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Abstract. This paper concerns the extent to which propositional reasoning can
track probabilistic reasoning, which addresses kinematic problems that extend the
familiar Lottery paradox. An acceptance rule (Leitgeb 2010) assigns to each Bayesian
credal state p a propositional belief revision method Bp, which specifies an initial
belief state Bp(⊤), that is revised into the new propositional belief state B(E) upon
receipt of information E. The acceptance rule tracks Bayesian conditioning when
Bp(E) = Bp|E (⊤), for every E such that p(E) > 0; namely, when acceptance by
propositional belief revision equals Bayesian conditioning followed by acceptance.
Standard proposals for acceptance and belief revision do not track Bayesian condi-
tioning. The “Lockean” rule that accepts propositions above a probability threshold
is subject to the familiar lottery paradox (Kyburg 1961), and we show that it is also
subject to new and more stubborn paradoxes when the tracking property is taken
into account. Moreover, we show that the familiar AGM approach to belief revision
(Harper 1975 and Alchourrn, Grdenfors, and Makinson 1985) cannot be realized
in a sensible way by an acceptance rule that tracks Bayesian conditioning. Finally,
we present a plausible, alternative approach that tracks Bayesian conditioning and
avoids all of the paradoxes. It combines an odds-based acceptance rule proposed
originally by Levi (1996) with a non-AGM belief revision method proposed originally
by Shoham (1987). As an application, the Lottery paradox turns out to receive a
new solution motivated by dynamic concerns.

Keywords: Uncertain acceptance, Lottery paradox, Belief revision, Bayesian con-
ditioning, Gettier problem

1. An Old Riddle of Uncertain Acceptance

There are two widespread practices for modeling the doxastic state of
a subject—as a probability measure over propositions or as a single
proposition corresponding to the conjunction of all propositions the
subject believes. One straightforward way to relate propositional belief
to probabilistic belief is to accept only propositions of probability one.
However, that skeptical approach severely restricts the scope and prac-
tical relevance of propositional reasoning, so it is natural to seek a more
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liberal standard for acceptance. One natural idea, called the Lockean
rule in honor of John Locke, who proposed something like it, is to
accept all and only the logical consequences of the set of all sufficiently
probable propositions, whose probabilities are no less than some fixed
threshold t strictly less than one.

Alas, however the threshold for acceptance is set, the Lockean rule
leads to acceptance of inconsistency, a difficulty known as the lottery
paradox (Kyburg 1961). Suppose that the threshold is 2/3. Now con-
sider a fair lottery with 3 tickets. Then the degree of belief that a given
ticket loses is 2/3, so it is accepted that each ticket loses. That entails
that no ticket wins. Furthermore, with probability one some ticket
wins, so that proposition is also accepted. Then, the conjunction of the
accepted propositions is contradictory. In general, if t is the threshold,
a lottery with more than 1/(1 − t) tickets suffices for acceptance of
inconsistency.

2. Two New Riddles of Uncertain Acceptance

The lottery paradox concerns static consistency. But there is also the
kinematic question of how to revise one’s propositional belief state
in light of new evidence or suppositions. Probabilistic reasoning has
its own, familiar revision method, namely, Bayesian conditioning. Mis-
matches between propositional belief revision and Bayesian condition-
ing are another potential source of conundrums for uncertain accep-
tance. Unlike the lottery paradox, these riddles cannot be avoided by
the expedient of raising the probabilistic standard for acceptance to a
sufficiently high level short of full belief.

For the first riddle, suppose that there are three tickets and consider
the Lockean acceptance rule with threshold 3/4, at which the lottery
paradox is easily avoided. Suppose further that the lottery is not fair:
ticket 1 wins with probability 1/2 and tickets 2 and 3 win with prob-
ability 1/4. Then it is just above the threshold that ticket 2 loses and
that ticket 3 loses, which entails that ticket 1 wins. Now entertain the
new information that ticket 3 has been removed from the lottery, so it
cannot win. Since ruling out a competing ticket seems only to provide
further evidence that ticket 1 will win, it is strange to then retract
one’s belief that ticket 1 wins. But the Lockean rule does just that. By
Bayesian conditioning, the probability that ticket 3 wins is reset to 0
and the odds between tickets 1 and 2 remain 2:1, so the probability that
ticket 1 wins is 2/3. Therefore, it is no longer accepted that ticket 1
wins, since that proposition is neither sufficiently probable by itself nor
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entailed by a set of sufficiently probable propositions, where sufficient
probability means probability no less than 3/4.

It is important to recognize that the first riddle is geometrical rather
than logical (figure 1). LetH1 be the proposition that ticket 1 wins, and
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Figure 1. the first riddle

similarly for H2, H3. The space of all probability distributions over the
three tickets consists of a triangle in the Euclidean plane whose corners
have coordinates (1, 0, 0), (0, 1, 0), and (0, 0, 1), which are the extremal
distributions that concentrate all probability on a single ticket. The
assumed distribution p over tickets then corresponds to the point p =
(1/2, 1/4, 1/4) in the triangle. The conditional distribution p|¬H3 =
p(·|¬H3) is the point (2/3, 1/3, 0), which lies on a ray through p that
originates from corner 3, holding the odds H1 : H2 constant. Each
zone in the triangle is labeled with the strongest proposition accepted
at the probability measures inside. The acceptance zone for H1 is a
parallel-sided diamond that results from the intersection of the above-
threshold zones for ¬H2 and ¬H3, since it is assumed that the accepted
propositions are closed under conjunction. The rule leaves the inner
triangle as the acceptance zone for the tautology ⊤. The riddle can
now be seen to result from the simple, geometrical fact that p lies near
the point of the diamond, which is so skinny that conditioning carries p
outside of the diamond. If the bottom of the diamond were more blunt,
to match the slope of the conditioning ray, then the paradox would not
arise.

The riddle can be summarized by saying that the Lockean rule fails
to satisfy the following, diachronic principle for acceptance: accepted
beliefs are not to be retracted when their logical consequences are
learned. Assuming that accepted propositions are closed under entail-
ment, let Bp denote the strongest proposition accepted in probabilistic
credal state p. So H is accepted at p if and only if Bp |= H. Then the
principle may be stated succinctly as follows, where p|E denotes the
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conditional distribution p(·|E):

Bp |= H and H |= E =⇒ Bp|E |= H. (1)

Philosophers of science speak of hypothetico-deductivism as the view
that observing a logical consequence of a theory provides evidence in
favor of the theory. Since it would be strange to retract a theory in
light of new, positive evidence, we refer to the proposed principle as
Hypothetico-deductive Monotonicity.

