
1

 

Error Correction, Severity, and Truth:  
What's Simplicity Got to Do With it? 

Deborah Mayo 
CMU: June 24, 2012 

 
I always learn a lot from the challenge to see if I have anything to say about 
a topic I haven’t written about—simplicity. (I have often said, on the other hand, 
that the account I favor is messy and complex and “it will not appeal to neatniks”.)  
 
I have thought a lot about some of the issues to which simplicity is often linked: 
induction, truth, reliability, parameter adjustment, selection effects, severe testing 
 
A general simplicity slogan goes something like this: 

If a simpler (method, model, theory) will suffice, then go with it? 
(usually there’s an addition, “all else being equal” —but that’s a very big qualification!) 
 
Suffice for what? 
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When I think about what I regard as key learning goals, it seems that simplicity criteria at 
most correlate with what’s actually doing the work in knowledge promoting.. 
But, it seems to me always second-hand to what’s responsible for:  

the goals of ensuring and appraising how well-tested claims are, how well methods 
control and avoid error. 

 It is like the “second hand emotion” in the lyrics to which my title alludes:  
(“What’s simplicity got to do with it? 
 
Tina Turner: “Oh what's love got to do, got to do with it 
What's love but a second hand emotion”) 
 
I will discuss a number of different ways that simplicity recommendations may go hand 
in hand with, but also be in tension with, goals of truth, learning, and well-testedness. 
 

I. Simplicity in Appraising Statistical Method and Principle 
II.  Simplicity, Severity, and Error Correction 
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I. Appealing to Simplicity in Appraising Method and Statistical Principle 
  

Go with the simplest account, obey the simplest principles, test intuitions with the 
simplest examples 
 
A. Bayesian inference is often promoted as the simplest, coherent account: 
 
If the goal is to compute the degree of evidential relationship between given evidence 
statements, e, and a hypothesis H, Bayesians say, look to conditional probability or 
Bayes’s Theorem:  

P(H|e) =  P(e|H)P(H)/P(e) 
 

where P(e) = P(e|H)P(H) + P(e|not-H) P(not-H). 
 
“Any decision that depends on the data that is being used in making the inference only 
requires from the data the posterior distribution. Consequently the problem of inference is 
effectively solved by stating the posterior distribution”. (Lindley 1971, 436) 
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But to suffice as an adequate account for inference, it 
 

o must be ascertainable (must be able to apply it with the kind of information we tend 
to actually have in inquiry) 

o it should be relevant and applicable to the tasks required of the inference tools  
(Wesley Salmon’s criteria) 
These criteria are in tension with what is recommended by this kind of single unified 
evidential-relation account. 
 Computing P(H|e), the posterior probability, requires a probability assignment to all of the 
members of “not-H” (Bayesian catchall hypothesis) 
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Major source of difficulty: how to obtain and interpret these prior probabilities.  

(a) If analytic and a priori, relevance for predicting and learning about empirical 
phenomena is problematic 

(b) If they measure subjective degrees of belief, their relevance for giving objective 
guarantees of reliable inference is unclear.  

More appeals to simplicity arise in obtaining priors 

In statistics, (a) is analogous to “objective” Bayesianism (e.g., Jeffreys); 

(b) to subjective Bayesianism 
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Even if the overall Bayesian logic is “simple,”Bayesians themselves (some of them) admit: 
 
 “to elicit all features of a subjective prior π(θ), one must infinitely accurately specify a 
(typically) infinite number of things. In practice, only a modest number of (never fully 
accurate) subjective elicitations are possible.” (J. Berger 2006, p. 397) 

 
One way of turning elicitations into full priors is to use conjugate priors, but as these are 
model-dependent (or at least likelihood-dependent) the subjective Bayesian following 
this “prior completion” strategy would be constructing different priors for the same θ, 
clearly incoherent. (J. Berger, 2006) 

 
Some Bayesians are even saying aloud… 
“Indeed, I cannot remember ever seeing a non-trivial Bayesian analysis which actually 
proceeded according to the usual Bayes formalism.” (Goldstein, 2006) 
	

