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1 IntroductionLet S be a set of axis-parallel rectangles, such that for any pair a; b 2 S ofrectangles, the interval de�ned by projecting a on an axis does not include theinterval de�ned by projecting b on the same axis. If the two intervals intersect,then we say that a and b are conicting. A set S of rectangles is independentif no pair of rectangles in S is conicting. We consider the following decisionproblem.Independent subset of rectangles (IR)Input: A set S of axis-parallel rectangles and an integer k.Problem: Does there exist a subset S0 � S, such that S 0 is independent andjS0j > k.The extension of the problem when the rectangles are weighted is immediate.This problem is motivated by an application in molecular biology in whichrectangles correspond to regions of high local similarity, and the problem is to�nd a large number of such regions that are independent. We show that IRis NP-complete, and therefore, one must look for heuristics with a provablygood performance.In order to exploit the structure in the problem, we construct a conict graphfrom the given set of rectangles. Each node in the graph corresponds to arectangle in the set and every two conicting rectangles have an edge betweenthem in the conict graph. The IR problem can be phrased as the maximumindependent set problem for the conict graph. While the maximum indepen-dent set problem in arbitrary graphs is well known to be notoriously hard toapproximate [1], we use the structure of the graphs arising from our problemto provide good approximation algorithms. De�ne a d-claw as the graph K1;d,i.e., a star with d leaves. A graph is d-clawfree if it has no induced d-claw. Akey property that we use in devising our approximation algorithms and ana-lyzing them is that a conict graph of non-overlapping axis-parallel rectanglesis 5-clawfree. A simple consequence of 5-clawfree property of the conict graphis that a greedy algorithm that picks a node of maximum weight to add to thesolution and continues by deleting the picked node and its neighborhood hasa performance ratio of 4.We consider a simple local improvement heuristic, t-opt, for the problem pa-rameterized by the size, t, of the improvement. We shall describe it informallyhere for the unweighted problem. Begin with an arbitrary maximal indepen-dent set I in the graph. If there is an improvement that involves swapping atmost t nodes into I, then we perform such an improvement. In other words, ifthere is an independent set A of at most t nodes in V �I whose neighborhoodin I has size less than that of A, then this set may be added and its neigh-2



borhood deleted from I. This results in a net increase in the size of I. Thelocal improvement algorithm performs such t-improvements as long as theyare available. It is not hard to argue that this algorithm runs in polynomialtime for any �xed t. Halld�orsson [7] has shown that the t-opt heuristic whenapplied to a d+1-clawfree graph achieves a performance ratio of d2 + � for any�xed � > 0 and in fact � decreases exponentially in t. In Section 4, we providea simple construction that shows that the performance ratio of d2 is the bestpossible for the heuristic.The local improvement heuristic can be extended in a natural way to weightedgraphs. An independent set A of size at most t provides a t-improvement ifthe total weight of its neighborhood in I is less than the weight of A. Whenall the weights are polynomially bounded, the local improvement algorithmruns in polynomial time. We show the following result improving the trivialperformance ratio of d for the local improvement heuristic.Let I be a locally optimal independent set for d-opt, that is, let I be such thatno independent set of size d or less provides a d + 1-improvement. Let I� bethe optimal independent set in a node-weighted d + 1-clawfree graph. For asubset S of nodes, let w(S) denote the sum of the weights of the nodes in S.Then, we show that w(I�) � (d� 1 + 1d)w(I).Note that in the biological example that motivated this research, d = 4, andthe above theorem shows a performance bound of 3:25 implying an 18% im-provement in the worst-case quality of the output solution. Though the im-provement is modest, we also demonstrate that the bound is almost bestpossible for the local improvement heuristic that we analyze.The class of d-clawfree graphs includes two other important classes of graphs:graphs with degree at most d and unit disk graphs. The latter is the family ofintersection graphs of unit disks in the plane and can be shown to be 6-clawfreeby a simple geometric argument. Thus our results provide a tight analysis ofthe local heuristic for the weighted independent set problem in these classesof graphs. Note that there has also been work on obtaining better ratios forthe unweighted independent set problem in bounded degree graphs [2].In Section 2, we describe in more detail how the IR problem arises in theapplication to molecular biology. In Section 3, we present the NP-hardnessproof of Theorem 1. In Section 4, we sketch the basic local improvementalgorithm for the unweighted (uniform) case. We then extend the heuristicto the weighted case and present an analysis of the same. We generalize theanalysis to arbitrary clawfree graphs and show its tightness. Finally, in Section5, we conclude with open issues. 3



