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Epistemic Spaces

An agent’s uncertainty is represented by an epistemic space (S ,Φ), where:

I S = {s0, s1, . . .} of epistemic possibilities, or possible worlds, and

I Φ ⊆ P(S) a family of propositions.

Φ represent facts or observables being true or false in possible worlds.



Learning Power

success of learning ∼ converging to the truth

I with certainty

I in the limit

I gradually

I ...
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Learning Aims at Resolving Uncertainty



Learning via Update
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Learning via Update: and what now?
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Learning via Update: Towards Stable True Belief
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Epistemic Spaces and Learning

I Learner L receives information about a possible world (the actual one).

I The information is an open-ended (infinite) sequence of propositions.

I Data stream ε = (ε1, ε2 . . .) is a data stream for s ∈ S just in case

{εn | n ∈ N} = {p ∈ Φ : s ∈ p}.

I We write ε�n for the sequence (ε1, . . . , εn).

I Learner L is a function that on input of an epistemic space (S ,Φ) and a
finite sequence of observations σ = (σ0, . . . , σn) outputs a hypothesis, i.e.,

L((S ,Φ), σ) ⊆ S .
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Computational Assumption about Epistemic Spaces

Definition
Learner L : N∗ → N is a computable function.

Definition
An epistemic space (S ,Φ), S = {s0, s1, s2, . . .}, and Φ = {p0, p1, p2, . . .}, is
uniformly decidable just in case there is a computable function
f : S × Φ→ {0, 1} such that:

f (s, p) =

{
1 if s ∈ p,

0 if s /∈ p.



Uniform Decidability and Agency

I In epistemic logic uniform decidability is is guaranteed by finiteness.

I However the problem is non-trivial, e.g., in scientific scenarios.

I Epistemic space represents the uncertainty of a TM-representable mind.

I Subjective perspective on problem posing.

I Simple and appealing condition vs properties of convergence to knowledge.



Some Types of Learnability

(S ,Φ)

s1 : p1, p3, p4

s2 : p2, p4, p5

s3 : p1, p3, p5

s4 : p4, p6

(S ′,Φ′)

t1 : p1, p3, p4

t2 : p2, p4, p5

t3 : p1, p3, p5

t4 : p1, p3, p4, p6



Some Types of Learnability

(S ,Φ)

s1 : 1, 3, 4
s2 : 2, 4, 5
s3 : 1, 3, 5
s4 : 4, 6

(S ′,Φ′)

t1 : 1, 3, 4
t2 : 2, 4, 5
t3 : 1, 3, 5
t4 : 1, 3, 4, 6
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Conclusive Learnability

(S ,Φ)

s1 : 1, 3, 4
s2 : 2, 4, 5
s3 : 1, 3, 5
s4 : 4, 6

Conclusive Learnability

I Certainty in finite time.

I Only one answer,

I based on certainty.

I No chance to change later.
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Some Types of Learnability

Limiting Learnability

I No certainty.

I Sequence of answers,

I based on reliability.

I Always a chance to change.
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t1 : 1, 3, 4
t2 : 2, 4, 5
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t4 : 1, 3, 4, 6



Conclusive vs Limiting Learning

Limiting Learnability

I No certainty.

I Sequence of answers,

I based on reliability.

I Always a chance to change.

Conclusive Learnability

I Certainty in finite time.

I Only one answer,

I based on certainty.

I No chance to change later.



Learning and Ockham’s Razor: ASAP

Search for a notion of simplicity that would guarantee that

always choosing the simplest theory compatible with experience and
hanging on to it while it remains the simplest is both necessary and
sufficient for efficiency of inquiry

Efficient Inquiry → Efficient Conjecturing → Solution A.S.A.P.

I Conclusive Learning → Fastest Learning

I Limiting Learning → Conservative Learning
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Conclusive Learnability: Once-definedness

The range of learning function L is extended by ? (“I do not know”).

Definition
Learning function L is once defined on (S ,Φ) iff for any stream ε for any world
in S there is exactly one n ∈ N such that L(ε�n) is not an ?-answer.



Conclusive Learnability: Definition

Definition
Take an epistemic space (S ,Φ).

I A world sm ∈ S is conclusively learnable in a computable way by a function
L if L is computable, once-defined, and for every data stream ε for sm,
there exists a finite stage k such that L((S ,Φ), ε0, . . . , εk) = {sm}.

I The epistemic space (S ,Φ) is said to be conclusively learnable in an
computable way by L if L is computable and all its worlds in S are
conclusively learnable in an computable way by L.

I Finally, the epistemic space (S ,Φ) is conclusively learnable in an
computable way just in case there is a computable learning function that
can conclusively learn it.
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Conclusive Learnability: Characterization

Definition
Take (S ,Φ). A set Di ⊆ Φ is a definite finite tell-tale set (DFTT) for si in S if:

1. Di is finite,

2. si ∈
⋂

Di , and

3. for any sj ∈ S , if sj ∈
⋂

Di then si = sj .