 [While “Bayesian inference is commonly associated with inductive reasoning and the 
idea that a model … can never be directly falsified by a significance test. [my goal] is to 
break these associations, which I think are incorrect and have been detrimental to 
statistical practice.” (Gelman, 2011, p. 1)  
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B. Error probability methods (frequentist, sampling theory) 
 Designed to reach statistical conclusions without invoking prior probabilities in 

hypotheses,  
 Probability is used to quantify how frequently methods are capable of discriminating 

between alternative hypotheses and how reliably they facilitate the detection of error.  
Error frequencies or error probabilities (e.g., significance levels, confidence levels).   

These methods are often criticized as giving us a hodge-podge of tools and criteria: 
piecemeal, messy 

But they may be unified in nifty ways for the goals of error probability control and piecemeal 
learning  
 
In this account probabilities apply to events, and to rules or methods of inference: 
Two construals within frequentist error statistics: 
(i) behavioristic: to ensure low long run control of error * 

(ii) evidential: to control and evaluate well-testedness of claims  
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Three reasons error statistical methods are complex 

(1) Because the typical statistical hypothesis is rarely the final substantive inference, 
and (2) raw data has to be worked over to get them in shape for inference 

 
Scientific questions Statistical hypotheses Statistical data Actual data 

 
o When it comes to piecemeal probes about parameters, directions of effect, observed 

correlations) the canonical null hypotheses are just the ticket! (Cox’s taxonomy of 
several distinct types of null hypotheses) 

o Scientific inquiry needs to be open-ended (unlike what probability theory requires) 
o In setting sail to find things out, we do not have an exhaustive set of rival 

substantive hypotheses;  
o Much less do we have what’s needed by “full-dress Bayesians”, as I.J. Good called 

them: an assignment of utilities or loss functions for decision making 
o “Much like ready-to-wear [versus designer] clothes, these ‘off the shelf’ methods do 

not require collecting vast resources before you can get going with them” (1996, p. 
100). 
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“It’s Complicated” 
Aside from the fact that they are expected to perform different tasks at different stages of 
inquiry, the third reason error statistical methods are complicated is what at the heart of 
what makes them error statistical.   

 Whatever base characterization of “fit” you like, we always want to know: what’s 
the probability you’d get so good a fit (between data x0 and H) if H is false 

 If H is being declared the best of the lot (according to your favorite criterion) we 
always want to know if that’s something easy or difficult to achieve even if H is 
specifiably false 

(Pearson’s steps: sample space, hypotheses, distance statistic, sampling distribution) 
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 For example, significance tests operate by computing the probability of different 

values of d(X) —some distance measure between data and a test or null hypothesis 
H0,  

 We can calculate P(d(X) >  d(x0); H0) – the p-value of the result—if it’s very small 
infer evidence against the null (or evidence of a genuine discrepancy). 

 The probability distribution of d(X) is its sampling distribution 
 It lets us calculate the probability of inferring evidence for H erroneously—an error 

probability. 
As a result, aspects of the data and hypotheses generation may have to be taken account 
of: they may alter the error probabilities and thereby the probativeness of the test. 
 
This introduces complications… 
But that is the key to controlling and assess error probabilities.  
(In my own revision of error statistical methods, I insist on an assessment that is relative 
to the actual outcome, as opposed to standard predesignated error probabilities, but 
existing methods can serve this role.) 



11

 
C. Simplicity and Freedom (vs. control of error probabilities) 
That error probabilistic properties may alter the construal of results gets a formal 
rendering: we violate the (strong) likelihood principle LP. (likelihoods aren’t enough) 
 
Among aspects of the data generation that could alter error probabilities are stopping 
rules.  By contrast 
 

“The irrelevance of stopping rules to statistical inference restores a simplicity and 
freedom to experimental design that had been lost by classical emphasis on 
significance levels (in the sense of Neyman and Pearson”. (“Savage Forum” 1963, p. 
239)  

 
We are prepared to exchange simplicity and freedom for controlling error probabilities 
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One way to illustrate the violation of the LP in error statistics is via the “Optional 
Stopping Effect”. 