2 MotivationA fundamental problem that arises in the analysis of genetic sequences isto assess the similarity between two such sequences. Traditional notions ofsimilarity have suggested aligning the sequences to reect globally [13] orlocally [14] similar regions in the string. A global alignment arranges the twostrings with spaces inserted within them, so that the characters are organizedin columns and most columns contain identical or similar characters in bothstrings. Such alignments tend to reect similar regions between the two stringsthat have remained conserved over the evolutionary process of point mutationsthat has led to the divergence between the two sequences.Recent studies on genome rearrangements [4,5,9,11,12,10] have addressed thenotion of distances between sequences under more large-scale mutational oper-ations. An example is a \reversal" that works on a large contiguous block of agenomic sequence and reverses the order of certain \markers" in the fragment.Another macro-mutational operation is a transposition that transfers a blockof sequence to another position. These rearrangements have been postulatedand con�rmed to occur in the evolutionary history between several existingspecies [8]. The body of work mentioned above addresses the computation of aminimal set of such rearrangement operations to transform an initial sequenceA to a �nal sequence B. The input to such a procedure is a set of disjointfragments that occur in both the strings, their relative order and orientationin the two strings. When these fragments code for some genetic information,they are termed genes and what is being supplied in this case is the gene orderand orientation in the two strings for a set of common genes. Thus what isrequired is a set of fragments which remain highly conserved in both strings(the orientation may be reversed in the two strings), such that the similaritybetween the two copies of a fragment is appreciable and a large number of suchfragments are available for investigation of genome rearrangements. Moreover,no two fragments selected for comparison must overlap in either string, sincerearrangements work on segments of the string and therefore cannot separateoverlapping fragments.The problem of selecting fragments of high local similarity between two stringscan be tackled by applying one of several known methods for local alignment[14] in the literature. The output of such a method is a set of pairs of substringsfrom A and B that have high local similarity. However, the projection of thesepairs in the two strings may not be disjoint as required. It is useful to picturethese regions of local similarity as axis-parallel rectangles in the plane wherethe axes are the two strings A and B being compared. A pair of substringsof high local similarity identi�es the rectangle formed by the intersection ofthe horizontal and vertical slabs corresponding to these substrings in A andB. The rectangle may be weighted with the strength of the local similarity.4



The resulting problem is to �nd a maximum-weight set of rectangles whoseprojections are disjoint in both the axes. This leads to the IR problem intro-duced earlier. The non-enclosing condition on the projections of the rectanglestranslates to disallowing similarity pairs in which a substring in one pair iscompletely contained in that of the other pair. This is a reasonable assumptionfor data from sequences because the input data can be pruned to eliminatesimilarities that disobey this requirement.3 NP-completeness of IR: Proof of Theorem 1Theorem 1 IR is NP-complete.Proof. IR is trivially in the class NP . We shall show NP-hardness by trans-forming from 3SAT.
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Fig. 1. A cycle gadget and a clause gadget for m = 2.Let U be an instance of 3SAT with m clauses c1; : : : ; cm and n variables.For each variable x, de�ne a cycle gadget as follows (see Fig. 1(a)). The cyclegadget has exactly 2m rectangles arranged in a cycle so that only conictingpairs are the ones that appear consecutively in the cycle. Label the rectanglesin the cycle gadget for x as xj; �xj, for 1 � j � m. The following lemma isimmediate:Proposition 1 A cycle gadget with 2m rectangles has a maximum indepen-dent subset of size m. Further, there are only two such subsets of maximumsize, either the set of all x0js or the set of all �x0js.For each clause cj, 1 � j � m, we de�ne a clause gadget as set of threerectangles (see Fig. 1(b)), one for each literal in the clause, that are pairwiseconicting. If literal x appears in clause cj, label the corresponding rectanglein the clause gadget as cx;j. Finally, place all the rectangles on the plane as5