One Lockean response to the preceding riddle is to adopt a higher
threshold for disjunctions than for conjunctions (figure 2) so that the
acceptance zone for H1 is closed under conditioning on ¬H3. But now
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Figure 2. second riddle

a different and, in a sense, complementary riddle emerges. For suppose
that the credal state is p, just inside the zone for accepting that either
ticket 1 or 2 will win and close to, but outside of the zone for accepting
that ticket 1 will win. Now, the rule accepts that ticket 2 loses no matter
whether one learns that ticket 3 wins (i.e. p moves to p|H3) or leans its
negation (i.e. p moves to p|¬H3), but fails to accept that ticket 2 loses
until one actually learns what happens with ticket 3. That violates the
following principle:1

Bp|E |= H and Bp|¬E
|= H =⇒ Bp |= H, (2)

1 The principle is analogous in spirit to the reflection principle (van Fraassen
1984), which, in this context, might be expressed by saying that if you know that
you will accept a proposition regardless what you learn, you should accept it already.
Also, a non-conglomerable probability measure has the feature that some B is less
probable than it is conditional on each Hi. Schervish, Seidenfeld, and Kadane (1984)
show that every finitely additive measure is non-conglomerable in some partition. In
that case, any sensible acceptance rule would fail to satisfy reasoning by cases. Some
experts advocate finitely additive probabilities and others view non-conglomerability
as a paradoxical feature. For us, acceptance is relative to a partition (question), a
topic we discuss in detail in Lin and Kelly (forthcoming), so non-conglomerability
does not necessarily arise in the given partition.
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which we call Case Reasoning.
The two new riddles add up to one big riddle: there is, in fact, no ad

hoc manipulation of distinct thresholds for distinct propositions that
avoids both riddles.2 The first riddle picks up where the second riddle
leaves off and there are even thresholds that generate both riddles at
once. Unlike the lottery paradox, which must increase the number of
tickets as the Lockean threshold is raised, one of the two new riddles
obtains for every possible combination of thresholds, as long as there
are at least three tickets and the thresholds have values less than one.
So although it may be tempting to address the lottery paradox by
raising the thresholds in response to the number of tickets, even that
possibility is ruled out by the new riddles. All of the Lockean rules have
the wrong shape.

3. The Propositional Space of Reasons

Part of what is jarring about the riddles is that they undermine one
of the most plausible motives for considering acceptance at all: rea-
soning directly with propositions, without having to constantly consult
the underlying probabilities. In the first riddle, observed logical conse-
quences H result in rejection of H. In the second riddle, propositional
reasoning by cases fails so that, for example, one could not rely on logic
to justify policy (e.g., the policy achieves the desired objective in any
case). Although one accepts propositions, the riddles witness that one
has not really entered into a purely propositional “space of reasons”
(Sellars 1956). The accepted propositions are mere, epiphenomenal
shadows cast by the underlying probabilities, which evolve according
to their own, more fundamental rules. Full entry into a propositional
space of reasons demands a tighter relationship between acceptance
and probabilistic conditioning.

The riddles would be resolved by an improved acceptance rule that
allows one to enter the propositional system, kick away the underlying
probabilities, and still end up exactly where a Bayesian conditionalizer
would end up—i.e., by an acceptance rule that realizes a pre-established
harmony between propositional and probabilistic reasoning. The real-
ization of such a perfect harmony, without peeking at the underlying
probabilities, is far more challenging than merely to avoid acceptance
of mutually inconsistent propositions. This ideal will be shown to be
impossible to achieve if one insists on employing the popular AGM ap-
proach to propositional belief revision. Then, with a distinct approach

2 The claim is a special case of theorem 3 in Lin and Kelly (forthcoming).
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to belief revision, we exhibit a broad collection of rules that do achieve
perfect harmony with Bayesian conditioning.

4. Questions, Answers, and Credal States

Let Q = {Hi : i ∈ I} be a countable collection of mutually ex-
clusive and exhaustive propositions, representing a question to which
H1, . . . ,Hi, . . . are the (complete) answers. Let A be the set of all
complete and incomplete answers to Q, i.e. the σ-algebra containing
Q. Let P denote the set of all countably additive probability measures
on A, which will be referred to as credal states. In the three-ticket
lottery, for example, Q = {H1,H2,H3}, Hi says that ticket i wins, and
P is the triangle (simplex) of probability distributions over the three
answers.

5. Belief Revision

A belief state is just a deductively closed set of propositions; but for the
sake of convenience, in this paper we always identity a belief state with
the strongest proposition in it. A belief revision method is a mapping
B : A → A, understood as specifying the initial belief state B(⊤),
which would evolve into new belief state B(E) upon revision on infor-
mation E.3 Hypothetico-deductive Monotonicity, for example, can now
be stated in terms of belief revision, rather than in terms of Bayesian
conditioning:4

B(⊤) |= H and H |= E =⇒ B(E) |= H. (3)

Case Reasoning has a similar statement:5

B(E) |= H and B(¬E) |= H =⇒ B(⊤) |= H. (4)

3 Readers more familiar with the belief revision operator notation ∗ (Alchourrn,
Grdenfors, and Makinson 1985) may employ the translation rule: B(⊤) ∗E = B(E).
Note that B(⊤) is understood as the initial belief state rather than revision on the
tautology.

4 Hypothetico-deductive Monotonicity is strictly weaker than the principle
called Cautious Monotonicity in the nonmonotonic logic literature: B(X) |=
Y and B(X) |= Z =⇒ B(X ∧ Z) |= Y .

