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Conclusion

Statistics needs a rigorous theory of oversmoothing (undefit-

ting).

There are hints:

G. Terrell (the oversmoothing principle)

D. Donoho (one-sided inference)

L. Davies (simplest model consistent with the data).

But, as I’ll show, we need a more general way to do this.
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Plan

1. Regression

2. Graphical Models

3. Density Estimation (simplicity versus L2)

4. Topological data analysis
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Preview of the Examples

1. (High-Dimensional) Regression: Observe (X1, Y1), . . . , (Xn, Yn).

Observe new X.

Predict new Y .

Here, Y ∈ R and X ∈ Rd with d > n.

2. (High-Dimensional) Undirected Graphs.

X ∼ P . G = G(P ) = (V,E). V = {1, . . . , d}. E = edges.

No edge between j and k means Xj qXk|rest.
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Preview of the Examples

3. Density Estimation. Y1, . . . , Yn ∼ P and P has density p.

Estimator:

p̂h(x) =
1

n

n∑
i=1

1

hd
K

(
||y − Yi||

h

)
.

Need to choose h.

4. Topological Data Analysis.

X1, . . . , Xn ∼ G.

G is supported on a manifold M .

Observe Yi = Xi + εi.

Want to recover the homology of M .
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Regression

Best predictor is

m(x) = E(Y |X = x).

Assume only iid and bounded random variables.

There is no uniformly consistent (distribution free) estimator of
m.

How about the best linear predictor? Excess risk:

E(β̂) = E(Y − β̂TX)2 − inf
β

E(Y − βTX)2.

But, as n→∞ and d = d(n)→∞

inf
β̂

sup
P
E(β̂)→∞.
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Simplicity: Best Sparse Linear Predictor

Let

Bk = {β : ||β||0 ≤ k}

where ||β||0 = #{j : βj 6= 0}. Small ||β||0 = simplicity.

Good news: If β̂ is best subset estimator then

E(Y − β̂TX)2 − inf
β∈Bk

E(Y − βTX)2 → 0.

Bad news: Computing β̂ is NP-hard.
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Convex Relaxation: The Lasso

Let

BL = {β : ||β||1 ≤ L}

where ||β||1 =
∑
j |βj|. Note that L controls sparsity (simplicity).

Oracle: β∗ minimizes R(β) over BL.

Lasso: β̂ minimizes 1
n

∑n
i=1(Yi − βTXi)2 over BL.

In this case:

sup
P
P (R(β̂) > R(β∗) + ε) � exp

(
−cnε2

)
.

But how to choose L?
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Choosing L (estimating the simplicity)

Usually, we minimize risk estimator R̂(L) (such as cross-validation).

It is known that this overfits.

Theorem : (Meishausen and Buhlmann, Wasserman and Roeder):

Pn(support(β) ⊂ support(β̂∗))→ 1

where β∗ minimizes the true prediction loss.

But if we try to correct by moving to a simpler model, we risk

huge losses since the risk function is asymmetric.

Here is a simulation: true model size is 5. (d = 80, n = 40).
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Corrected Risk Estimation

In other words:

simplicity 6= accurate prediction

High predictive accuracy requires that we overfit.

What if we want to force more simplicity? Can we correct the
overfitting without incurring a disaster?

Safe simplicity:

Z(Λ) = sup
`≥Λ

|R̂(Λ)− R̂(`)|
s(Λ, `)

.

(This is Lepski’s nonparametric method, adapted to the lasso.)
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Screen and Clean

Even better: Screen and Clean (Wasserman and Roeder, Annals

2009).

Split data into three parts:

Part 1: Fit lasso

Part 2: Variable selection by cross-validation

Part 3: Least squares on surviving variables followed by ordinary

hypothesis testing.
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Screen and Clean

However, this is getting complicated (and inefficient).

What happens when linearity is false, high correlations etc.?

Is there anything simpler?
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Graphs

X = (X1, . . . , Xd).

G = (V,E).

V = {1, . . . , d}.
E = edges.

(j, k) /∈ E means that Xj qXk|rest.

X Z Y

means X q Y |Z.

Observe: X(1), . . . , X(n) ∼ P . Infer G.

16



Graphs

Common approach: assume X(1), . . . , X(n) ∼ N(µ,Σ).

Find µ̂, Σ̂ to maximize

loglikelihood(µ,Σ)− λ
∑
j 6=k

|Ωjk|

where Ω = Σ−1.

