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Conclusion

Statistics needs a rigorous theory of oversmoothing (undefit-
ting).

There are hints:

G. Terrell (the oversmoothing principle)
D. Donoho (one-sided inference)
L. Davies (simplest model consistent with the data).

But, as I'll show, we need a more general way to do this.
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Preview of the Examples

1. (High-Dimensional) Regression: Observe (Xq1,Y7),...,(Xn,Yn).
Observe new X.
Predict new Y.

Here, Y €¢ R and X € R? with d > n.
2. (High-Dimensional) Undirected Graphs.

X~P. . G=GP)=(V,E). V=A1,...,d}. E= edges.
No edge between j and k£ means X; I Xj|rest.



Preview of the Examples

3. Density Estimation. Yi,...,Y, ~ P and P has density p.
Estimator:

nz‘:lﬁ h

Need to choose h.

4. Topological Data Analysis.
X1,...,Xn ~G.

GG is supported on a manifold M.
Observe Y:L = Xi —+ €;.

Want to recover the homology of M.



Regression

Best predictor is
m(x) = E(Y|X = z).

Assume only iid and bounded random variables.

There is no uniformly consistent (distribution free) estimator of
m.

How about the best linear predictor? EXxcess risk:

E(B) =E(Y — B1'x)? — i%f E(Y — 81 Xx)2.

But, as n — oo and d = d(n) — oo

irlfsupé’(ﬁ) — 00.
B P



Let

B ={8: [|Bllo <k}
where ||B||o = #{j : B; Z 0}. Small ||8]||o = simplicity.

Good news: If B is best subset estimator then

E(Y — BTX)%2 — inf E(Y — 8TX)? = 0.
BEB,

Bad news: Computing 8 is NP-hard.




Convex Relaxation: The Lasso

Let

Br,={8: lIAll1 < L}
where ||8][1 = 3>;|8;|- Note that L controls sparsity (simplicity).

Oracle: B« minimizes R(3) over Bj..
Lasso: B minimizes =7 (V; — B1X;)? over B,
In this case:

sup P(R(B) > R(Bx) + €) = exp (—cne?).
P

But how to choose L7



Choosing L (estimating the simplicity)

Usually, we minimize risk estimator R(L) (such as cross-validation).
It is known that this overfits.

Theorem : (Meishausen and Buhlmann, Wasserman and Roeder):

P™(support(3) C support(Bx)) — 1

where B« minimizes the true prediction loss.

But if we try to correct by moving to a simpler model, we risk
huge losses since the risk function is asymmetric.

Here is a simulation: true model size is 5. (d = 80, n = 40).
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Corrected Risk Estimation

In other words:

simplicity = accurate prediction

High predictive accuracy requires that we overfit.

What if we want to force more simplicity? Can we correct the
overfitting without incurring a disaster?
Safe simplicity:

_ IR(A) — R(0)|
ZN) =sup =0y

(This is Lepski’'s nonparametric method, adapted to the lasso.)
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Screen and Clean

Even better: Screen and Clean (Wasserman and Roeder, Annals
2009).

Split data into three parts:
Part 1: Fit lasso
Part 2: Variable selection by cross-validation

Part 3: Least squares on surviving variables followed by ordinary
hypothesis testing.
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Screen and Clean

However, this is getting complicated (and inefficient).
What happens when linearity is false, high correlations etc.?

Is there anything simpler?
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X = (Xl,...,Xd).

G=(V,FE).
V ={1,...,d}.
E = edges.

(J, k) ¢ E means that X, IT Xj|rest.

X Z

means X 1Y |Z.

Observe: xX(1) ... x() o p. Infer G.
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Graphs

Common approach: assume X1 . x() « N(u,X).

Find i, ~ to maximize
loglikelihood (41, ) — A > |24
j7=k
where Q@ = x—1,

Omit an edge if Q;, = 0.

Same problems as lasso: no good way to choose A. In addition,
non-Gaussianty seems to lead to overfitting.