5 Case Reasoning is an instance of the principle called Or in the nonmonotonic
logic literature: B(X) |= Z and B(Y ) |= Z =⇒ B(X ∨ Y ) |= Z.
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6. When Belief Revision Tracks Bayesian Conditioning

A credal state represents not only one’s degrees of belief but also how
they should be updated according to the Bayesian ideal. So the quali-
tative counterpart of a credal state should be an initial belief state plus
a qualitative strategy for revising it. Accordingly, define an acceptance
rule to be a mapping that assigns to each credal state p a belief revision
method Bp, which should be written as (Bp : p ∈ P) but will be
abbreviated as B by abusing notation. (Think of B as a mapping B( · )
that sends p to Bp.) Note that Bp(⊤) is the initial belief state that the
subject accepts at credal state p; accordingly, say that proposition H
is accepted by rule B at credal state p if and only if Bp(⊤) |= X.6

Each revision allows for a choice between two possible courses of
action, starting at credal state p. According to the first course of
action, the subject accepts propositional belief state Bp(⊤) and then
propositionally revises it to obtain the new propositional belief state
Bp(E) (i.e., the left-lower path in figure 3). According to the second

p p E

Bp(E) Bp  (T)
E

=

Bayesian conditioning

Bp(T)

belief revision

acceptance acceptance

Figure 3. Belief revision tracks Bayesian conditioning

course of action, she first conditions p to obtain the posterior credal
state p|E and then accepts Bp|E (⊤) (i.e., the upper-right path in figure
3). According to the pre-established harmony, the two processes should

6 The following, conditional acceptance Ramsey tests translates our framework
into notation familiar in the logic of epistemic conditionals:

p 
 E ⇒ H ⇐⇒ Bp(E) |= H; (5)

E |∼ p H ⇐⇒ Bp(E) |= H. (6)

We are indebted to Hannes Leitgeb for the idea of framing our discussion in terms of
acceptance of belief revision methods, at the Opening Celebration of the Center for
Formal Epistemology at Carnegie Mellon University. Our own approach (Lin and
Kelly (forthcoming)), prior to seeing his work, was to formulate the issues in terms
of conditional epistemic logic, via a probabilistic Ramsey test, which involves more
cumbersome notation and an irrelevant commitment to an epistemic interpretation
of conditionals.
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always agree (i.e., the diagram should always commute). Accordingly,
say that acceptance rule B tracks conditioning if and only if:

Bp(E) = Bp|E (⊤), (7)

for each credal state p and proposition E such that p(E) > 0. In short,
acceptance followed by belief revision equals Bayesian conditioning
followed by acceptance.

7. Accretive Belief Revision

It remains to specify what would count as a propositional approach to
belief revision that does not essentially peek at probabilities to decide
what to do. An obvious and popular idea is simply to conjoin new
information with one’s old beliefs to obtain new beliefs, as long as no
contradiction results. This idea is usually separated into two parts: say
that belief revision method B satisfies Inclusion if and only if:7

B(⊤) ∧ E |= B(E); (8)

say that method B satisfies Preservation if and only if:

B(⊤) is consistent with E =⇒ B(E) |= B(⊤) ∧ E. (9)

These axioms are widely understood to be the least controversial ax-
ioms in the much-discussed AGM theory of belief revision, due to
Harper (1975) and Alchourrn, Grdenfors, and Makinson (1985). A be-
lief revision method is accretive if and only if it satisfies both Inclusion
and Preservation. An acceptance rule is accretive if and only if each
belief revision method Bp it assigns is accretive.

8. Sensible, Tracking Acceptance Cannot Be Accretive

Accretion sounds plausible enough when beliefs are certain, but it is
not very intuitive when beliefs are accepted at probabilities less than 1.
For example, suppose that we have two friends—Nogot and Havit—and
we know for sure that at most one owns a Ford. Question: who owns
a Ford? Three potential answers: “Nogot” vs. “Havit” vs. “nobody”
(figure 4). Now, Nogot shows us car keys and his driver’s license and
Havit does nothing, so we think that it is pretty probable that Nogot

7 Inclusion is equivalent to Case Reasoning, assuming the axiom called Success:
B(E) |= E.
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nobody

Nogot Havit

p Nogot

somebody

Figure 4. How Preservation may fail plausibly

has a Ford (i.e., credal state p is close to the corner for “Nogot”). Given
the evidence we have, suppose that we want to be more judicious, only
accepting the disjunction of “Nogot” with another answer. Suppose,
further, that “Havit” is a bit more probable than “nobody” (i.e., credal
state p is a bit closer to the “Havit” corner than to the “nobody”
corner). So the strongest proposition we accept is the disjunction of
“Nogot” with “Havit”, namely “somebody” (i.e., credal state p falls in
the acceptance zone for “somebody”). Unfortunately, Nogot was only
pretending to own a Ford. Suppose that now we learn the negation of
“Nogot”. What would we accept then? Note that the new information
“¬Nogot” undermines the main reason (i.e., “Nogot”) for accepting the
old belief state “somebody”, in spite of that fact that the new informa-
tion is compatible with the old belief state. So it seems plausible to drop
the old belief in the new belief state, namely, to violate the Preservation
axiom in this case. That intuition agrees with Bayesian conditioning:
the posterior credal state p|¬Nogot is almost half way between the two
unrefuted answers, so it is plausible for the new belief state to be neutral
between the two unrefuted answers.

If it is further stipulated that Havit actually owns a Ford, then we
obtain Lehrer’s (1965) no-false-lemma variant of Gettier’s case (1963).
At credal state p, we have justified, true, disjunctive belief that someone
owns a Ford, which falls short of knowledge because the disjunctive
belief’s reason relies so essentially on a false disjunct that, if the false
disjunct were become doubtful, the disjunctive belief would be re-
tracted. Any adequate theory of rational belief should be able to model
this paradigmatic situation and, thus, should violate the Preservation
axiom.

The preceding intuitions are vindicated by the following no-go the-
orem. First, we define some properties that a sensible acceptance rule
should have. To begin with, we exclude skeptical acceptance rules that
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accept complete answers to Q at almost no credal state. This is less an
axiom of rationality than a delineation of the topic under discussion,
which is uncertain acceptance. Say that acceptance rule B is non-
skeptical if and only if each answer to Q is accepted over some open
neighborhood of credal states in P. The idea is that the open neighbor-
hood over which Hi is accepted should surround the credal state hi that
assigns probability 1 toHi, but it is not necessary to assume that much.
In a similar spirit, we exclude the extremely gullible or opinionated rules
that accept complete answers to Q at almost every credal state. Say
that B is non-opinionated if and only if there is some open subset of P
over which some incomplete, disjunctive answer is accepted. Say that B
is consistent if and only if the inconsistent proposition ⊥ is accepted at
no credal state. Say that B is corner-monotone if and only if acceptance
of complete answer Hi at p implies acceptance of Hi at each point on
the straight line segment from p to the corner hi of the simplex at
which Hi has probability one.8 Aside from the intuitive merits of these
properties, all proposed acceptance rules we are aware of satisfy them.
When all four properties are satisfied by an acceptance rule, the rule is
said to be sensible. Then we have:

THEOREM 1 (no-go theorem for accretive acceptance). Let ques-
tion Q have at least three answers. Then no sensible acceptance rule
that tracks conditioning is accretive.

