh, D. (2013). On the Complexity of Conclusive Update. The Computer Journal 56(3):365-377.