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Informal summary

We consider inference post-model-selection in two scenarios:

1 d/n ≈ 0, where the candidate models are comparatively
simple in relation to sample size.

2 d/n 6≈ 0, where the candidate models are comparatively
complex.

In the first scenario, we show that certain aspects of inference
post-model-selection are hard or ill-posed. In the second scenario,
we show that prediction post-model-selection can be tackled
successfully.

The findings for the second scenario are for Gaussian data and rely
crucially on a property exhibited only by the Gaussian distribution:
If the response and the explanatory variables are Gaussian, then
every linear submodel is ‘correct.’ We show that a relaxed version
of this property holds for a much larger class of distributions.
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A rather simple linear model

Consider n independent observations (yi, xi, zi), i = 1, . . . , n from
the linear regression

y = αx+ βz + u. (1)

The object of interest is α, and we consider two candidate models,
namely the unrestricted m2 model with two parameters, and the
restricted model m1 where β = 0. The (unknown) minimal true
model depends on β an will be denoted by m∗(β). A
model-selection procedure is a data-driven rule m̂∗ that takes on
the values m1 and m2 and thus estimates m∗(β).

Write α̂(mi) for the least-squares corresponding to the model mi.
The model-selection procedure m̂∗ leads to the post-model-
selection estimator α̂(m̂∗) for α.
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Consistent model selection

Write Pn,α,β for the distribution of a sample of size n if the true
parameters are α and β. We assume that the model selector m̂∗ is
consistent, in the sense that

Pn,α,β (m̂∗ = m∗(β))
n→∞−→ 1

holds for each pair (α, β). [E.g., BIC, MDL, consistent pre-testing,
etc.]

For large n, this suggests that α̂(m̂∗) behaves like the infeasible
‘estimator’ α̂(m∗(β)).
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An oracle property

Assume throughout that the errors in (1) are i.i.d. normal and that

nVar(α̂(m2), β̂(m2))→ Σ > 0 (can be relaxed; e.g. LAN). With this,

√
n(α̂(m2)− α)

Pn,α,β−→ Φσ(m2)(·)
and, if β = 0 or, equivalently, if m∗(β) = 1, also

√
n(α̂(m1)− α)

Pn,α,0−→ Φσ(m1)(·),
where σ(m1) ≤ σ(m2). Write Fn,α,β(t) for the c.d.f. of

√
n(α̂(m̂∗)−α).

Since m̂∗ is consistent, we have, for each pair α, β, that

Fn,α,β(t)− Φσ(m∗(β))(t)
n→∞−→ 0.

Theorem 1

If σ(m1) < σ(m2), then

sup
|β|<1/

√
n

∣∣Fn,α,β(t)− Φσ(m∗(β))(t)
∣∣ n→∞−→ δ > 0

for each α.
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Estimating the c.d.f. of the post-model-selection estimator

It is easy to construct a consistent estimator F̂n(t) for Fn,α,β(t),
i.e., an estimator satisfying

Pn,α,β

(∣∣∣F̂n(t)− Fn,α,β(t)
∣∣∣ > ε

)
n→∞−→ 0

for each ε > 0 and each pair (α, β). But . . .

Theorem 2

If σ(m1) < σ(m2), and if F̂n(t) is a consistent estimator for
Fn,α,β(t), then

sup
|β|<1/

√
n

Pn,α,β

(∣∣∣F̂n(t)− Fn,α,β(t)
∣∣∣ > ε◦

)
n→∞−→ 1

for some ε◦ > 0 and for each α.
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Remarks & Extensions

Theorem 2 also holds for randomized estimators (e.g.,
subsampling or bootstrap).

Theorem 2 continues to hold for arbitrary (not necessarily
consistent) estimators, if the limit 1 is replaced by 1/2.

All the results discussed so far can be extended to also cover
conservative model selectors like AIC, Cp, etc.

All the results discussed so far continue to hold in multivariate
linear models with a fixed number of explanatory variables.

All the result discussed so far continue to hold if the c.d.f. of
α̂(m̂∗) (scaled & centered) is replaced by its (scaled) risk. For
consistent model selectors, the worst-case risk is unbounded!

Results parallel to those discussed so far also hold for other
estimators and other estimation targets like, e.g., the c.d.f. of
the LASSO and related estimators, or the risk of the
James-Stein estimator.
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So what?

If d/n ≈ 0, the potential benefits of model selection for, e.g.,
prediction, are negligible.