The latter can be alleviated using forests.
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Forests

A forest is a graph with no cycles. In this case

z (T, x
p(x) = H pj(a:j) H pjk( 77 k)

=1 Giyer Pi(@)pr(Tr)

T he densities can be estimated nonparametrically. The edge set
can be estimated by the Chow-Liu algorithm based on nonpara-
metric estimates of mutual information I(X;, Xj).

Han Liu, Min Xu, Haijie Gu, Anupam Gupta, John Lafferty, Larry Wasserman
(JMLR 2010)
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Gene Microarray:

Glasso

Nonparametric
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Synthetic Example:

Best Fit Glasso

Nonparametric



What We Really Want

Cannot estimate the truth. There is no universally consistent,
distribution free test of

Ho: X1Y|Z.

We are better off asking: What is the simplest graphical model
consistent with the data?
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What We Really Want

Precedents for this are: Davies, Terrell, Donoho etc. Here is

Davies idea (simplified).

Observe (X1,Y7),...,(Xn,Yn). For any function m we can write
Y; = m(X;) + ¢; = signal 4+ noise

where ¢; = Y; — m(X;). He finds the “simplest” function m such
that €1,...,en lOOK like “noise.”

Davies, Kovac and Meise (2009) and Davies and Kovac (2001).

How do we do this for graphical models?
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Density Estimation

Seemingly and old, solved problem.

Y1,...,Y, ~ P where Y; € R? and P might have a density p.
kernel estimator

b (y) = 1 3 %K <||y—hY%||> |

ni—1
Here, K is a kernel and h > 0 is a bandwidth.

How do we choose h? Usually, we minimize an estimate of

R(h) = E( [ (@) — p(2))?dz).

But this is the wrong loss function ...
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Density Estimation

More generally p might have: smooth parts, singularities, near
singularities (mass concentrated near manifolds) etc.

In principle we can use Lepski's method: choose a local band-
width

h(z) = sup{h 1B (@) — pi(z)| < (t, h) for all t < h}

Lepski and Spokoiny 1997, Lepski, Mammen and Spokoiny 1997.

It leads to this ...
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Oversmoothing

We really just want a principled way to oversmooth. Terrell and
Scott (1985) and Terrell (1990) suggest the following: choose
the largest amount of smoothing compatible with the scale of
the density.

The asymptotically optimal bandwidth (with d = 1) is

P — <f [('2(:1:)d:13>5

na?( I(p)

where I = [(p/)2. Now: minimize I = I(p) subject to:
T(P) = T(Pn)

where T'(-) is the variance.
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Oversmoothing

Solution:

Ol

1.47 s ([ K?)

nb5S

Good idea, but:
- it is still based on Lo loss
- it is based on an asymptotic expression for optimal h.

We need a finite sample version with a more appropriate loss
function.

Here it is on our example:
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Our current methods select models that are too complex.
Are there simple methods for choosing simple models?

Now, a more exotic application ...
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X1,...,Xn ~ G where G is supported on a manifold M.
Here X, € RP but dimension(M) = d < D.

Observe Y; = X, + ¢;.

Goal: infer the homology of M.

Homology: clusters, holes, tunnels, etc.
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Inference

The Niyogi, Smale, Weinberger (2008) estimator:

Estimate density. (h)

Throw away low density points. (t)

Form a Cech complex. (e)

Apply an algorithm from computational geometry.

sl

Usually, the results are summarized as a function of € in a barcode

plot (or a persistence diagram).
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The Usual Heuristic

Usually assume that small barcodes are topological noise.
This is really a statistical problem with many tuning parameters.

Currently, there are no methods for choosing the tuning param-
eters.

What we want: the simplest topology consistent with the data.

Working on this with Sivaraman Balakrishnan, Aarti Singh, Alessandro Ri-

naldo and Don Sheehy.
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We still don't know how to choose simple models.
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THE END
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