
Complexity, Prediction, and Inference

Cosma Shalizi

Statistics Dept., Carnegie Mellon University & Santa Fe Institute

23 June 2012
Ockham Workshop



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

Cosma Shalizi Complexity, Prediction, and Inference



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

Cosma Shalizi Complexity, Prediction, and Inference



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

What Is Statistics, and How Does It Help Scientists?

Computer science, operations research, statistics, etc. as
mathematical engineering

Statistics: design and analyze methods of inference from
imperfect data
ML: design and analyze methods of automatic prediction
Not the same, but not totally alien either
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Classical Statistics

Applied Statistics

Scientist (or brewer, etc.): has a concrete inferential problem
about the world, plus data
Statistician: builds an abstract machine to turn data into an
answer, with honesty about uncertainty

Theoretical Statistics

Advice to applied statisticians about what tools work when
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What Statisticians Care About

“Will this method be reliable enough to be useful?”

Articulated: accuracy, precision, error rates, rate of
convergence, quantification of uncertainty through confidence
(“how unlucky would we have to be to be wrong?”),
bias-variance trade-offs, data reductions (“statistics”,
sufficiency, necessity, . . . ), identification, residual diagnostics,
. . .
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Why Classical Statistics Used to Be So Boring

A very general theory of inference. . .

. . . and powerful methods it applied to (non-parametric
regression, non-parametric density estimation) . . .
. . . and yet used hardly any of it
Data was hard, expensive and slow
Calculations were hard, expensive and slow
∴ low-dimensional data
+ low-dimensional parametric models
+ modeling assumptions to short-cut long calculations
∴ boring
Computing was the binding constraint
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How Computing Saved Statistics

Computation became easy, cheap and fast

∴ fit and use non-parametric (but interpretable) models:
splines, kernels, CART. . .
+ evaluate models with sub-sampling (cross-validation)
+ find uncertainty with re-sampling (bootstrap)
+ model-building by penalized optimization (lasso etc.)
+ model-discovery by constraint satisfaction (PC, FCI, etc.)
+ simulation-based inference
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Putting the CART before the Horse Race
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Mis-Specification

Good estimator + well-specified model⇒ converge to truth
Good estimator + mis-specified model⇒ converge to closest
approximation to truth (“pseudo-truth”)
(even true with Bayesian inference)
e.g., additive regression converges to the best additive
approximation
this may or may not be a problem for scientific inference
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Parsimony?

Computation is always a consideration
Restrictions (dimensions, penalties, . . . ) help convergence
Do we want to converge quickly to the wrong answer?

Parsimony for scientists is more about mechanisms than fixing
parameters or imposing linearity
Let’s try to articulate system complexity
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Notation and setting
Optimality Properties
Minimal Markovian Representation
Statistical Complexity, Finally

The Guiding Idea

The behavior of complex systems is hard to describe

. . . even if you know what you’re doing
von Neumann: a cat is complex because it has no model
simpler than the cat itself
Complexity ≈ resources needed for optimal description or
prediction
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Three Kinds of Complexity

1 Prediction of the system, in the optimal model (units: bits)
Wiener, von Neumann, Kolmogorov, Pagels and Lloyd, . . .

2 Learning that model (units: samples)
Fisher, Vapnik and Chervonenkis, Valiant, . . .

3 Computational complexity of running the model (units: ops)

Stick to predicting
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Notation etc.

Upper-case letters are random variables, lower-case their
realizations
Stochastic process . . . ,X−1,X0,X1,X2, . . .
X t

s = (Xs,Xs+1, . . .Xt−1,Xt )
Past up to and including t is X t

−∞, future is X∞t+1
Discrete time optional
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Making a Prediction

Look at X t
−∞, make a guess about X∞t+1

Most general guess is a probability distribution
Only ever attend to selected aspects of X t

−∞
mean, variance, phase of 1st three Fourier modes, . . .

∴ guess is a function or statistic of X t
−∞

What’s a good statistic to use?
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Predictive Sufficiency

For any statistic σ,

I[X∞t+1; X t
−∞] ≥ I[X∞t+1;σ(X t

−∞)]

σ is predictively sufficient iff

I[X∞t+1; X t
−∞] = I[X∞t+1;σ(X t

−∞)]

Sufficient statistics retain all predictive information in the data
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Why Care About Sufficiency?