We have a random sample from a Normal distribution with mean µ and standard deviation , 
i.e.  

Xi ~ N(µ,) and we test  H0: µ=0, vs. H1: µ0.   
stopping rule:   
 
Keep sampling until H is rejected at the .05 level 

 
(i.e., keep sampling until | X |  1.96 /  n ). 
 
The rule is guaranteed to stop, it is assured of rejecting the null even if true. 
 
More generally, actual significance level differs from, and will be greater than .05.  
 
Violates the weak repeated sampling rule (Cox and Hinkley, 1974) 
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There are many equivalent ways to get this kind of violation of error probabilities (hinting for 
significance, selection effects) 
 
It need not have anything to do with stopping rules, it can result from data-dependent selection 
of hypotheses for testing, or rejecting a null so long as any better fitting alternative exists 
 
It is sometimes said that in requiring the actual type 1 error probability be small (i.e., 
requiring very small p-values) before the null is rejected in favor of the alternative), we 
are appealing to the simpler hypothesis (the null) 
 
In a sense it is simpler but the actual rationale: if moderate p-values are taken as evidence 
of a genuine discrepancy from the null, then it will make it too easy to erroneously infer a 
real effect 
 

We can’t even assess whether an observed agreement (between data and a hypothesis) 
really is big or small without it the sampling distribution. 
“If we accept the criterion suggested by the method of likelihood it is still necessary to 
determine its sampling distribution in order to control the error involved in rejecting a 
true hypothesis, because a knowledge of L [the likelihood ratio] alone is not adequate to 
insure control of this error. (Pearson and Neyman, 1967, 106). 
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D. Should we trust our intuitions in simple cases?   

It is often noted that if the test is restricted to a comparative test, limited to simple or 
point against point hypotheses, then there is an upper error bound (so the problem with 
optional stopping is avoided). 

 
(Savage switches to such cases, “Savage Forum” 1962) 
 

But that’s a very different, very artificial example. 
 
So, to the question, should we trust our intuitions about general principles from 
simple cases? The answer is no (we should look for exceptions) 
 
It was the case of the complex (i.e., compound) alternative that led statistician 
George Barnard to reject the (strong) LP (surprising Savage). 
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The trouble with the so-called “Law” of Likelihood:  (i.e., x0 support hypotheses H1 
more than H2 if, P(x0;H1) > P(x0;H2)), Barnard  notes, “there always is such a rival 
hypothesis: That things just had to turn out the way they actually did” .  
 
Since such a maximally likelihood alternative H2 can always be constructed, H1 may 
always be found less well supported, even if H1 is true—no error control.  
 
Hacking soon rejected the likelihood approach on such grounds, likelihoodist accounts 
are advocated by others. 
 
I turn now to more familiar appeals to simplicity (not for methods or principles, but for 
inference to hypotheses, models, theories) 
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II. Simplicity, Severity, Error Correction 
 
A. Underdetermination and Simplicity 

 
Clearly a big rationale for the appeal to simplicity is the supposition that we are 

otherwise stuck with terrible underdetermination 
 

“But since there will always be an infinite number of theories which yield the same data 
with the same degree of inductive probability—but which make different 
predictions….without the criterion of simplicity we can make no step beyond the 
observable data. Without this all-important a priori criterion, we would be utterly lost.” 
Swinburne (“Simplicity as Evidence of Truth” 1997, 15) 
  

The problem might be seen as what more do we need to avoid underdetermination 

(i) x0 agrees with or “fits” H  

(ii) ______ 

Explanatory power, novelty, simplicity, well-testedness, severity 
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Popper 