In many challenging contemporary problems, one faces many
potentially important explanatory variables or factors,
together with a comparatively small sample size.
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A not so simple linear model

Consider a response y that is related to a (possibly infinite)
number of explanatory variables xj , j ≥ 1, by

y =

∞∑
j=1

xjθj + u (2)

with x1 = 1. Assume that the xj ’s with j > 1 and u are
jointly nondegenerate Gaussian; that u has mean zero and is
uncorrelated with the xj ’s; and that the sum converges in L2.
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number of explanatory variables xj , j ≥ 1, by

y =

∞∑
j=1

xjθj + u (2)

with x1 = 1. Assume that the xj ’s with j > 1 and u are
jointly nondegenerate Gaussian; that u has mean zero and is
uncorrelated with the xj ’s; and that the sum converges in L2.

No further regularity conditions are imposed.
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A not so simple linear model

Consider a response y that is related to a (possibly infinite)
number of explanatory variables xj , j ≥ 1, by

y =

∞∑
j=1

xjθj + u (2)

with x1 = 1. Assume that the xj ’s with j > 1 and u are
jointly nondegenerate Gaussian; that u has mean zero and is
uncorrelated with the xj ’s; and that the sum converges in L2.

No further regularity conditions are imposed.

In view of this, parameter estimation is infeasible. We focus on
prediction instead.
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The candidate models and predictors

Consider a sample (X,Y ) of n independent realizations of (x, y) as
in (2), and a collection M of candidate models. Each model
m ∈M is assumed to contain the intercept and to satisfy
|m| < n− 1. Each model m is fit to the data by least-squares.
Given a new set of explanatory variables x(f), the corresponding
response y(f) is predicted by

ŷ(f)(m) =

∞∑
j=1

x
(f)
j θ̃j(m)

when using model m. Here, x(f), y(f) is another independent
realization from (2), and θ̃(m) is the restricted least-squares
estimator corresponding to m.
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Two goals

(i) Select a ‘good’ model from M for prediction out-of-sample,
and (ii) conduct predictive inference based on the selected model,
both conditional on the training sample.

Two Quantities of Interest

(i) For m ∈M, let ρ2(m) denote the conditional mean-squared
error of the predictor ŷ(f)(m) given the training sample, i.e.,

ρ2(m) = E

[ (
y(f) − ŷ(f)(m)

)2∣∣∣∣∣∣∣∣X,Y ] .
(ii) For m ∈M, the conditional distribution of the prediction error
ŷ(f)(m)− y(f) given the training sample is

ŷ(f)(m)− y(f)
∣∣∣∣∣∣ X,Y ∼ N(ν(m), δ2(m)) ≡ L(m).

Note that ρ2(m) = ν2(m) + δ2(m).
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Estimation of ρ2(m) and model selection

We will estimate ρ2(m) by

ρ̂2(m) = σ2(m)
n

n+ 1− |m|
,

which is closely related to GCV (Craven & Whaba, 1978) and to
Sp (Tuckey, 1967).

Write m∗ and m̂ for the truly best and the empirically best
candidate model, i.e.,

m∗ = argminMρ
2(m) and m̂ = argminMρ̂

2(m).
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Performance of the model selector

Remember: The truly best model m∗ minimizes ρ2(m) over
m ∈M; the selected model m̂ minimizes ρ̂2(m) instead.
Moreover, #M is the number of candidate models and |M| is the
number of parameters in the most complex candidate model.

Theorem 3

For each fixed sample size n and uniformly over all data-generating
processes as in (2), we have

P

(
log

ρ2(m̂)

ρ2(m∗)
> ε

)
≤ 6 exp

[
log #M− n− |M|

16

ε2

ε+ 16

]
,

P

(∣∣∣∣log
ρ̂2(m̂)

ρ2(m̂)

∣∣∣∣ > ε

)
≤ 6 exp

[
log #M− n− |M|

8

ε2

ε+ 8

]
,

for each ε > 0.
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Predictive Inference based on the selected model

Idea: Estimate the conditional distribution of the prediction error,
i.e., L(m) ≡ N(ν(m), δ2(m)), by

L̂(m) ≡ N(0, δ̂2(m)),

where δ̂2(m) is defined as ρ̂2(m) before.

Theorem 4

For each fixed sample size n and uniformly over all data-generating
processes as in (2), we have

P

(∣∣∣∣∣∣L̂(m̂)− L(m̂)
∣∣∣∣∣∣
TV

>
1√
n

+ ε

)
≤ 7 exp

[
log #M− n− |M|

2

ε2

ε+ 2

]
for each ε with 0 < ε < log(2).
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Note

These results rely on Gaussianity in two respects:

1 Tail behavior. For non-Gaussian models, we can here use
modern empirical process theory and concentration
inequalities. [See Beran (2007) and the references given
there.]