Optimal strategy, under any loss function, only needs a
sufficient statistic (Blackwell & Girshick)
Strategies using insufficient statistics can generally be
improved (Blackwell & Rao)
∴ Don’t worry about particular loss functions
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“Causal” States

(Crutchfield and Young, 1989)

Histories a and b are equivalent iff

Pr
(
X∞t+1|X t

−∞ = a
)

= Pr
(
X∞t+1|X t

−∞ = b
)

[a] ≡ all histories equivalent to a
The statistic of interest, the causal state, is

ε(x t
−∞) = [x t

−∞]

Set st = ε(x t−1
−∞)

A state is an equivalence class of histories and a distribution
over future events
IID = 1 state, periodic = p states
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set of histories, color-coded by conditional distribution of futures
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Partitioning histories into causal states
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Sufficiency

(Shalizi and Crutchfield, 2001)

I[X∞t+1; X t
−∞] = I[X∞t+1; ε(X t

−∞)]

because

Pr
(
X∞t+1|St = ε(x t

−∞)
)

=

∫
y∈[x t

−∞]
Pr
(
X∞t+1|X t

−∞ = y
)

Pr
(
X t
−∞ = y |St = ε(x t

−∞)
)

dy

= Pr
(
X∞t+1|X t

−∞ = x t
−∞
)
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A non-sufficient partition of histories
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Effect of insufficiency on predictive distributions
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Group x and y together when they have the same
consequences
not when they have the same appearance
“Lebesgue smoothing” instead of “Riemann smoothing”
Learn the predictive geometry, not the original geometry
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Markov Properties

Future observations are independent of the past given the
causal state:

X∞t+1 |= X t
−∞|St+1

by sufficiency:

Pr
(
X∞t+1|X t

−∞ = x t
−∞,St+1 = ε(x t

−∞)
)

= Pr
(
X∞t+1|X t

−∞ = x t
−∞
)

= Pr
(
X∞t+1|St+1 = ε(x t

−∞)
)

Cosma Shalizi Complexity, Prediction, and Inference



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

Notation and setting
Optimality Properties
Minimal Markovian Representation
Statistical Complexity, Finally

Markov Properties

Future observations are independent of the past given the
causal state:

X∞t+1 |= X t
−∞|St+1

by sufficiency:

Pr
(
X∞t+1|X t

−∞ = x t
−∞,St+1 = ε(x t

−∞)
)

= Pr
(
X∞t+1|X t

−∞ = x t
−∞
)

= Pr
(
X∞t+1|St+1 = ε(x t

−∞)
)

Cosma Shalizi Complexity, Prediction, and Inference



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

Notation and setting
Optimality Properties
Minimal Markovian Representation
Statistical Complexity, Finally

Recursive Updating/Deterministic Transitions

Recursive transitions for states:

ε(x t+1
−∞) = T (ε(x t

−∞), xt+1)

Automata theory: “deterministic transitions” (even though there
are probabilities)
In continuous time:

ε(x t+h
−∞) = T (ε(x t

−∞), x t+h
t )
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Causal States are Markovian

S∞t+1 |= S
t−1
−∞|St

because

S∞t+1 = T (St ,X∞t )

and
X∞t |=

{
X t−1
−∞,S

t−1
−∞

}
|St

Also, the transitions are homogeneous
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Minimality

ε is minimal sufficient
= can be computed from any other sufficient statistic

= for any sufficient η, exists a function g such that

ε(X t
−∞) = g(η(X t

−∞))

Therefore, if η is sufficient

I[ε(X t
−∞); X t

−∞] ≤ I[η(X t
−∞); X t

−∞]

Cosma Shalizi Complexity, Prediction, and Inference



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

Notation and setting
Optimality Properties
Minimal Markovian Representation
Statistical Complexity, Finally

Minimality

ε is minimal sufficient
= can be computed from any other sufficient statistic
= for any sufficient η, exists a function g such that

ε(X t
−∞) = g(η(X t

−∞))

Therefore, if η is sufficient

I[ε(X t
−∞); X t

−∞] ≤ I[η(X t
−∞); X t

−∞]

Cosma Shalizi Complexity, Prediction, and Inference



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

Notation and setting
Optimality Properties
Minimal Markovian Representation
Statistical Complexity, Finally

Minimality

ε is minimal sufficient
= can be computed from any other sufficient statistic
= for any sufficient η, exists a function g such that

ε(X t
−∞) = g(η(X t

−∞))