Mere fits are “too cheap to be worth having” (Popper) 
“In opposition to [the] inductivist attitude, I assert that C(H,x) must not be 
interpreted as the degree of corroboration of H by x, unless x reports the results of 
our sincere efforts to overthrow H.  The requirement of sincerity cannot be 
formalized—no more than the inductivist requirement that e must represent our total 
observational knowledge. (Popper 1959, p. 418.) 
Observations or experiments can be accepted as supporting a theory (or a 
hypothesis, or a scientific assertion) only if these observations or experiments are 
severe tests of the theory—or in other words, only if they result from serious 
attempts to refute the theory, ….” (Popper, 1994, p. 89) 

It is no wonder Popper is often compared to error statisticians (Fisher, and/or Neyman 
and Pearson) 

True Popper was never able show “ qua pure deductivist…[that]we should expect the 
theory to fail if it is not true” (Guenbaum, 198, 130) 

The best tested so far need not be well tested; his methods gave no way to assess error 
probabilities. 
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Complexity and Inseverity 

The primary Popperian goal was always severity and avoidance of ad hoc strategems 
that would lower the testability of hypotheses 

 
 “From my point of view, a system must be described as complex in the highest degree if, 
…one holds fast to it as a system established forever which one is determined to rescue, 
whenever it is in danger, by the introduction of auxiliary hypotheses. For the degree of 
falsifiability of a system thus protected is equal to zero.” (Popper LSD, 331).  

Characteristic of pseudoscience. 

Note, it’s the system that is complex (I would say procedure or method).  

Popper typically, misleadingly, suggests it is the hypothesis or theory that should be 
testable or simple. 
The fact that he was unable to implement the idea using logical probability does not stop 
us from using contemporary statistical tools to do so. 
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Severity Principle 
The Popperian intuition is right-headed: 
 
 If a procedure had little or no ability to find flaws in H, 
then finding none scarcely counts in H’s favor.  
 
Can put in terms of having evidence… 
 
Severity Principle (Weak): Data x0 provides poor evidence for H if it results from a 
method or procedure that has little or no ability of finding flaws in H, even if H is false. 
 
 As weak as this is, it is stronger than a mere falsificationist requirement: it may be 

logically possible to falsify a hypothesis, while the procedure may make it virtually 
impossible for such falsifying evidence to be obtained. 

 
 Although one can get considerable mileage even stopping with this negative 

conception (as perhaps Popperians would), I hold the further, positive conception: 
 
Severity Principle (Full): Data x0 provide a good indication of or evidence for hypothesis 
H (just) to the extent that test T severely passes H with x0. 
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I talk about SEV a lot elsewhere, and cannot get into qualifications here. 
 
Severity has three arguments: a test, data, and an inference or a claim.  
 

‘The severity with which H passes test T with outcome x0’ may be abbreviated by:  
SEV(Test T, outcome x0, claim H).  

To say “H is severely tested” is an abbreviation of H has passed the severe or stringent 
probe, not, for example merely that H was subjected to one (corroboration) 
 
   This contrasts with a common tendency to speak of “a severe test” divorced from the 

specific inference — leads to fallacies we need to avoid. 
 

 A test may be made so sensitive (or powerful) that discrepancies from a hypothesis H 
are inferred too readily. (fallacy of rejection) 

However, the severity associated with such an inference is decreased, the more sensitive 
the test (not the reverse).  
One analogously avoids “fallacies of acceptance”, I’ll illustrate with a fanciful example. 
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My weight 

 
If no change in weight registers on any of a series of well-calibrated and stable scales, 
both before leaving and upon my return from London, even though, say, they easily 
detect a difference when I lift a .1-pound potato, then we argue that the data warrant 
inferring that my weight gain is negligible within the limits of the sensitivity of the 
scales.   

 
H: my weight gain is no greater than , where  is an amount easily detected by 
these scales.  

  
H, we would say, has passed a severe test were I to have gained  pounds or more (i.e., 
were H false), then this method would almost certainly have detected this.  
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No Rigging! 

Perhaps underdeterminationists would say I could insist all the scales are wrong—they 
work fine with weighing vegetables, etc. 
(Cartesian demon of scales) 
 
Rigged alternative H* 
 

H*: H is false but all data will be as if it is true. 
 