Theorem (Mukouchi 82, Lange & Zeugmann 82)

(S ,Φ) is conclusively learnable in an computable way just in case there is a
computable function f : S → P<ω(Φ) s.t. f (s) is a DFTT for s.

a world is conclusively learnable

if it makes true a finite conjunction of propositions

that together is false everywhere else
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Eliminative Power

Definition
Take (S ,Φ) and x ∈ Φ. The eliminative power of x with respect to (S ,Φ) is
determined by a function El(S,Φ) : Φ→ P(N), such that:

El(S,Φ)(x) = {i |si /∈ x & si in S}.

Additionally, for X ⊆ Φ we write El(S,Φ)(X ) for
⋃

x∈X El(S,Φ)(x).

eliminative power of a proposition is the complement of its extension



Conclusive Learnability: Complexity

Definition (Fin-Id Problem)

Instance: A finite epistemic space (S ,Φ), a world si in S .
Question: Is si conclusively learnable within (S ,Φ)?

Theorem
Fin-Id Problem is in P.



Minimality of DFTT’s: Two Kinds

set a minimal DFTT minimal-size DFTTs

{5, 7, 8} {7, 8} {5, 8} or {7, 8}
{6, 8, 9} {8, 9} {6}
{5, 7, 9} {7, 9} {5, 9} or {7, 9}
{8, 10} {10} {10}



Minimality of DFTT’s: Complexity

finding a minimal DFTT is easy

Proposition
Let (S ,Φ) be a conclusively learnable finite epistemic space. Finding a minimal
DFTT of si in (S ,Φ) can be done in polynomial time w.r.t. card({x |si ∈ x}).
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Minimality of DFTT’s: complexity

finding a minimal-size DFTT is (most probably) harder

Definition (Min-size DFTT Problem)

Instance: (S ,Φ), si ∈ S , and k ≤ card({p|si ∈ p}).
Question: Is there a DFTT Xi of si of size ≤ k?

Theorem
The Min-size DFTT Problem is NP-complete.

teaching efficiently might be hard
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Preset Learning

Learners taking a more prescribed course of action

by basing their conjectures on symptoms (DFTTs).

Objection: infinite collections of DFTTs.

Solution: fdftt , which for a finite X and si says if X is a DFTT of si .

If (S ,Φ) is conclusively learnable
then there is fdftt that for each world recognizes at least one DFTT.
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Preset Learning: Some Theorems

1. conclusive learnability = preset conclusive learnability

2. preset learners are exactly those that react solely to the content



Fastest Learning

Fastest learner:

conclusively learns a world si as soon as objective ‘ambiguity’ disappears;

settles on the right world as soon as any DFTT for it has been given.

Definition
(S ,Φ) is conclusively learnable in the fastest way if and only if there is a
learning function L such that, for each ε and for each i ∈ N,

L(ε�n) = i iff ∃D j
i ∈Di (D j

i ⊆ set(ε�n)) &

¬∃Dk
i ∈Di (Dk

i ⊆ set(ε�n − 1)).

Such L is a fastest learning function.



Fastest Learning: Main Result

Theorem
There is a uniformly decidable epistemic space that is conclusively learnable,
but is not conclusively learnable in the fastest way.

fastest conclusive learnability is properly included in conclusive learnability



Proof, part 1

Definition (Smullyan 1958)

Let A,B ⊂ N. A separating set is C ⊂ N such that A ⊂ C and B ∩ C = ∅. In
particular, if A and B are disjoint then A itself is a separating set for the pair,
as is B. If a pair of disjoint sets A and B has no computable separating set,
then the two sets are computably inseparable.

Let A and B be two disjoint r.e. computablely inseparable sets, such that:

I x ∈ A iff ∃y Rxy with R computable, and

I x ∈ B iff ∃y Sxy with S computable.

For each x there is at most one y , s.t. Rxy and at most one y , s.t. Sxy .
We define (Si )i∈N:

Si = {2i , 2i + 1} ∪ {2j | Rji} ∪ {2j + 1 | Sji}.



Proof: Illustration



Proof, part 2

The idea is that Si = {2i , 2i + 1} except that, for some m, Rim or Sim may be
true, and then 2i ∈ Sm or 2i + 1 ∈ Sm, respectively.

Note that:

I There can be at most one such m, and for that m only one of Rim or Sim
can be true.

I Since A and B are computably inseparable there is no computable f that
makes the choice for each i .

I Except for such intruders the languages are disjoint.



Proof, part 3

The argument:

I {2i , 2i + 1} is a DFTT for Si .

I But, {2i + 1} is a DFTT for Si if i 6∈B, and {2i} is a DFTT for Si if i 6∈A.

I However, a computable function that would give the minimal DFTTs of Si

gives a computable separating set of A and B.