Therefore, if η is sufficient

I[ε(X t
−∞); X t

−∞] ≤ I[η(X t
−∞); X t

−∞]

Cosma Shalizi Complexity, Prediction, and Inference



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

Notation and setting
Optimality Properties
Minimal Markovian Representation
Statistical Complexity, Finally

Sufficient, but not minimal, partition of histories
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Coarser than the causal states, but not sufficient
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Uniqueness

There is really no other minimal sufficient statistic

If η is minimal, there is an h such that

η = h(ε) a.s.

but ε = g(η) (a.s.) so

g(h(ε)) = ε

h(g(η)) = η

ε and η partition histories in the same way (a.s.)
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Minimal Markovian Representation

The observed process (Xt ) is non-Markovian and ugly

But it is generated from a homogeneous Markov process (St )
After minimization, this representation is (essentially) unique
Can exist smaller Markovian representations, but then always
have distributions over those states. . .
. . . and those distributions correspond to predictive states
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What Sort of Markov Model?

Common-or-garden HMM:

St+1 |= Xt |St

But here
St+1 = T (St ,Xt )

This is a chain with complete connections (Onicescu and
Mihoc, 1935; Iosifescu and Grigorescu, 1990)
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Example of a CCC: Even Process

2 1B  |  1.0
B  |  0.5

A  |  0.5

Blocks of As of any length, separated by even-length blocks of
Bs

Not Markov at any order
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Inventions

Statistical relevance basis (Salmon, 1971, 1984)

Measure-theoretic prediction process (Knight, 1975, 1992)
Forecasting/true measure complexity (Grassberger, 1986)
Causal states, ε machine (Crutchfield and Young, 1989)
Observable operator model (Jaeger, 2000)
Predictive state representations (Littman et al., 2002)
Sufficient posterior representation (Langford et al., 2009)
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How Broad Are These Results?

Knight (1975, 1992) gave most general constructions
Non-stationary X
t continuous (but discrete works as special case)
Xt with values in a Lusin space

(= image of a complete separable

metrizable space under a measurable bijection)

St is a homogeneous strong Markov process with
deterministic updating
St has cadlag sample paths (in some topology on infinite-dimensional

distributions)

Versions for input-output systems, spatial and network
dynamics (Shalizi, 2001, 2003; Shalizi et al., 2004)
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Statistical Complexity

Definition (Grassberger, 1986; Crutchfield and Young, 1989)

C ≡ I[ε(X t
−∞); X t

−∞] is the statistical forecasting complexity
of the process

= amount of information about the past needed for optimal
prediction
0 for IID sources
log p for periodic sources
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I[ε(X t
−∞);X t

−∞]

= H[ε(X t
−∞)] for discrete causal states

= expected algorithmic sophistication (Gács et al., 2001)
= log(geometric mean(recurrence time)) for stationary
processes
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Predictive Information

Predictive information:

Ipred ≡ I[X∞t+1; X t
−∞]

I[X∞t+1; X t
−∞] = I[X∞t+1; ε(X t

−∞)] ≤ I[ε(X t
−∞); X t

−∞]

You need at least m bits of state to get m bits of prediction
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More on the Statistical Complexity

Property of the process, not learning problem

How much structure do we absolutely need to posit?
Relative to level of description/coarse-graining
thermodynamic vs. hydrodynamic vs. molecular description. . .

C = information about microstate in macrostate (sometimes;
Shalizi and Moore (2003))
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Initial configuration
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Intermediate time configuration

Cosma Shalizi Complexity, Prediction, and Inference



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

Notation and setting
Optimality Properties
Minimal Markovian Representation
Statistical Complexity, Finally

Asymptotic configuration, rotating spirals
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Typical long-time configuration
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Hand-crafted order parameter field
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Local complexity field
Cosma Shalizi Complexity, Prediction, and Inference



Mostly Statistics
Mostly Complexity

Mostly Reconstruction
References

Notation and setting
Optimality Properties
Minimal Markovian Representation
Statistical Complexity, Finally

Order parameter (broken symmetry, physical insight, tradition, trial and error,

current configuration) vs. local statistical complexity (prediction, automatic,

time evolution) (Shalizi et al., 2006)
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Connecting to Data

Everything so far has been math/probability

(The Oracle tells us the infinite-dimensional distribution of X )

Can we do some statistics and find the states?
Two senses of “find”: learn in a fixed model vs. discover the
right model
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Learning

