Low-Communication Distributed Optimization via E. Coli Swarm Foraging

Shashank Singh ¹ Saket Navlakha ² Ziv Bar-Joseph ¹

2nd Workshop on Biological Distributed Algorithms

October 12, 2014

¹Carnegie Mellon University, Pittsburgh, PA, USA
²Salk Institute for Biological Studies, La Jolla, CA, USA
Differences from Insect Foraging

<table>
<thead>
<tr>
<th>Insect Colonies</th>
<th>Bacteria Swarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>agents move food to colony</td>
<td>swarm moves to food</td>
</tr>
<tr>
<td>fixed pheromone trails</td>
<td>diffusing protein signals</td>
</tr>
<tr>
<td>nurses, foragers, queen, etc.</td>
<td>identical cells</td>
</tr>
<tr>
<td>complex navigation abilities</td>
<td>no navigation ability</td>
</tr>
</tbody>
</table>
Bacteria Swarm Foraging

- Food source which diffuses with density $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ throughout solution
- Obstacles
- Bacteria swarms (typically 1-4 swarms of 20-50 agents each)
Several nodes each want to maximize the same objective function:

$$\max_{x \in S \subseteq \mathbb{R}^d} f(x).$$

- can evaluate f, but don't know its form
Several nodes each want to maximize the same objective function:

$$\max_{x \in S \subseteq \mathbb{R}^d} f(x).$$

- can evaluate f, but don’t know its form
- S and f typically non-convex
 - Can have small local maxima
Several nodes each want to maximize the same objective function:

$$\max_{x \in S \subseteq \mathbb{R}^d} f(x).$$

- can evaluate f, but don’t know its form
- S and f typically non-convex
 - Can have small local maxima
- Individual nodes computationally weak
Several nodes each want to maximize the same objective function:

$$\max_{x \in S \subseteq \mathbb{R}^d} f(x).$$

- can evaluate f, but don’t know its form
- S and f typically non-convex
 - Can have small local maxima
- Individual nodes computationally weak
- Nodes can broadcast (small) messages to nearby nodes
Individual Movement (Tumbling)

Each iteration, each agent perturbs its direction based on previous change in food density:

\[
\delta = f(x_t, y_t) - f(x_{t-1}, y_{t-1})
\]

\[
\theta \rightarrow \theta + \varepsilon, \quad \text{where} \quad \varepsilon \sim \mathcal{N}(0, \sigma^2),
\]

\[
\sigma \propto \max\{0, 1 - \delta\}.
\]
Individual Movement (Tumbling)

This works, but very inefficiently:
Basic Swarm Movement (Shklarsh et al., 2011)

On each iteration, each agent combines its (perturbed) velocity with the influence of the swarm

\[v_{i,t+1} = w_v R_v v_{i,t} + \begin{cases}
 w_r r_{i,t} & \text{if any neighbors are too close} \\
 w_a a_{i,t} + w_\omega \omega_{i,t} & \text{else}
\end{cases} \]
Avoid collisions and spread out to cover area

\[r_{i,t} = \sum_{x_{j,t} \in B_{RR}(x_{i})} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|}. \]
Basic Swarm Movement (Attraction)

Stay together as a group

\[a_{i,t} = \sum_{x_{j,t} \in B_{RA}(x_i) \setminus B_{RO}(x_i)} \frac{X_{j,t} - X_{i,t}}{\|X_{j,t} - X_{i,t}\|} \].

\(a_{i,t} \) represents the attraction force acting on agent \(i \) at time \(t \), calculated as the sum of the attraction forces from all other agents \(j \) that are within the attraction range but not within the repulsion range of \(i \).
Basic Swarm Movement (Orientation)

Move similarly to your neighbors

\[
\omega_{i,t} = \sum_{x_j,t \in B_{RO}(x_i)} \frac{V_{j,t}}{\|v_{j,t}\|}.
\]

Accelerates swarm when the correct direction is clear
Helps "smooth" interactions by preventing collisions.
Basic Swarm Movement (Orientation)

Move similarly to your neighbors

\[\omega_{i,t} = \sum_{x_j,t \in B_{RO}(x_i)} \frac{V_{j,t}}{\|V_{j,t}\|}. \]

- Accelerates swarm when the correct direction is clear
Basic Swarm Movement (Orientation)

Move similarly to your neighbors

\[\omega_{i,t} = \sum_{x_{j,t} \in B_{RO}(x_i)} \frac{V_{j,t}}{||V_{j,t}||} \]

- Accelerates swarm when the correct direction is clear
- Helps “smooth” interactions by preventing collisions.
Basic Swarm Movement (Shklarsh et al.)