Omit an edge if Ω̂jk = 0.

Same problems as lasso: no good way to choose λ. In addition,

non-Gaussianty seems to lead to overfitting.

The latter can be alleviated using forests.
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Forests

A forest is a graph with no cycles. In this case

p(x) =
d∏

j=1

pj(xj)
∏

(j,k)∈E

pjk(xj, xk)

pj(xj)pk(xk)
.

The densities can be estimated nonparametrically. The edge set

can be estimated by the Chow-Liu algorithm based on nonpara-

metric estimates of mutual information I(Xj, Xk).

Han Liu, Min Xu, Haijie Gu, Anupam Gupta, John Lafferty, Larry Wasserman

(JMLR 2010)
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Gene Microarray:

Glasso Nonparametric
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Synthetic Example:

True Best Fit Glasso

Nonparametric
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What We Really Want

Cannot estimate the truth. There is no universally consistent,

distribution free test of

H0 : X q Y |Z.

We are better off asking: What is the simplest graphical model

consistent with the data?
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What We Really Want

Precedents for this are: Davies, Terrell, Donoho etc. Here is

Davies idea (simplified).

Observe (X1, Y1), . . . , (Xn, Yn). For any function m we can write

Yi = m(Xi) + εi = signal + noise

where εi = Yi −m(Xi). He finds the “simplest” function m such

that ε1, . . . , εn look like “noise.”

Davies, Kovac and Meise (2009) and Davies and Kovac (2001).

How do we do this for graphical models?
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Density Estimation

Seemingly and old, solved problem.

Y1, . . . , Yn ∼ P where Yi ∈ Rd and P might have a density p.

kernel estimator

p̂h(y) =
1

n

n∑
i=1

1

hd
K

(
||y − Yi||

h

)
.

Here, K is a kernel and h > 0 is a bandwidth.

How do we choose h? Usually, we minimize an estimate of

R(h) = E
(∫

(p̂h(x)− p(x))2dx

)
.

But this is the wrong loss function ...
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Density Estimation

More generally p might have: smooth parts, singularities, near

singularities (mass concentrated near manifolds) etc.

In principle we can use Lepski’s method: choose a local band-

width

ĥ(x) = sup
{
h : |p̂h(x)− p̂t(x)| ≤ ψ(t, h) for all t < h

}
.

Lepski and Spokoiny 1997, Lepski, Mammen and Spokoiny 1997.

It leads to this ...
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Oversmoothing

We really just want a principled way to oversmooth. Terrell and

Scott (1985) and Terrell (1990) suggest the following: choose

the largest amount of smoothing compatible with the scale of

the density.

The asymptotically optimal bandwidth (with d = 1) is

h =

(∫
K2(x)dx

nσ4
K I(p)

)1
5

where I =
∫

(p′′)2. Now: minimize I = I(p) subject to:

T (P ) = T (P̂n)

where T (·) is the variance.
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Oversmoothing

Solution:

h =
1.47 s

(∫
K2

)1
5

n
1
5

.

Good idea, but:

- it is still based on L2 loss

- it is based on an asymptotic expression for optimal h.

We need a finite sample version with a more appropriate loss
function.

Here it is on our example:
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Summary so far ...

Our current methods select models that are too complex.

Are there simple methods for choosing simple models?

Now, a more exotic application ...
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Topological Data Analysis

X1, . . . , Xn ∼ G where G is supported on a manifold M .

Here Xi ∈ RD but dimension(M) = d < D.

Observe Yi = Xi + εi.

Goal: infer the homology of M .

Homology: clusters, holes, tunnels, etc.

32



One Cluster

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

33



One Cluster + One Hole
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Inference

The Niyogi, Smale, Weinberger (2008) estimator:

1. Estimate density. (h)

2. Throw away low density points. (t)

3. Form a Cech complex. (ε)

4. Apply an algorithm from computational geometry.

Usually, the results are summarized as a function of ε in a barcode

plot (or a persistence diagram).
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Example: from Horak, Maletic and Rajkovic (2008)
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The Usual Heuristic

Usually assume that small barcodes are topological noise.

This is really a statistical problem with many tuning parameters.

Currently, there are no methods for choosing the tuning param-

eters.

What we want: the simplest topology consistent with the data.

Working on this with Sivaraman Balakrishnan, Aarti Singh, Alessandro Ri-

naldo and Don Sheehy.
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Summary

We still don’t know how to choose simple models.
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Summary

THE END
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