Given states and transitions (ε,T ), realization xn
1

Estimate Pr (Xt+1 = x |St = s)

Just estimation for stochastic processes
Easier than ordinary HMMs because St is a function of
trajectory
Exponential families in the all-discrete case, very tractable
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Discovery

Given xn
1

Estimate ε,T ,Pr (Xt+1 = x |St = s)

Inspiration: PC algorithm for learning graphical models by
testing conditional independence
Alternative: Function learning approach (Langford et al.,
2009)
Nobody seems to have tried non-parametric Bayes (though
(Pfau et al., 2010) is a step in that direction)
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CSSR: Causal State Splitting Reconstruction

Key observation: Recursion + one-step-ahead predictive
sufficiency⇒ general predictive sufficiency

Get next-step distribution right by independence testing
Then make states recursive

Assumes discrete observations, discrete time, finite causal
states
Paper: Shalizi and Klinkner (2004); C++ code,
http://bactra.org/CSSR/
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One-Step Ahead Prediction

Start with all histories in the same state

Given current partition of histories into states, test whether
going one step further back into the past changes the next-step
conditional distribution
Use a hypothesis test to hold false positive rate at α

If yes, split that cell of the partition, but see if it matches an
existing distribution
Must allow this merging or else no minimality

If no match, add new cell to the partition
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going one step further back into the past changes the next-step
conditional distribution
Use a hypothesis test to hold false positive rate at α

If yes, split that cell of the partition, but see if it matches an
existing distribution
Must allow this merging or else no minimality

If no match, add new cell to the partition
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Recursive Transitions

Stop when no more divisions can be made or a maximum
history length Λ is reached
For consistency, Λ < log n

h+ι
for some ι (Marton and Shields, 1994)

Ensure recursive transitions
Equivalent to: determinize a non-deterministic stochastic
automaton
technical; boring; can influence finite-sample behavior
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Convergence

S = true causal state structure
Ŝn = structure reconstructed from n data points
Assume: finite # of states, every state has a finite history, using
long enough histories, α→ 0 slowly:

Pr
(
Ŝn 6= S

)
→ 0

Empirical conditional distributions for histories converge
(large deviations principle for Markov chains)

Histories in the same state become harder to accidentally
separate
Histories in different states become harder to confuse
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D = true distribution, D̂n = inferred
Error scales like independent samples

E
[
‖D̂n −D‖TV

]
= O(n−1/2)

Each state’s predictive distribution converges O(n−1/2)
(from LDP again, take mixture)
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Example: The Even Process

2 1B  |  1.0
B  |  0.5

A  |  0.5
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2 1B  |  1.000
B  |  0.503

A  |  0.497

reconstruction with Λ = 3, n = 1000, α = 0.005
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A

0 | 0.990

B

1 | 0.010

D

E

0 | 0.928

1 | 0.072

1 | 0.065

F

0 | 0.935

C

0 | 0.961

1 | 0.0390 | 0.991

1 | 0.009

H

1 | 0.046 G

0 | 0.954

M

1 | 0.042

N

0 | 0.958

0 | 0.959

1 | 0.041

L

1 | 0.036

0 | 0.964

K

1 | 0.041

0 | 0.959

J

1 | 0.032

0 | 0.968

I

1 | 0.047

0 | 0.953

1 | 0.052

0 | 0.948

1 | 0.053

0 | 0.947 Causal states reconstructed

from rat barrel cortex neu-

ron during spontaneous firing;

state A is the resting state, the

rest “implement” a combina-

tion of decaying firing rate and

refractory periods (Haslinger

et al., 2010)
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Occam?

CSSR: start with a small model, expand when forced to
Seems to converge faster than state-merging algorithms
Is this Occam? Should we care?
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Summary

Your stochastic process has a unique, minimal Markovian
representation

This representation has nice predictive properties
Can reconstruct from sample data in some cases. . .
and a lot more could be done in this line
Both the representation and the reconstruction have an
Occam flavor
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I’m Glad You Asked That Question!
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If u ∼ v , any future event F , and single observation a

Pr
(
X∞t+1 ∈ aF |X t

−∞ = u
)

= Pr
(
X∞t+1 ∈ aF |X t

−∞ = v
)

Pr
(
Xt+1 = a,X∞t+2 ∈ F |X t

−∞ = u
)

= Pr
(
Xt+1 = a,X∞t+2 ∈ F |X t

−∞ = v
)