All experiments systematically mask the falsity of H 
 
(Gellerized hypothesis) 
 
Are H and H* empirically equivalent? If so, they are not testably equivalent on the 
severity account 
 
For any hypothesis H, one can always adduce a rigged H* (even if H is true and has 
passed highly severe tests!) 
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Were we to deny x0 is evidence for H because of the possibility of rigging, we would 
be prevented from correctly finding out about weight or whatever… 

 
If the scales work reliably on test objects with known weight, what sort of 
extraordinary circumstance could cause them all to go astray just when we do not 
know the weight of the test object (can the scales read my mind?  (C.S. Peirce) 
 
It’s simpler to assume the scales that work on my potato also work with unknown 
weights (in the intended range) but that’s not why it is warranted. 
 
It is the learning goal that precludes such rigging, conspiracies, gellerization — highly 
unreliable strategy. 
 
Granted, this is a special case where there is knowledge of the probative capacities of 
the instrument, and this figures importantly in this account for justifying inductive 
(evidence-transcending) inferences 
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Central strategy for checking assumptions using known procedures: 
 to ensure errors ramify: if we were wrong, we would find systematic departures 

from the known weight (likewise with the use of known probability models, e.g., 
Bernouilli model with p = .5 and coin tossing)  

 To move from highly inaccurate measurements to far more accurate ones  
 
 
Not an appeal to the uniformity of nature, but "that the supernal powers withhold their 
hands and let me alone, and that no mysterious uniformity… interferes with the action of 
chance".   
 
The associated warrant for ampliative inference beyond today’s paper …. 
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Sometimes it feels as if simplicity is appealed to in order to save some (flawed) accounts 
of inference from themselves 
 
An account that regards H and H* empirically (predictively) equivalent? 
 
By contrast, two pieces of data that equally well fit a hypothesis, may differ greatly in 
their evidential value due to differences in the probativeness of the tests from which they 
arose.   
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Empirical learning is complex in the sense of piecemeal 
One way to distinguish the pieces is by considering what error of inference is of concern 

 
Formal error statistical tests provide tools to ensure errors will be correctly detected (i.e., 
signaled) with high probabilities—but in scientific contexts, their role will be not to 
assure low long run error rates (behavioristic) but to learn about the source of the given 
data set. 
 
Within the piece: we are not distinguishing a hypothesis or theory from its rivals, 
experiment sets out to distinguish and rule out a specific erroneous interpretation of the 
data from this experiment. 
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An error can concern any aspect of a model or hypothesis in the series of models, 

i.e., any mistaken understandings of an aspect of the phenomenon in question these are 
errors  

about real vs. spurious effects, causes, parameters, model assumptions, links from 
statistical to substantive, classification errors, etc.— 

 I don’t distinguish theoretical/observational  

There is a corresponding localization of what one is entitled to infer severely:  

“H is false” refers to a specific error that the hypothesis H is denying.   

For example, we still need to distinguish the inference from rejecting a null  

of “0 effect” from theories to explain the effect  
(they are on “different levels”) 

 
Much less does evidence for a “real effect” warrant realism (entity realism, or other). 
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Discussions of error correcting or self-correcting methods often confuse two 
interpretations of the ‘long-run’ metaphor: 
 
(a) Asymptotic error-correction (as n→∞): I have a sample of 100 and I consider 
accumulating more and more data as n increases the inference or estimate about m 
approaches the true value of m 
 
(b) Error probabilities of a test: I have a sample of 100 and I consider hypothetical 
replications of the experiment—each with samples of 100 
(the relative frequency with which a sample mean differs by more than 2 standard 
deviations from the true mean is .05).  
So, I can use the observed mean to estimate how far off the “correct” value is. 
  