follows (see Fig. 2): A pair (a; b) of rectangles conicts only if one of thefollowing conditions is true.{ a; b belong to the same clause.{ a; b are adjacent rectangles in a cycle gadget, i.e. a = xj and b = �xj orb = �xj�1.{ a = cx;j and b = �xj.
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Variables ClausesFig. 2. An instance of 3SAT with n = 3; m = 2 and U = (�x + y + �z)(�x + �y + z),transformed to an instance of IRFigure 2 gives a layout for the case n = 3;m = 2 and U = (�x+y+�z)(�x+�y+z).Therefore, we have transformed an instance U of 3SAT to an instance S ofIR, such that jSj = 2mn+ 3m.Proposition 2 U 2 3SAT if and only if there exists an independent subsetS0 � S such that jS 0j � mn+m.Proof. Let U 2 3SAT be satis�able. For any variable x that is TRUE in avalid truth assignment, pick all the rectangles xj for 1 � j � m, otherwisepick �xj and for all 1 � j � m. Clearly, m rectangles are picked from eachof the n cycle gadgets, and they are independent. For each clause cj, there isat least one literal x 2 cj that is TRUE. By construction, rectangle cx;j onlyconicts with other rectangles in the same clause gadget and with �xj, noneof which has been selected. Therefore, one rectangle from each of the clausegadgets can be picked for a total of mn+m rectangles.6



Correspondingly, let S0 � S be non-conicting and jS0j � mn + m. Now,each cycle gadget can contribute at most m rectangles and each clause cancontribute at most 1 rectangle to an independent set. Therefore, in order toget mn+m rectangles each cycle gadget must supply m and each clause mustsupply 1 rectangle. We consider the following truth assignment. For each clausegadget, if the rectangle chosen is cx;j, then set x to be TRUE. Clearly, eachclause has at least one TRUE literal, and we only need to ensure that bothx and �x are not set to TRUE. Suppose that was the case, implying that forsome 1 � j; j 0 � m, cx;j and c�x;j0 were selected. Then, in the cycle gadget ofx, neither �xj nor xj0 can be selected. By proposition 1, this cycle gadget doesnot supply m independent rectangles. 2Theorem 1 follows. 24 Approximating independent sets in clawfree graphsWe begin with some formal de�nitions.De�nition 1(i) Consider a set S of axis-parallel rectangles. Each rectangle may be iden-ti�ed by a pair of intervals (Ix; Iy) de�ning its projections on the twoaxes. Rectangle b overlaps rectangle a if one of its intervals contains aninterval of a. S is non-overlapping if no rectangle overlaps another. Tworectangles b and a conict if at least one of their intervals intersect.(ii) De�ne the conict graph GS(V;E) of a set S of axis-parallel rectanglesas follows: each rectangle corresponds to a vertex v 2 V , and (v;w) 2 Ei� a and b are conicting. In the following, we will drop the subscript Swhen the context is clear. For X � V , let G(X) be the graph induced bythe vertices in X.(iii) Let w : V ! R+ be the weight function on rectangles. For X � V ,w(X) = Px2X w(x).(iv) For a graph G = (V;E), de�ne the neighborhood of a vertex in v 2 Vas N(v) = fx 2 V j(v; x) 2 Eg. For X � V , N(X) = [x2XN(x). Also,de�ne N i(x) = N(N i�1(x)) for i > 0 and N0(x) = fxg. In the followingdiscussion, the graph that we refer to will either be clear from the contextor will be explicitly de�ned.As we observed earlier, the problem of �nding an independent set of rectanglesis that of �nding a maximum weighted independent set in the correspondingconict graph. In order to provide good approximate solutions, we make thefollowing observation. 7