Pr
(

X∞t+2 ∈ F |X t+1
−∞ = ua

)
Pr
(
Xt+1 = a|X t

−∞ = u
)

= Pr
(

X∞t+2 ∈ F |X t+1
−∞ = va

)
Pr
(
Xt+1 = a|X t

−∞ = v
)

Pr
(

X∞t+2 ∈ F |X t+1
−∞ = ua

)
= Pr

(
X∞t+2 ∈ F |X t+1

−∞ = va
)

ua ∼ va

(same for continuous values or time but need more measure theory)
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Minimal stochasticity

If Rt = η(X t−1
−∞) is also sufficient, then

H[Rt+1|Rt ] ≥ H[St+1|St ]

∴ the predictive states are the closest we get to a deterministic
model, without losing power
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Entropy Rate

h1 ≡ lim
n→∞

H[Xn|X n−1
1 ] = lim

n→∞
H[Xn|Sn]

= H[X1|S1]

so the predictive states lets us calculate the entropy rate
and do source coding
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A Cousin: The Information Bottleneck

(Tishby et al., 1999)

For inputs X and outputs Y , fix β > 0, find η(X ), the bottleneck
variable, maximizing

I[η(X ); Y ]− βI[η(X ); X ]

give up 1 bit of predictive information for β bits of memory
Predictive sufficiency comes as β →∞, unwilling to lose any
predictive power
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Extension 1: Input-Output

(Littman et al., 2002; Shalizi, 2001, ch. 7)

System output (Xt ), input (Yt )
Histories x t

−∞, y t
−∞ have distributions of output xt+1 for each

further input yt+1
Equivalence class these distributions and enforce recursive
updating
Internal states of the system, not trying to predict future inputs
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Extension 2: Space and Time

(Shalizi, 2003; Shalizi et al., 2004, 2006; Jänicke et al., 2007)

Dynamic random field X (~r , t)
Past cone: points in space-time which could matter to X (~r , t)
Future cone: points in space-time for which X (~r , t) could matter

past

future

Equivalence-class past cone configurations by
conditional distributions over future cones
S(~r , t) is a Markov field
Minimal sufficiency, recursive updating, etc., all
go through
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“Geometry from a Time Series”

Deterministic dynamical system with state zt on a smooth
manifold of dimension m, zt+1 = f (zt )
Only identified up to a smooth, invertible change of coordinates
(diffeomorphism)
Observe a time series of a single smooth, instantaneous
function of state xt = g(zt )
Set st = (xt , xt−1, . . . xt−k+1)

Generically, if k ≥ 2m + 1, then zt = φ(st )
φ is smooth and invertible
φ commutes with time evolution, φ(st+1) = f (φ(st ))
Regressing st+1 on st gives φ−1 ◦ f
Idea due to Packard et al. (1980); Takens (1981), modern review in Kantz and

Schreiber (2004)
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About “Causal”

Term “causal states” introduced by Crutchfield and Young
(1989)

without too much precision
All about probabilistic prediction, not counterfactuals
(selecting sub-ensembles of naturally-occurring trajectories, not enforcing certain

trajectories)

Still, those screening-off properties are really suggestive
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Back to Physics

(Shalizi and Moore, 2003)

Assume: Microscopic state Zt ∈ Z, with an evolution operator f

Assume: Micro-states support counterfactuals
Assume: Never get to see Zt , instead deal with Xt = γ(Zt )
Xt are coarse-grained, macroscopic variables
Each macrovariable gives a partition Γ of Z
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Sequences of Xt values refine Γ

Γ(T ) =
T∧

t=1

f−t Γ

ε partitions histories of X
∴ ε joins cells of Γ(∞)

∴ ε induces a partition ∆ of Z
This is a new, Markovian coarse-grained variable
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Connecting to Causality

Interventions moving z from one cell of ∆ to another changes
the distribution of X∞t+1

Changing z inside a cell of ∆ might still make a difference
“There must be at least this much structure”
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Some Uses

Neural spike train analysis (Haslinger et al., 2010), fMRI
analysis (Merriam, Genovese and Shalizi in prep.)
Geomagnetic fluctuations (Clarke et al., 2003)
Natural language processing (Padró and Padró, 2005a,c,b,
2007a,b)
Anomaly detection (Friedlander et al., 2003a,b; Ray, 2004)
Information sharing in networks (Klinkner et al., 2006; Shalizi
et al., 2007)
Social media propagation (Cointet et al., 2007)
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