Since AGM belief revision is accretive by definition, we also have:

COROLLARY 1 (no-go theorem for AGM acceptance). Let ques-
tion Q have at least three answers. Then no sensible acceptance rule
that tracks conditioning is AGM.

The theorem extends the preceding, informal misgivings about the
Preservation property discussed above. One might attempt to force
accretive belief revision to track Bayesian conditioning by never ac-
cepting what one would fail to accept after conditioning on compatible
evidence, assuming that acceptance is sensible. But that comes with a
high price: the acceptance rule will then fail to track conditioning,9 and
the resulting theory will be unable to handle the no-false-lemma Gettier
cases, which should be handled by any adequate theory of rational
beliefs.

8 Analytically, the straight line segment between two probability measures p, q in
P is the set of all probability measures of form ap+ (1− a)q, where a is in the unit
interval [0, 1].

9 An implementation of this idea has been presented by Leitgeb (2010). Leitgeb
is careful to point out that only one side of the the tracking property is satisfied by
his rule.
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9. The Importance of Odds

From the no-go theorems, it is clear that any sensible rule that tracks
conditioning must violate either Inclusion or Preservation. Another
good bet, in light of the preceding discussion, is that any sensible
rule that tracks Bayesian conditioning must pay attention to the odds
between competing answers. Recall how Preservation fails at credal
state p in figure 4, which we reproduce in figure 5. If, instead, one is
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Figure 5. Line of constant odds

in credal state q, then one has a stable or robust reason for accepting
H2 ∨ H3 in the sense that each of the disjuncts has significantly high
odds to the rejected alternative H1, so Preservation holds. That intu-
ition agrees with Bayesian conditioning. Since Bayesian conditioning
preserves odds, H3 continues to have significantly high odds to H1 at
the posterior credal state, where H3 is indeed accepted. In general, the
constant odds line depicted in figure 5 represents the odds threshold
between H1 and H3 that determines whether Preservation holds or fails
under new information ¬H2.

We recommend, therefore, that the proper way to relax Preservation
is to base acceptance on odds thresholds.

10. An Odds-Based Acceptance Rule

We now present an acceptance rule based on odds thresholds that
illustrates how to sensibly track Bayesian conditioning (and to solve
the two new riddles) by violating the counter-intuitive Preservation
property. The particular rule discussed in this section motivates our
general proposal.

Recall that an acceptance rule assigns a qualitative belief revision
rule Bp to each Bayesian credal state p. Our proposed acceptance rule

FEW2011-tracking-rev2.tex; 27/02/2012; 18:19; p.11



12

assigns belief revision rules of a particular form, proposed by Yoav
Shoham (1987). On Shoham’s approach, one begins with a well-founded
strict partial order ≺ over some (not necessarily all) answers to Q that
is interpreted as a plausibility ordering, where Hi ≺ Hj means that
Hi is strictly more plausible than Hj with respect to order ≺.10 Each
plausibility order ≺ induces a belief revision method B≺ as follows:
given information E, let B≺(E) be the disjunction of all most plausible
answers to Q with respect to ≺ that are logically compatible with
E. Namely, we first restrict ≺ to the answers that are compatible
with new information E to obtain new plausibility order ≺ |E , and
then disjoin all most plausible answers therein to obtain new belief
state (see figure 7.b for an example). Shoham revision always satisfies
axiom Hypothetico-deductive Monotonicity, Case Reasoning, and In-
clusion (Kraus, Lehmann, and Magidor 1990). But Shoham revision
may violate the Preservation axiom, as shown in figure 7.b. To obtain
an acceptance rule B, it suffices to assign to each credal state p a
plausibility order ≺p, which determines belief revision method Bp by:

Bp = B≺p . (10)

In light of the earlier discussion, it should come as little surprise that we
define ≺p in terms of odds.11 In particular, let t be a constant greater
than 0 and define:

Hi ≺p Hj ⇐⇒ p(Hi)

p(Hj)
> t, (11)

for all i, j such that p(Hi), p(Hj) > 0. For t = 3, the proposed accep-
tance rule can be visualized geometrically as follows. The locus of credal
states at which p(H1)/p(H2) = 3 is a line segment that originates at h3
and intersects the line segment from h1 to h3, as depicted in figure 6.a.
To determine whether H1 ≺p H2, simply check whether p is above or
below that line segment. Follow the same construction for each pair of
answers. Figure 6.a depicts some of the plausibility rankings assigned
to various regions of the simplex of Bayesian credal states.

To see that the proposed rule is sensible, recall that the initial belief
state Bp(⊤) at p is the disjunction of the most plausible answers in ≺p.
So the zone for accepting a belief state is bounded by the constant odds
lines, as depicted in figure 6.b.12 From the figure, it is evident that the
rule is sensible.

10 A strict partial order ≺ is said to be well-founded if and only if it has no infinite
descending chain, or equivalently, every subset of the order has a least element.

11 In comparison, Shoham (1987) does not explicate relative plausibility in terms
of any probabilistic notions.

12 The rule so defined was originally proposed by Isaac Levi (1996: 286), who
mentions and rejects it for want of a decision-theoretic justification.
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Figure 6. A rule based on odds thresholds

To see that the proposed rule tracks conditioning, take the credal
state p depicted in figure 7 for example, with new information E =
H1 ∨H3. To show that Bp(E) = Bp|E (⊤), by the definition of Shoham
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Figure 7. How the rule tracks conditioning

revision it suffices to take the plausibility order at p, restrict to infor-
mation H1 ∨H3, and check that the resulting order (figure 7.b) equals
the plausibility order at the posterior credal state p|(H1∨H3) (figure
7.a). Such equality is no accident: the relative plausibility between H1

and H3 at both credal states—prior and posterior—is defined by the
same odds threshold, and conditioning on H1∨H3 always preserves the
odds between H1 and H3. So the proposed rule tracks conditioning due
to a simple principle of design: define relative plausibility by quantities
preserved under conditioning. That principle falls far short of “peeking”
at the underlying probabilities at each qualitative revision. After the
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partial order ≺p is constructed, p can be ignored through any number
of qualitative revisions.