Lemma 1 A conict graph of non-overlapping axis-parallel rectangles is 5-clawfree.Proof. (by contradiction): Assume the statement is not true. There is anindependent set of 5 rectangles, all conicting with one rectangle s. Let s bede�ned by the interval pair ((x1; x2); (y1; y2)). Each rectangle that conictswith but is not overlapped by s must intersect at least one of the four linesx = x1, x = x2, y = y1 and y = y2. Assuming 5 such rectangles, one of thesepoints must be contained in two of these rectangles. These two rectanglesconict, a contradiction. 2Consider the problem of �nding a maximum weight independent set in a d +1-clawfree graph. One simple heuristic is the greedy one: Add a vertex ofmaximum weight to the current independent set I, discard all its neighborsand continue. This greedy heuristic performs quite well.Lemma 2 Let I� be a maximum weighted independent set in a d+1-clawfreegraph G, and I be an independent set selected by the greedy heuristic. Thenw(I�) � d � w(I).Proof. The proof is straightforward and hence omitted. 2In the following discussion, we shall attempt to �nd better algorithms for�nding maximum weighted independent sets in d + 1 clawfree graphs. Evenconstant factor improvements are desirable, especially when d is small (Notethat it is 4 in our application). Speci�cally, we will focus on a natural heuris-tic, which is based on iteratively improving the solution through some localchanges. This heuristic for computing maximum weight independent sets ind+ 1-clawfree graphs is described in �gure 3.Note that this algorithm runs in polynomial time if the weights are uniformor if they are polynomial functions of n.Let us assume for the moment that all rectangles have the same weight. ByTheorem 1, the problem remains NP -hard. Halld�orsson [7] has shown thatt-opt, when applied to a d + 1-clawfree graph, achieves a performance ratioof d2 + � for any �xed � > 0. It is interesting to note that his analysis usesonly a restricted form of improvements that he calls t-ear-improvements. Wepresent below a simple construction that shows that the performance ratio ofd2 is the best possible for the local improvement heuristic. To this end, we use8



Procedure t-opt(I)beginI  maximal-independent-set (I)while 9 independent set A � V � I, jAj � tand w(A) > w(N(A) \ I)I  ILAendwhilereturn Iend; Fig. 3. A local improvement algorithm for node weighted graphsthe following result of Erd�os and Sachs, which can be found in [3]. Recall thatthe girth of a graph G is the length of the smallest cycle in G.Lemma 3 Given positive integers d and g, for all n su�ciently large, thereexist d-regular graphs on 2n vertices with girth at least g.Theorem 2 For all positive integers d and t, there exist d+1-claw free graphswith an independent set I, where I is locally optimal with respect to t-opt butjI�j � d2 jIj.Proof. By Lemma 3, we have a d-regular graph G = (V;E) on n verticeswith girth t (for all su�ciently large even n). Construct a new graph G0 onvertex set V [ E, and connect vertices x; y in G0 if x 2 V , y 2 E and y isincident on x in G. Intuitively, this corresponds to subdividing every edge inG by addition of a new vertex of degree 2. Clearly, G0 is bipartite and d + 1-clawfree. Also, the girth of G0 is at least 2t. Let I = V and I� = E. Sincethe minimum degree of a vertex in G0 is 2, the girth condition implies thatevery subset of E of size at most t has a neighborhood of size at least t+1 inV . Hence, the independent set I is optimal with respect to t-opt. Noting thatjI�j = jEj = d2 jV j = d2 jIj completes the proof. 2Weighted Independent SetsWe now turn to analyze the performance of t-opt for weighted d+ 1-clawfreegraphs and show that its performance is provably inferior to the performancefor the unweighted case, even when the weights are a polynomial function ofn. We also provide matching upper bounds. The following lemma provides asimple upper bound of d and motivates the detailed analysis that follows.9