The error probability tells me about the procedure underlying the actual 100-fold sample, 
e.g., that there’s good evidence it was not merely fortuitous or due to chance. 
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 Sampling distribution supplies the counterfactual needed: the value of employing a 
sampling distribution to represent statistically what it would be like were one or another 
assumption of the data generating mechanism violated: 
 

In one-sided Normal sampling with known for example, an upper .975 CIu  

H:    < X 0  1.96x 

  (i.e.,   < CIu ) 
 
passes severely because were this inference false, and the true mean  >  CIu  
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Simplicity and Economy 

 
The idea that a central aim of statistical method is to speed things up in this way is at the 
heart of the rationale of error statistical methods:  
 
The concern we might say is with making good on the long run claims in the short run, 
within the usual amount of time for a given research project.  
 
“It changes a fortuitous event which may take weeks or may take many decennia into an 
operation governed by intelligence, which will be finished within a month. (Peirce 7.78) 
 
 
 



31

 
Giving good leave: 

An important consideration Peirce gives under economy is “that it may give good leave” 
as the billiard-players say. If it fails to fit the facts, the test may be instructive about the 
next hypothesis. Even if we wanted to know if a quadratic equation holds between 
quantities, we would do well to test a linear model first “because the residuals will be 
more readily interpretative.”  
The residuals, differences between observed and predicted values, may teach more 
about the next hypothesis to try.  
 
Models must not merely fit, but be statistically adequate: Studying the residuals we can 
probe if the statistical adequacy of a model, the residuals are like white noise  
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Again, one senses that simplicity is appealed to in order to save an inadequate 
account from itself 
“Error fixing” gambits in model validation.  
Example: A statistically significant difference from a null that asserts independence in a 
linear regression model, might be taken as warranting one of many alternatives that could 
explain non-independence: 
 
H1 :the errors are correlated with their past, expressed as a lag between trials.  
  
H1 now “fits” the data all right, but since this is just one of many ways to account for the 
lack of independence, alternative H1 passes with low severity.  
  
This method has little if any chance of discerning other hypotheses that could also 
“explain” the violation of independence.   
 
It is one thing to arrive at such an alternative based on the observed discrepancy with the 
requirement that it be subjected to further tests. 
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 Severity and Informativeness  
(be stringent but learn something) 

 
Severity is not the only goal, it has to be coupled with informativeness, with finding 
things out 

 
Many of the accounts discussed here start out assuming restricted domains and goals that 
I do not, e.g., a set of models that “fit” the data (to which we assign model selection), 
certain machine learning contexts with training samples and the like, empirical fit or 
prediction, suffices, etc. 
 
As a philosopher of science, I’m always looking for a very general account of learning, 
finding things out;  

 
I’m interested in how we set sail to obtain the kind of knowledge we do, and how we can 
obtain more of it.  
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Scientific knowledge and understanding, as I see it, goes beyond predicting events  
 
Statistical method provides methods and analogues to methods for the most general kind 
of inductive inference  
 
To one who thinks fitting the facts and predictive accuracy is what is mainly wanted in 
inference, it must seem mystifying that scientists are not especially satisfied with that 
alone, they always want to push the boundaries to learn something new, to rock the boat. 
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There may be a tension between simplicity and breaking out of paradigms 
 
Wouldn’t it be simpler not to challenge adequate predicting theories? 
 
Maybe, but scientists rock the boat to find out more, because they want understanding 
that goes beyond predicting 
 
One may be entirely agnostic on realism; models are approximate and idealized, that 
doesn’t prevent getting a correct understanding using them 
 
Why did researchers deliberately construct rivals if General Theory of Relativity (GTR) 
was predicting adequately (maybe it had a high posterior)?   
 
Some say severity is too tough to satisfy, but they overlook the value of recognizing 
inseverity. 
 
Our severe tester sets about exploring just why we are not allowed to say that GTR is 
severely probed as a whole—why has it inseverely passed based on given tests   
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 How could it be a mistake to regard the existing evidence as good evidence for 
GTR?   