2 The following property of the Gaussian: If (w, y) are jointly
normal, then E[y‖w] is linear in w, and Var[y‖w] is constant
in w. In particular, we can write

y = β′w + u

where the error u is uncorrelated with w, has zero mean and
constant variance.
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Low-dimensional projections of high-dimensional data

For each dimension d, consider a random d-vector Z that is
standardized so that EZ = 0 and EZZ ′ = Id. We also assume
that the elements of Z are independent, have bounded moments of
order up to 9, and bounded Lebesgue densities (can be relaxed).

Our results are asymptotic as d→∞.

Consider two projections of Z of the form α′Z and β′Z for unit
d-vectors α and β.
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Low-dimensional projections of high-dimensional data

For each dimension d, consider a random d-vector Z that is
standardized so that EZ = 0 and EZZ ′ = Id. We also assume
that the elements of Z are independent, have bounded moments of
order up to 9, and bounded Lebesgue densities (can be relaxed).

Our results are asymptotic as d→∞.

Consider two projections of Z of the form α′Z and β′Z for unit
d-vectors α and β.

We study the conditional mean and with the conditional variance
of α′Z given β′Z.
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Low-dimensional projections of high-dimensional data

For each dimension d, consider a random d-vector Z that is
standardized so that EZ = 0 and EZZ ′ = Id. We also assume
that the elements of Z are independent, have bounded moments of
order up to 9, and bounded Lebesgue densities (can be relaxed).

Our results are asymptotic as d→∞.

Consider two projections of Z of the form α′Z and β′Z for unit
d-vectors α and β.

More precisely, we will study the following two conditions: The
vector β is such that . . .

(i) for each α, the conditional mean of α′Z given β′Z = x is
linear in x ∈ R;

(ii) for each α, the conditional variance of α′Z given β′Z = x is
constant in x ∈ R.
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On conditions (i) and (ii)

If β is such that both (i) and (ii) hold, and if we set y = α′Z and
x = β′Z, then the simple linear model, namely

y = ax+ u,

with unknown parameter a ∈ R given by a = β′α, and with u
haven mean zero and constant variance given x, is ‘correct,’
irrespective of α. The true data-generating process is y = α′Z.
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On conditions (i) and (ii)

If β is such that both (i) and (ii) hold, and if we set y = α′Z and
x = β′Z, then the simple linear model, namely

y = ax+ u,

with unknown parameter a ∈ R given by a = β′α, and with u
haven mean zero and constant variance given x, is ‘correct,’
irrespective of α. The true data-generating process is y = α′Z.

But (i) and (ii) are restrictive: If Z is such that (i) holds for all
unit-vectors β, then the law of Z must be spherically symmetric
(Eaton, 1986). And if both (i) and (ii) hold for all unit-vectors β,
then Z is Gaussian (Bryc 1995).
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On conditions (i) and (ii)

If β is such that both (i) and (ii) hold, and if we set y = α′Z and
x = β′Z, then the simple linear model, namely

y = ax+ u,

with unknown parameter a ∈ R given by a = β′α, and with u
haven mean zero and constant variance given x, is ‘correct,’
irrespective of α. The true data-generating process is y = α′Z.

Next result (informally):

Both conditions (i) and (ii) are approximately satisfied for most
unit-vectors β, namely on a set of β’s whose size, as measured by
the uniform distribution on the unit sphere in Rd, goes to one as
d→∞.

In that sense, most simple linear submodels are approximately
‘correct’, provided only that d is large.
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Most linear submodels are approximately ‘correct’

The vector β satisfies conditions (i) and (ii) if and only if∥∥∥E[Z‖β′Z = x]
∥∥∥2 − x2 = 0 and∥∥∥E[ZZ ′‖β′Z = x]− (Id + (x2 − 1)ββ′

∥∥∥2 = 0

hold for each x ∈ R.

Theorem 5

There are sets Bd ⊆ Rd satisfying υ(Bd)
d→∞−→ 1 so that, for each

ε > 0, both

sup
β∈Bd

P
(∥∥∥E[Z‖β′Z]

∥∥∥2 − (β′Z)2 > ε

)
and

sup
β∈Bd

P
(∥∥∥E[ZZ ′‖β′Z]− (Id + ((β′Z)2 − 1)ββ′

∥∥∥2 > ε

)
converge to zero as d→∞.
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Outlook

Extension to several projections β1, . . . , βk (i.e., simple models
with several explanatory variables); joint with Lukas
Steinberger.

Approximately valid prediction and inference when fitting
simple linear submodels to complex data-generating processes;
joint with Lukas Steinberger.

Finite-d bounds on the error probabilities in Theorem 1, with
applications to model selection and regularization; joint with
Ivana Milovic.
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