Lemma 4 Let I be a locally optimal solution for 1-opt in a d + 1-clawfreegraph. Then if I� is the optimal solution,w(I�) � d � w(I)Proof. Assume without loss of generality that I and I� are disjoint, as anon trivial intersection of I and I� improves the performance. Consider thebipartite graph G(I [ I�). By local optimality, we know that for all v 2 V � I(in particular, for all v 2 I�), w(v) � w(N(v)), where N(v) refers to theneighborhood of v in G(I [ I�). Therefore,w(I�) = Pv2I� w(v) � Pv2I� Pu2N(v)w(u)= Pu2IPv2N(u)w(u) � d � w(I)2Next, we show that the performance of t-opt improves somewhat as we increaset. While the improvement is somewhat modest, it might still be useful for smallvalues of d.Let I be a locally optimal independent set for d-opt implying that for allX � V � I, jXj � d, w(X) � w(N(X) \ I). Let d(v) be the degree of v inG(I [ I�). Note that we can without loss of generality, assume that I and I�are disjoint sets. Otherwise, we work with the graph G((I [ I�) � J), whereJ = I \ I�. De�ne I�i = fv 2 I�jd(v) = ig. Clearly, I� is partitioned intoexactly d sets. For v 2 I, let di(v) be the degree of v in G(I [ I�i ).Lemma 5 Let I be a locally optimal independent set for d-opt. For 1 � i � d,let fi(u) = 1 if di(u) > 0 and 0 otherwise. Then,(i) i � w(I�i ) �Pu2I [di(u) � (i� 1) + fi(u)] � w(u); for all i � d(ii) Pdi=1 i � w(I�i ) � Pu2I [(Pdi=1 di(u) � (i� 1)) + 1] � w(u)Proof. Consider the graph G(I [ I�i ), and for each vertex v 2 I [ I�i , let N(u)be its neighborhood in G(I [ I�i ). Observe that G(I [ I�i ) has exactly ijI�i jedges. Therefore,i �w(I�i ) = Pv2I�i Pu2N(v)w(v) = Pu2I w(N(u))Further, any element u 2 I has at most d neighbors, therefore by local optimal-ity for d-opt, w(N(u)) � w(N2(u)) for all u 2 I. Using this and rearrangingterms, we get 10



i � w(I�i )�Xu2I w(N2(u))� Xu2I;di(u)>0(di(u)(i� 1) + 1)w(u)The last equality follows from the fact that for an u 2 I such that di(u) > 0,the number of times this u is counted in the sum is at most di(u)(i� 1) + 1.This proves the �rst proposition. The second follows by a similar argument onthe graph G(I [ I�). 2Next, we prove a technical lemma that we will use to bound the value of w(I�).Lemma 6 For arbitrary integer d > 0, consider the following integer programIP (d) = maxPdi=1 (i�1)�d�di+(d�i)�fiis:t:Pdi=1 di � d8i; fi � di8i; 0 � fi � 18i; di 2 f0; 1; 2; : : : ; dgThen, IP (d) = d(d� 1).Proof. We will prove that the integer program is maximized when di = 1; fi =1 for all i. Clearly, this solution is feasible. Also, observe that any optimalsolution will have the property that Pdi=1 di = d and fi = 1 for all i such thatdi > 0. If this was not true, there would exist some di or fi that could beincremented to increase the value of the objective function. Therefore, it issu�cient to prove that there exists an optimal solution in which di � 1 for alli.Consider an optimal solution in which this is not true, so that di > 1 for somei. Then, as Pi di � d, there exists j such that dj = 0; fj = 0. Then, if wedecrement di by 1, and set dj = 1; fj = 1, it is easy to see that the solutionremains feasible.Now, the objective function is the sum of d terms, where the contribution ofthe ith term is d � di! di +  di � 1! fi 11