I And this is impossible, since A and B are computablely inseparable.

So there cannot be a computable fastest learner!
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Limiting Learnability: Definition

Definition
Take an epistemic space (S ,Φ).

I A world sm ∈ S is limiting learnable in a computable way by a function L if
L is computable, and for every data stream ε for sm, there exists a finite
stage n such that for all k > n, L((S ,Φ), ε0, . . . , εk) = {sm}.

I The epistemic space (S ,Φ) is said to be limiting learnable in an
computable way by L if L is computable and all its worlds in S are limiting
learnable in an computable way by L.

I Finally, the epistemic space (S ,Φ) is limiting learnable in an computable
way just in case there is a computable learning function that can limiting
learn it.
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Limiting Learnability

Definition
A learner L is conservative if, for each sequence σ and x

L(σ) ∈
⋂

content(σ∧〈x〉) implies L(σ∧〈x〉) = L(σ).

Theorem
There is a uniformly decidable (S ,Φ) that is computably limiting learnable, but
not by a computable conservative learner.



Restrictiveness of Conservativity: Proof, part 1

0 ϕ0 s0 = {〈0, 1〉, 〈0, 2〉, 〈0, 3〉, . . .} s ′0 = {〈0, 1〉} or {〈0, 1〉, . . . 〈0, n〉}
1 ϕ1 s1 = {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, . . .} s ′1 = {〈1, 1〉} or {〈1, 1〉, . . . 〈1, n〉}
2 ϕ2 s2 = {〈2, 1〉, 〈2, 2〉, 〈2, 3〉, . . .} s ′2 = {〈2, 1〉} or {〈2, 1〉, . . . 〈2, n〉}
3 ϕ3 s3 = {〈3, 1〉, 〈3, 2〉, 〈3, 3〉, . . .} s ′3 = {〈3, 1〉} or {〈3, 1〉, . . . 〈3, n〉}
. . . . . . . . . . . .

Take j ∈ N, sj ∈ S, and ϕj . Think of ϕj as of a (not necessarily successful) learner. Take a text

for sj , t
j = 〈j, 0〉, 〈j, 1〉, 〈j, 2〉, 〈j, 3〉, . . . If ϕj happens to identify sj , then on some t j�n + 1, ϕj

will output j (obviously, if ϕj does not identify sj , this does not have to happen).

s′j =


{〈j, 0〉, . . . , 〈j, n〉} where 〈n, k〉 are the smallest s.t.

{〈j, 0〉, . . . , 〈j, n〉} ⊂ W
ϕk
j

(tj �n+1),k
;

{〈j, 0〉} if such a pair does not exist.

Assume, towards contradiction, that conservative learner L learns (S,Φ) in the limit.

L is in fact ϕj for some j ∈ N and it identifies sj ∈ S. Take t j = 〈j, 0〉, 〈j, 1〉, 〈j, 2〉, 〈j, 3〉, . . .,
then there will be s′j = {〈j, 0〉, . . . , 〈j, n〉} in S. Take the text 〈j, 0〉, . . . , 〈j, n〉, 〈j, n〉, 〈j, n〉, . . .
for s′j . On the first occurrence of 〈j, n〉, ϕj will output i for sj , and since the rest does not

contradict sj , ϕj will not retract (because it is conservative). Hence, ϕj will not identify s′j .
Contradiction.



Restrictiveness of conservativity: Proof, part 2

It remains to be shown that (S,Φ) is limit learnable by a computable L. Depending on the first
element seen by L:

1. 〈j,m〉, with m 6= 0, then L will output an index of sj on any sequence σ extending 〈j,m〉,
unless it is the case that {〈j, 0〉, . . . , 〈j, n〉} ⊂ W

ϕk
j

(tj �n+1),k
for some 〈n, k〉 ≤ lh(σ). If it

is so, it can be determined if all elements of σ are members of s′j (since both σ and s′j are

finite). If that is the case L outputs s′j and continues doing so as long as all the elements of

the input sequence are elements of s′j . If that is not the case L switches back to sj .

2. 〈j, 0〉, then L conjectures s′j as long as 〈j, 0〉 is the only pair seen, otherwise L switches to sj
and continues according to the behavior described before.



Conclusions

I Complexity of learning/teaching strategies in conclusive learning.

I Complexity of min-DFTT and min-size DFTT related concepts.

I The notion of preset learner in conclusive learning.

I Fastest learning is restrictive wrt to conclusive learnability.

I Conservative learning is restrictive wrt to limiting learnability

even if computable convergence to certainty or safe belief is possible

it may not be computably reachable just when objective ambiguity disappears
or when the learner is conservative in his mind changes
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Overall Mission

BR intuitive, determinate manners of updating models

FLT no prescribed ways of learning but often restricted by computability

Compare the two aspects: determinateness and computability.



Thank you!
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