Furthermore, the proposed rule avoids the two new riddles (i.e., it
satisfies Hypothetico-deductive Monotonicity (3) and Case Reasoning
(4)). That can be verified by drawing lines of conditioning on figure
6.b, as we did on figures 1 and 2. Although this rule avoids the riddles
because it exemplifies the general proposition 2 stated below, a simple
line-drawing verification illustrates the geometric reason why no rid-
dle occurs: the boundaries of the acceptance zones follow the lines of
conditioning.

The Preservation axiom (9) is violated (figure 8), for reasons similar
to those discussed in the preceding section (figure 5). Preservation is
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Figure 8. Preservation and odds

violated at p when ¬H2 is learned, because acceptance of H2 ∨ H3

depends mainly on H2, as described above. In contrast, the acceptance
of H2∨H3 at q is robust in the sense that each of the disjuncts is signifi-
cantly more plausible than the rejected alternative H1, so Preservation
does hold at q. Indeed, the distinction between the two cases, p and
q, is an intuitive one that any theory of propositional belief should
be capable of drawing. For q cannot play a role that p can: modeling
Lehrer’s Gettier case without false lemmas (compare figure 5 with figure
4).

11. Shoham-driven Acceptance Rules

The ideas and examples in the preceding section anticipate the follow-
ing theory.
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An assignment of plausibility orders is a mapping that assigns to
each credal state p a plausibility order ≺p defined on the set {Hi ∈
Q : p(Hi) > 0} of nonzero-probability answers, which we abbreviate
as ≺ by abusing notation in the way we abuse B. (Think of ≺ as
a mapping ≺( · ) that sends p to ≺p). An acceptance rule B is called
Shoham-driven if and only if it is generated by some assignment ≺
of plausibility orders in the sense of equation (10). Note that in the
case of Shoham-driven rules, propositional belief revision is defined in
terms of qualitative, plausibility orders and logical compatibility. So
belief revision based on Shoham revision does seem to define an inde-
pendent, propositional “space of reasons” that is not directly parasitic
on probabilistic reasoning.

The example developed in the preceding section can be expressed
algebraically as follows, where the question has countably many an-
swers. Let the plausibility order ≺p assigned to p be defined by odds
threshold 3:

Hi ≺p Hj ⇐⇒ p(Hi)/p(Hj) > 3. (12)

Let assignment ≺ of plausibility orders drive acceptance rule B. Then
B is sensible and tracks conditioning, due to proposition 4 below. The
initial belief state Bp(⊤) at p can be expressed by:

Bp(⊤) =
∧{

¬Hi :
p(Hi)

maxk p(Hk)
<

1

3

}
, (13)

which is a special case of proposition 4 below. Equation (13) says that
answer Hi is to be rejected if and only if the odds of it to the most
probable alternative is “too low”.

Shoham-driven rules suffice to guard against the old riddle of accep-
tance:

PROPOSITION 1 (no Lottery paradox). Each Shoham-driven ac-
ceptance rule is consistent.

To guard against all riddles—old and new—it suffices to require, fur-
ther, that the rules track conditioning:

PROPOSITION 2 (riddle-free acceptance). Each Shoham-driven ac-
ceptance rule that tracks conditioning is consistent and satisfies Hypothetico-
deductive Monotonicity (3) and Case Reasoning (4).

Furthermore:
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THEOREM 2. Suppose that acceptance rule B tracks conditioning and
is Shoham-driven—say, by assignment ≺ of plausibility orders. Then
for each credal state p and each proposition E such that p(E) > 0, it
is the case that:

≺p |E = ≺p|E , (14)

B≺p|E = B≺p|E
. (15)

p p E

p  
E

Bayesian conditioning

Shoham revision

=|Ep p

Shoham revision

=|Ep
B

p
B B

p  
E

Figure 9. Shoham revision commutes with Bayesian conditioning

That is, Bayesian conditioning on E followed by assignment of a plausi-
bility order to p|E (the upper-right path in figure 9) leads to exactly the
same result as assigning a plausibility order to p and Shoham revising
that order on E (the left-lower path in figure 9).

12. Shoham-Driven Acceptance Based on Odds

It is no accident that every Shoham-driven rule we have examined so
far is somehow based on odds, as established by the main theorem of
this section.

The assignment (12) of plausibility orders and the associated assign-
ment (13) of belief states have a single, uniform threshold. The rules
can be generalized by allowing each answer to have its own threshold.
Let (ti : i ∈ I) be an assignment of odds thresholds ti to answers Hi.
Say that assignment ≺ of plausibility orders is based on assignment
(ti : i ∈ I) of odds thresholds if and only if:

Hi ≺p Hj ⇐⇒ p(Hi)/p(Hj) > tj . (16)
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Say that acceptance rule B is an odds threshold rule based on (ti : i ∈ I)
if and only if the initial belief state Bp(⊤) at p is given by:

Bp(⊤) =
∧{

¬Hi :
p(Hi)

maxk p(Hk)
<

1

ti

}
, (17)

for all p in P. Still more general rules can be obtained by associat-
ing weights to answers that correspond to their relative content (Levi
1967)—e.g., quantum mechanics has more content than the catch-call
hypothesis “anything else”. Let (wi : i ∈ I) be an assignment of weights
wi to answers Hi. Say that assignment ≺ of plausibility orders is based
on assignment (ti : i ∈ I) of odds thresholds and assignment (wi : i ∈ I)
of weights if and only if:

Hi ≺p Hj ⇐⇒ wi p(Hi)/wj p(Hj) > tj . (18)

The range of ti and wi should be restricted appropriately:

PROPOSITION 3. Suppose that that 1 < ti < ∞ for all i in I, and
that 0 < wi ≤ 1 for all i in I. Then for each p in P, the relation ≺p

defined by formula (18) is a plausibility order.