Furthermore, the new solution a�ects only the ith and jth terms of this func-tion. The net change is� d � di!+  d� dj!+  dj � 1! =  di � 1!which is non-negative, so the new solution remains optimal. Continuing in thisfashion, we eventually get an optimal solution in which all di � 1. 2We can now state and prove Theorem 3.Theorem 3 Let I be a locally optimal independent set for d-opt, and I� bethe optimal independent set. Then w(I�) � (d � 1 + 1d)w(I).Proof. As the sets I�i partition I�, we have the identityd � w(I�) = dXi=1 i � w(I�i ) + d�1Xi=1(d � i) � w(I�i )Applying the bounds obtained from lemma 5, we getd � w(I�)�Xu2I " dXi=1  di(u) � (i� 1) + (d� i)di(u)(i� 1) + fi(u)i !+ 1# � w(u)=Xu2I " dXi=1  (i� 1) � d � di(u) + (d � i) � fi(u)i !+ 1# �w(u)� (IP (d) + 1) � w(I)where IP (d) is the optimum value of the integer program described in lemma 6.Therefore, w(I�) � (d � 1 + 1d)w(I). 2Next, we show that our analysis is tight, by demonstrating the existence ofclaw-free graphs for which the heuristic cannot achieve a performance betterthan d � 1. First, we present a technical lemma describing the existence ofbipartite graphs with an expansion property. Its proof is implicit in proofs forexistence of expander graphs (see for example, Chung[6]).Lemma 7 For all positive integers d; t, and for all � > 0 there exists an integern, and bipartite graphs with bipartition (I;O) with the following properties.12



{ jIj = jOj = n.{ For all vertices v 2 I [ O, deg(v) � d.{ For all X � O, jXj � t, jN(X)j � (d� 1� �) � jXj.Note that these graphs are di�erent from expander graphs in that the expan-sion is large (close to the maximum degree) but is required only for subsetsof some constant size t. As a consequence of the existence of such graphs, wecan derive Theorem 4. We state and prove it below.Theorem 4 For all positive integers d; t and for all � > 0, there exist d + 1-claw free graphs with an independent set I, such that I is locally optimal withrespect to t-opt but w(I�) � (d� 1� �) � w(I).Proof. Let (I;O) be a bipartite graph with the expansion property describedin lemma 7. Further, for all elements v 2 I, let w(v) = 1, and for all elementsu 2 O, let w(u) = d � 1 � �. By the third condition in Lemma 7, in thegraph (I;O), I is a locally optimal solution with respect to t-opt, and w(O) =(d� 1 � �) � w(I). 25 Concluding RemarksWe conclude by describing many problems that arise naturally from this work.The problem we study is geometric, and we suspect that it might have ap-plications to problems in computational geometry. However, the only relatedwork that we found was a study of intersecting rectangles (for hidden surfaceremoval) which corresponds to the case when both projections intersect. Onthe other side, can geometric techniques be applied to improve the quality ofour solution?Indeed, the only property we have exploited in �nding approximate solutionsis claw-freeness in the associated conict graph. An interesting area of researchis to investigate more properties of conict graphs, and use these propertiesto �nd better algorithms or hardness of approximation results.We have discussed the problem only in the context of pairwise alignments. Itis often the case that k > 2 sequences are aligned, and biologists are interestedin extracting meaningful blocks of locally aligned sequences, which correspondto hypercubes of dimension k. This natural extension to multiple alignmentcomplicates the problem considerably, as the conict graph of a set of k-dimensional cubes is only 2k+1-clawfree. Di�erent ideas are needed to providemeaningful approximations. It is also possible that general graphs are conictgraphs of some higher dimensional cubes, which might imply some hardness13
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