Again,

\[v_{i,t+1} = w_v R_{ɛ_v} v_{i,t} + \begin{cases}
 w_r r_{i,t} & \text{if any neighbors are too close} \\
 w_a a_{i,t} + w_ω ω_{i,t} & \text{else}
\end{cases} \]
The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.
The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.

\[a_{i,t} = \sum_{x_j,t \in B_{RA}(x_i) \setminus B_{RO}(x_i)} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|} \quad \text{and} \quad \omega_{i,t} = \sum_{x_j,t \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|} \]

- Messages can be continuous (e.g., floats)
The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.

\[a_{i,t} = \sum_{x_{j,t} \in B_{RA}(x_i) \setminus B_{RO}(x_i)} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|} \quad \text{and} \quad \omega_{i,t} = \sum_{x_{j,t} \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|} \]

- Messages can be continuous (e.g., floats)
 - Real bacteria send protein signals of only a few bits
The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.

\[a_{i,t} = \sum_{x_j, t \in B_{RA}(x_i) \setminus B_{RO}(x_i)} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|} \quad \text{and} \quad \omega_{i,t} = \sum_{x_j, t \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|} \]

- Messages can be continuous (e.g., floats)
 - Real bacteria send protein signals of only a few bits
- Receiver’s measurements can be arbitrarily large
The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.

\[a_{i,t} = \sum_{x_j,t \in B_{RA}(x_i) \setminus B_{RO}(x_i)} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|} \quad \text{and} \quad \omega_{i,t} = \sum_{x_j,t \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|} \]

- Messages can be continuous (e.g., floats)
 - Real bacteria send protein signals of only a few bits
- Receiver’s measurements can be arbitrarily large
 - Real bacteria distinguish only a few levels
Introduce a thresholding discretization function:

- For $T > 0$, $L \in \mathbb{N}$, $\|D_{L,T}(x)\| = \min\{ T, \left\lfloor \frac{L \|x\|}{L} \right\rfloor \}$.
- Approximate vectors by cardinal vectors to discretize direction.
The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction (repulsion is ok).

- Agents can identify message senders (dedicated channels)
 - Requires $\log(n)$ extra bits per message
 - Swarm can be dynamic
 - Real bacteria broadcast to their neighbors
The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction (repulsion is ok).

- Agents can identify message senders (dedicated channels)
 - Requires $\log(n)$ extra bits per message
 - Swarm can be dynamic
 - Real bacteria broadcast to their neighbors
- Ability to communicate is unaffected by distance
Distance Weighting

- Broadcast messages, but weight communication by distance
- Messages decay exponentially with distance:
 \[w_a(x) = \exp(-c_a x), \quad w_\omega(x) = \exp(-c_\omega x) \quad (c_\omega > c_a) \]
Efficient Communication Model

- Discretize after weighting:

\[a_{i,t} = \sum_{j=1}^{n} D_{L,T} \left(w_a(\|x_j - x_i\|) \left(\frac{x_j - x_i}{\|x_j - x_i\|} \right) \right) \]

\[\omega_{i,t} = \sum_{j=1}^{n} D_{L,T} \left(w_a(\|v_j,t\|) \left(\frac{v_j}{\|v_j\|} \right) \right) \]

Recall

\[v_{i,t+1} = w_v v_{i,t} + \begin{cases} w_r r_{i,t} & \text{if any neighbors are too close} \\ w_a a_{i,t} + w_\omega \omega_{i,t} & \text{else} \end{cases} \]
Experimental Results

Path Length
Help if you’re making progress, get help if you’re stuck
- weight current velocity based on performance

Modified model:

\[v_t = w(\delta) \cdot v_{t-1} + (1 - w(\delta))u, \]

where \(w \) is increases with \(\delta = f(x_t, y_t) - f(x_{t-1}, y_{t-1}). \)
Silent Agents

- Broadcasting messages takes energy
- Many messages are redundant
- Under scarce resources, may not want to help competition
Silent Agents

- broadcasting messages takes energy
- many messages are redundant
- under scarce resources, may not want to help competition

Modified model: For some $p_s \in [0, 1]$, each agent is silent with probability p_s.
Experimental Results: Silent Agents

Very few agents actually need to communicate!
Summary

- Primitive bacteria solve computationally challenging problems collectively.
- Swarm communication is helpful even under highly restricted communication:
 - Agents need only broadcast a few bits.
 - Signals only need to travel short distances.
 - Only some agents need to communicate.
Future Work

- Consider competition (finite food sources)
- Multiple food sources/mixed objectives
 - Agents can have different preferences
- Compare to biological model
 - Can identify genes responsible for communication?
 - How is orientation really communicated?
- Theory
 - Convergence rates
 - Lower bounds
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Old Model</th>
<th>New Model</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adaptive Listening
Silent Agents

Thanks!

Simulation code is available on GitHub.