Say that B is a weighted odds threshold rule based on (ti : i ∈ I) and
(wi : i ∈ I) if and only if the unrevised belief state Bp(⊤) is given by:

Bp(⊤) =
∧{

¬Hi :
wi p(Hi)

maxk wk p(Hk)
<

1

ti

}
, (19)

for all p in P. When all weights wi are equal, order (18) and belief state
(19) are reduced to order (16) and belief state (17). Then we have:

PROPOSITION 4 (sufficient condition for being sensible and tracking conditioning).
Continuing proposition 3, suppose that acceptance rule B is driven
by the assignment of plausibility orders based on (ti : i ∈ I) and
(wi : i ∈ I). Then:

1. B is a weighted odds threshold rule based on (ti : i ∈ I) and (wi :
i ∈ I).

2. B is sensible.

3. B tracks conditioning.

So a Shoham-driven rule can easily be sensible and conditioning-tracking
(and thus riddle-free, by proposition 2): it suffices that the plausibility
orders encode information about odds and weights in the sense defined
above.
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Here is the next and final level of generality. The weights in formula
(18) can be absorbed into odds without loss of generality:

Hi ≺p Hj ⇐⇒ wip(Hi)/wjp(Hj) > tj , (20)

⇐⇒ p(Hi)/p(Hj) > tj(wj/wi), (21)

So we can equivalently work with double-indexed odds thresholds tij
defined by:

tij = tj(wj/wi), (22)

where i ̸= j. Now, allow double-indexed odds thresholds tij that are
not factorizable into single-indexed thresholds and weights by equation
(22); also allow double-indexed inequalities, which can be strict or weak.
This generalization enables us to express every Shoham-driven, corner-
monotone rules that tracks conditioning.

Specifically, an assignment t of double-indexed odds thresholds is of
the form:

t = (tij : i, j ∈ I and i ̸= j), (23)

where each threshold tij is in closed interval [0,∞]. An assignment �
of double-indexed inequalities is of the form:

� = (�ij : i, j ∈ I and i ̸= j), (24)

where each inequality �ij is either strict > or weak ≥. Say that assign-
ment ≺ of plausibility orders is based on t and � if and only if each
plausibility order ≺p is expressed by:

Hi ≺p Hj ⇐⇒ p(Hi)/p(Hj) �ij tij . (25)

When an assignment ≺ of plausibility orders can be expressed in that
way, say that it is odds-based; when an acceptance rule is driven by
such assignment of plausibility orders, say again that it is odds-based.

THEOREM 3 (representation of Shoham-driven rules). A Shoham-
driven acceptance rule is corner-monotone and tracks conditioning if
and only if it is odds-based.

13. Conclusion

It is impossible for accretive (and thus AGM) belief revision to track
Bayesian conditioning perfectly, on pain of failing to be sensible (theo-
rem 1). But dynamic consonance is feasible: just adopt Shoham revision
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and an acceptance rule with the right geometry. When Shoham revi-
sion tracks Bayesian conditioning, acceptance of uncertain propositions
must be based on the odds between competing alternatives (theorem
3). The resulting rules for uncertain acceptance solve the riddles, old
and new (propositions 1 and 2). In particular, that approach solves the
Lottery paradox.
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Appendix

A. Proof of Theorem 1

To prove theorem theorem 1, suppose that rule B is consistent, corner-
monotone, accretive (i.e. satisfies axioms Inclusion and Preservation),
and tracks conditioning. Suppose further that B is not skeptical. It
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suffices to show that B is opinionated, which we prove by the follow-
ing series of lemmas. Let Hi,Hj be distinct answers to Q. Choose an
arbitrary, third answer Hm to Q (since Q is assumed to have at least
three answers). Let hi be the credal state in which Hi has probability 1,
and similarly for hj and hm. Let △hihjhm denote the two dimensional
space {p ∈ P : p(Hi) + p(Hj) + p(Hm) = 1} (figure 10.a). Let hi hm
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Figure 10. Why every accretive rule that tracks conditioning fails to be sensible

denote the one-dimensional subspace {p ∈ P : p(Hi)+p(Hj) = 1}, and
similarly for hi hj and hj hm. Let Lim be the set of the credal states on
line segment hi hm at which Hi is accepted by B as strongest; namely:

Lim = {p ∈ hi hm : Bp = Hi}.

LEMMA 1. Lim is a connected line segment of nonzero length that
contains hi but does not contain hm.

Proof. By non-skepticism, there exists open subset O of P over which
B accepts Hi as strongest. Let O

′ be the image {o|Hi∨Hm : o ∈ O} of O
under conditioning on Hi ∨Hm. Since O is open, O′ is an open subset
of hi hm. Note that the conditioning proposition Hi ∨Hm is consistent
with the prior belief state Hi, so Preservation applies. Since B satisfies
Preservation and tracks conditioning, B accepts old belief Hi over O

′. It
follows that B accepts Hi as strongest over O

′, because B is consistent
and the only proposition strictly strongest than Hi in the algebra is
the inconsistent proposition ⊥. So Lim is nonempty. Then, since B
is corner-monotone, Lim is a nonempty, connected line segment that
contains hi. It remains to show that Lim does not contain hm. Suppose
for reductio that Lim contains hm, then Lim must be so large that it is
identical to hi hm, by corner-monotonicity. By the same argument for
showing that there is an open subset O′ of hi hm over which B accepts
Hi, we have that there is an open subset O′′ of hi hm over which B
accepts Hm. So B accepts both Hm and Hi over O′′, and hence by
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closure under conjunction, B accepts their conjunction, which is an
inconsistent proposition. So B is not consistent—contradiction.

Let a be the endpoint of Lim that is closest to hm; namely, proba-
bility measure a is such that:

a ∈ hi hm,

a(Hm) = sup{p(Hm) : p ∈ Lim}.

By the lemma we just proved, point a lies in the interior of side hi hm.
Applying the above argument for pair (i,m) to pair (j,m), we have
that the set Ljm, defined by

Ljm = {p ∈ hj hm : Bp = Hj},

is a connected line segment of nonzero length that contains hj but does
not contain hm, with endpoint b that lies in the interior of side hj hm.
Since both points a, b lie in the interiors of their respective sides, we
have the following constructions. Let A be the line that connects a to
hj , B be the line that connects b to hi, and C be the line that connects
hm through the intersection d of A and B, to point c on side hi hj .