 (even in the regions probed by solar system tests)   
 

 Parameterized Post Newtonian (PPN) framework: a list of parameters that allows a 
systematic articulation of violations of, or alternatives to, what GTR says about 
specific gravity effects (they want to avoid being biased toward GTR) 
 

 Set up largely as straw men with which to set firmer constraints on these parameters, 
check which portions of GTR has and have been well-tested (Earman 1992) 
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Each PPN parameter is set as a null hypothesis of a test. 
For example the deflection of light parameter, measures “spacial curvature”;  
 
The GTR value for the PPN parameter under test serves as the null hypothesis from 
which discrepancies are sought (usually set at 1).  
 
 H0:  =  GTR 
 
By identifying the null with the prediction from GTR, any discrepancies are given a very 
good chance to be detected, so if no significant departure is found, this constitutes 
evidence for the GTR prediction with respect to the effect under test, i.e., .   
 
The tests rule out GTR violations exceeding the bounds for which the test had very high 
probative ability 
(infer upper bounds to possible violations)  
 
 (could equivalently be viewed as inferring a confidence interval estimate = L + e)  
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Simplicity and Parameter Adjustment 
(Our conference organizer is keen for me to touch on this, and GTR offers a good case) 
 

Deliberately constructing viable rivals theories did not preclude "fixing arbitrary 
parameters" to ensure rivals yield correct predictions with regard to the severely affirmed 
effects  

 
For example, the addition of a scalar field in Brans-Dicke theory depended on an 

adjustable constant w:  
 
The smaller its value the larger the effect of the scalar field and thus the bigger the 

difference with GTR, but as w gets larger the two became indistinguishable.  
(An interesting difference would have been with a small w like 40; its latest lower 

bound is pushing 20,000!)   
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The value for is fixed in GTR, but constraining a rival like the B-D theory to fit 

the GTR prediction involves adjusting a parameter w: 
 

Several Bayesians (e.g., Berger, Rosenkrantz) maintain that a theory that is free of 
adjustable parameters is “simpler” and therefore enjoys a higher prior probability 
(Jefferys and J. Berger 1992, 72; “Ockham’s razor and Bayesian analysis”) 
 
Here they are explicitly referring to adjustments of gravity theories. 
 
Others maintain the opposite  
 
 “On the Bayesian analysis,” this countenancing of parameter fixing “is not surprising, 
since it is not at all clear that GTR deserves a higher prior than the constrained Brans and 
Dicke theory” (Earman, 1992, p. 115).  
 
 “why should the prior likelihood of the evidence depend upon whether it was used in 
constructing T?”; Earman, 1992, p. 116),  
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As I’ve argued elsewhere, there are many cases where data are used to arrive at and 
support parameters that result in the fitted claim passing with high severity 
 
To correctly diagnose the differential merit, the severe testing approach instructs us to 
consider the particular inference and the ways it can be in error in relation to the 
corresponding test procedure.  
 
In adjusting w, thereby constraining Brans–Dicke theory to fit the estimated w, what is 
being learned regarding the Brans–Dicke theory is how large would w need to be to agree 
with the estimated		
	
In this second case, inferences that pass with high severity are of the form “w must be at 
least 500.”  
(~confidence interval estimate) 
 
The questions, hence the possible errors, hence the severity differs.  
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But the data-dependent GTR alternatives play a second role; namely to show that 

GTR has not passed severely as a whole: that were a rival account of the mechanism of 
gravity correct, the existing tests would not have detected this.   

This was the major contribution provided by the rivals articulated within the PPN 
framework (of viable rivals to GTR). 

 
The constrained GTR rivals successfully show the existing tests did not rule out, 

with severity, alternative explanations for the  effect given in the viable rivals. 
 
Some view their role as estimating cosmological constants, thus estimating 

violations that would be expected in strong gravity domains. 
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Discovering	new	things: Nordvedt Effect  

But	what	I	really	want	to	emphasize	is	the	kind	of	strategy	that	enables	finding	a	
new	effect.	
	