LEMMA 2. B accepts Hi as strongest over the interior of △adhi.
Proof. Consider an arbitrary point p in the interior of △adhi (figure

10.b). Argue as follows that B accepts Hi ∨Hj at p. Take p as a prior
state and consider ¬Hj as the conditioning information. Note that
credal state p|¬Hj falls inside Lim, so B accepts Hi as strongest at
the posterior credal state p|¬Hj . Then, since B tracks conditioning and
satisfies Inclusion, we have that:

Bp ∧ ¬Hj |= Hi

(namely the posterior belief state Hi is entailed by the conjunction of
the the prior belief state and the conditioning information). Then, by
the consistency of B and the mutual exclusion among the answers, we
have only three possibilities for Bp:

Bp is either Hi, or Hj , or Hi ∨Hj .

Rule out the last two alternatives as follows. Suppose for reductio that
the prior belief state Bp is Hj or Hi ∨Hj . Consider ¬Hi as the condi-
tioning information, which is consistent with the prior belief state and
thus makes Preservation applicable. Then, since B tracks conditioning
and satisfies Preservation, the posterior belief state Bp|¬Hi

must entail

Bp∧¬Hi (i.e. the conjunction of the prior belief state and the informa-
tion). But the latter proposition Bp ∧ ¬Hi equals Hj , by the reductio
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hypothesis. So Bp|¬Hi
= Hj , by the consistency of B. Hence p|¬Hi lies

on line segment Ljm by the construction of Ljm—but that is impossible
(figure 10.b). Ruling out the last two alternatives for Bp, we conclude
that Bp = Hi.

LEMMA 3. B accepts Hi as strongest over the interior of hi c.
Proof. Let p be an arbitrary interior point of △ adhi. So Bp = Hi.

Consider proposition Hi ∨ Hj as the conditioning information. Then,
since B tracks conditioning and satisfies Preservation, the posterior
belief state Bp|Hi∨Hj

entails Bp ∧ (Hi ∨ Hj) (i.e. the conjunction of

the prior belief state and the information), which equals Hi. Then, by
consistency, the posterior belief state is determined:

Bp|Hi∨Hj
= Hi.

Let q be an arbitrary point in the interior of hi c. Then q can be
expressed as q = p|Hi∨Hj for some point p in the interior of △ adhi
(figure 10.c). So, by the formula we just proved, Bq = Bp|Hi∨Hj

= Hi,

as required.

LEMMA 4. There is no open subset of hi hj over which B accepts
Hi ∨Hj as strongest.

Proof. We have established in the last lemma that B accepts Hi as
strongest over the interior of hi c. By the same argument, B accepts
Hj as strongest over the interior of hj c (figure 10.c). So if B accepts
disjunction Hi ∨ Hj as strongest somewhere on hi hj , B does so at
some of the three points: hi, hj , and c. (We can rule out the first two
alternatives; but the for the sake of the lemma, this result suffices.)

Since the choice of Hi andHj is arbitrary, the last lemma generalizes
to the following:

LEMMA 5. For each pair of distinct answers Hi,Hj to Q, there is no
open subset of hi hj over which B accepts Hi ∨Hj as strongest.

The last lemma establishes opinionation for all edges of the simplex.
The next step is to extend opinionation to the whole simplex.

LEMMA 6. For each disjunction D of at least two distinct answers to
the question, there is no open subset of P over which B accepts D as
strongest.
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Proof. Suppose for reductio that some disjunction Hi∨Hj ∨X of at
least two distinct answers is accepted by B as strongest over some open
subset O of P. Take Hi∨Hj∨X as the prior belief state at each point in
O and consider Hi ∨Hj as the conditioning information. So the image
O′ (= {p|Hi∨Hj : p ∈ O}) of O under conditioning on Hi∨Hj is an open

subset of 1-dimensional space hi hj . Let p
′ be an arbitrary point in O′.

Since B tracks conditioning and satisfies Inclusion, posterior belief state
Bp′ is entailed by (Hi ∨Hj ∨X)∧ (Hi ∨Hj) (i.e. the conjunction of the
prior state and the new information), which equals Hi ∨ Hj . But Bp′

also entails Hi∨Hj , for otherwise the process of conditioning p′ on ¬Hj

to obtain hi would violate the fact that B tracks conditioning, satisfies
Inclusion, and accepts Hi at hi. So Bp′ = Hi ∨ Hj . Hence B accepts

Hi ∨ Hj as strongest over open subset O′ of hi hj , which contradicts
the last lemma.

Proof. [Proof of Theorem 1] Since the last lemma states that B is
opinionated, we are done.

B. Proof of Theorem 2

Proof. [Proof of Theorem 2] The domains of ≺p|E and ≺p|E coincide,
because each plausibility order ≺q is defined on the set of the answers
to E that have nonzero probability with respect to q. Let Hi and Hj be
arbitrary distinct answers in the (common) domain. Since both answers
are in the domain of ≺p|E , we have that p(Hi|E) > 0, p(Hj |E) > 0.
Since both answers are in ≺p,E , we have that Hi ∨ Hj entails E. It
follows that p|(Hi∨Hj) = p|E∧(Hi∨Hj), where both terms are defined.
Then it suffices to show that Hi ≺p|E Hj if and only if Hi≺p|EHj , as
follows:

Hi ≺p|E Hj

⇐⇒ Bp|E (Hi ∨Hj) = Hi by being Shoham-driven;
⇐⇒ Bp|(E∧(Hi∨Hj))

(⊤) = Hi by tracking conditioning;

⇐⇒ Bp|(Hi∨Hj)
(⊤) = Hi since p|(Hi∨Hj) = p|E∧(Hi∨Hj);

⇐⇒ Bp(Hi ∨Hj) = Hi by tracking conditioning;
⇐⇒ Hi≺p|(Hi∨Hj)Hj by being Shoham-driven;

⇐⇒ Hi≺p|EHj since Hi ∨Hj entails E.

So ≺p |E =≺p|E . Hence, B≺p|E = B≺p|E
.
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C. Proof of Theorem 3

Proof. [Proof of the Right-to-Left Side of Theorem 3] Let B be driven
by an odds-based assignment (≺p: p ∈ P) of plausibility orders. Then,
a fortiori, B is Shoham-driven. That B is corner-monotone follows from
routine, algebraic verification. To see that B tracks conditioning (i.e.
that Bp(E) = Bp|E (⊤)), since B is Shoham-driven, it suffices to show
that an answer is most plausible in ≺p|E if and only if it is most
plausible in ≺p|E , which follows from the odds-based definition of ≺p

and preservation of odds by Bayesian conditioning.

Proof. [Proof of the Left-to-Right Side of Theorem 3] Suppose that B
is corner-monotone, tracks conditioning, and is Shoham-driven, namely
driven by assignment (≺p: p ∈ P) of plausibility orders. It suffices to
show that (≺p: p ∈ P) is odds-based. For each pair of distinct indexes
i, j in I, define odds threshold tij ∈ [0,∞] and inequality �ij ∈ {>,≥}
by:

Oddsij = {q(Hi)/q(Hj) : q ∈ P, q(Hi) + q(Hj) = 1, and Hi ≺q Hj} ;(26)

tij = inf Oddsij ; (27)

�ij =

{
≥ if tij ∈ Oddsij ,
> otherwise.

(28)

By corner-monotonicity, Oddsij is closed upward, namely that s ∈
Oddsij and s < s′ implies that s′ ∈ Oddsij . So for each q in P such
that q(Hi) + q(Hj) = 1,

Hi ≺q Hj ⇐⇒ q(Hi)/q(Hj) �ij tij . (29)

It remains to check that for each credal state p and pair of distinct
answers Hi and Hj in the domain of ≺p (i.e. p(Hi) > 0 and p(Hj) > 0),
equation (25) holds with respect to odds thresholds (27) and inequali-
ties (28):

Hi ≺p Hj ⇐⇒ p(Hi)/p(Hj) �ij tij . (30)

Note that p(Hi ∨ Hj) = p(Hi) + p(Hj) > 0, so p|(Hi∨Hj) is defined.
Then:

Hi ≺p Hj

⇐⇒ Hi ≺p |(Hi∨Hj)Hj

⇐⇒ Hi ≺p|(Hi∨Hj)
Hj by theorem 2;

⇐⇒ Hi ≺q Hj by defining q as p|(Hi∨Hj);

⇐⇒ q(Hi)/q(Hj) �ij tij by (29);
⇐⇒ p(Hi)/p(Hj) �ij tij since q = p|(Hi∨Hj).
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D. Proof of Propositions 1-4

Proof. [Proof of Proposition 1] Consistency follows from the well-foundedness
of a plausibility order.

Proof. [Proof of Proposition 2] Consistency follows as an immediate
consequence of proposition 1. So it suffices to show, for each p, that
the relation Bp|E (⊤) |= H between E and H satisfies Hypothetico-
deductive Monotonicity (3) and Case Reasoning (4). That relation
is equivalent to relation Bp(E) |= H between E and H (by tracking
conditioning). Since B is Shoham-driven, the latter relation is defined
by the plausibility order ≺p assigned to p, which is a special case
of the so-called preferential models that validate nonmonotonic logic
system P (Kraus, Lehmann, and Magidor 1990). Then it suffices to
note that system P entails Hypothetico-deductive Monotonicity (as a
consequence of axiom Cautious Monotonicity) and Case Reasoning (as
a consequence of axiom Or).

Proof. [Proof of Proposition 3] To show that ≺p is transitive, sup-
pose that Hi ≺p Hj and Hj ≺p Hk. So wip(Hi)/wjp(Hj) > tj and
wjp(Hj)/wkp(Hk) > tk. Hence wip(Hi)/wkp(Hk) > tjtk. But odds
threshold tj is assumed to be greater than 1, so wip(Hi)/wkp(Hk) > tk.
So Hi ≺p Hk, which establishes transitivity. Irreflexivity follows from
the fact that wip(Hi)/wip(Hi) = 1 ̸> ti, by the assumption that ti > 1.
Asymmetry follows from the fact that if wip(Hi)/wjp(Hj) > tj > 1,
then wjp(Hj)/wip(Hi) is less than 1 and thus fails to be greater than
ti. To establish well-foundedness, suppose for reductio that ≺p is not
well-founded. Then ≺p has an infinite descending chain Hi ≻p Hj ≻p

Hk ≻p . . .. Since ti > 1 for all i in I, we have that wip(Hi) <
wjp(Hj) < wkp(Hk) < . . .. So the sum is unbounded. But each weight is
assumed to be no more than 1, so the sum of (unweighted) probabilities
p(Hi) + p(Hj) + p(Hk) + . . . is also unbounded—which contradicts the
fact that p is a probability measure.

Proof. [Proof of Proposition 4] Part 1, that B is a weighted odds
threshold rule, is established as follows:

Bp(⊤) =
∨

{Hj ∈ Q : Hj is most plausible in ≺p} (31)

=
∨

{Hj ∈ Q : max
k

wkp(Hk)/wjp(Hj) ̸> tj} (32)

=
∧

{¬Hi ∈ Q : max
k

wkp(Hk)/wip(Hi) > ti} (33)

=
∧{

¬Hi ∈ Q :
wi p(Hi)

maxk wk p(Hk)
<

1

ti

}
. (34)
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For part 2, that the rule is sensible, note that the parameters are
assumed to be restricted as follows: 1 < ti < ∞ and 0 < wi ≤ 1 for all
i in I. Then the rule is consistent, because for each credal state p, the
rule does not reject the answer Hk in Q that maximizes wk p(Hk). The
rule is corner-monotone, because when the rule acceptsHk at p, moving
p toward corner hi only makes Hk have higher odds to all the other
answers and hence the rule continues to accept Hk. To see that the rule
is non-skeptical, here is a recipe for constructing, for each answer Hk,
an open set of credal states over hk (i.e. the credal state at which Hk

has unit probability). For each answer Hi distinct from Hk, Hi has zero
probability at hk, and thus the condition for rejecting Hi in formula
(34) is satisfied. Then, by the upper bound on odds thresholds ti and
the strict inequality in formula (34), each of the rejection conditions
for Hi, where i ̸= k, continues to hold over an open neighborhood
O of hk. So the rule accepts Hk over O. To establish that the rule is
non-opinionated, it suffices to show that one particular disjunction, say
H1 ∨H2, is accepted over an open neighborhood. Consider the credal
state p such that w1 p(H1) = w2 p(H2) > 0 and p(Hi) = 0 for all
i ̸= 1, 2. Then, by formula (34) and the lower bound on thresholds
ti, the rule accepts H1 ∨ H2 at p. By the lower bound on thresholds
ti, again, we can find an open neighborhood of p over which the rule
accepts H1 ∨ H2. So the rule is sensible, by having the above four
properties. Part 3, that the rule tracks conditioning, is a special case
of the left-to-right side of theorem 3.
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