Discovering	new	things	is	creative,	but	it’s	not	the	miracle	Popper	makes	it	out	to	be		
	
In	the	1960s	Nordvedt	identified	a	testable	difference,	that	Brans–Dicke	theory	
would	conflict	with		

 
In the 1960s Nordvedt discovered in the 1960s that B-D theory would conflict with 

GTR by predicting a violation of the Strong Equivalence Principle  
 
(basically the Weak Equivalence Principle for massive self-gravitating bodies, e.g., 

stars and planets, black holes);  
a new parameter to describe this effect, the Nordvedt effect, was introduced into the 

PPN framework, i.e., .   
 would be 0 for GTR, so the null hypothesis tested is  
 
H0:  = 0 as against non-0 for rivals.  
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Measurements of the round trip travel times between the earth and moon (between 

1969 and 1975) enabled the existence of such an anomaly for GTR to be probed severely 
(actually, the measurements continue today).  

Because the tests are highly sensitive, these measurements provided evidence that 
the Nordvedt effect is absent, set upper bounds to the possible violations 

I talk about experimental GTR elsewhere…. 
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Unification May Grow Out of Testing Constraints 
 

 many of the parameters are functions of the others—an extremely valuable source 
for cross-checking and fortifying inferences 
(e.g.,  measures the same thing as the so-called time delay, and the Nordevdt 
parameter  gives estimates of several others.) 

 
 we may arrive at a unification, but note that the impetus was simultaneously (if not 

mainly), getting more constrained tests to learn more 
 
 Combined interval estimates, constrains the values of the parameters, enabling entire 

chunks of theories to be ruled out at a time (i.e., all theories that predict the values of 
the parameter outside the interval estimates).   
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Concluding remarks 
 

In the first part of this paper I considered appeals to simplicity in appraising inductive 
statistical accounts and principles, and denied it was a good guide to avoid too-easy 
confirmations and fits 
 
In the rest, I considered how a desire for simplicity grows out of the desire for constraints 
against too easy inductive inferences 
A general simplicity slogan goes something like this: 
 

If a simpler (method, model, theory) will suffice, then go with it? 
 

(usually there’s an addition, “all else being equal” —but this enables certain 
simplicity positions to be retained. 

Any example I might point to where something else is really operative could be 
dismissed by saying it violates the “all things are equal” requirement. 
 
But then of course the simplicity position is itself maximally complicated (using 
Popper’s notion) 



  46  

 
That appraisals of inferences are altered by the overall error probing capacities of 

tests complicates the account, but in so doing enables it to avoid having to resort to 
familiar appeals to simplicity of other accounts. 

It’s an appeal to well testedness, which gets at what is really at issue, or so I argue 
but severity provides a general desideratum for when selection effects need to be 

taken account of. 
 

The severity intuition: we have good evidence that we are correct about a claim or 
hypothesis just to the extent that we have ruled out the ways we can be wrong in taking 
the claim or hypothesis to be true.   

 
Far from wishing to justify enumerative induction from all observed A’s have been B’s to 
an inference that all or most A’s are B’s in a given population, such a rule would license 
inferences that had not passed severe tests—highly unreliable rule.  	
	
An induction following this pattern is warranted only when the inference has passed a 
severe test	
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The goal of correct understanding, and learning more is not simple (“it will not appeal to 
neatniks”)  

1. But the piecemeal account enjoys the benefits of applicability of “ready to wear and 
easy to check” methods 

2. the goal of attaining a more comprehensive understanding of phenomena  
3. the exploitation of multiple linkages to constrain, cross-check, and subtract out, 

errors—higher severity 
4. It is more difficult to explain things away within these interconnected checks  
5. Enables the capacity to discover a new effect, entity, anomaly 

If a theory says nothing about a phenomenon, its tests generally have no chance of 
discerning how it may be wrong regarding that phenomenon 
(e.g., central dogma of molecular biology did not speak of prions) 
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Simplicity criteria correlate with what’s actually doing the work in knowledge 
promoting—but the correlation is quite imperfect, and when it holds, it is only indirectly 
getting at the problem 
 
It is always a second-hand emotion to what’s responsible for:  

the goals of ensuring and appraising how well-tested claims are, how well methods 
control and avoid error. 
 
 

 
 

 
 
 


