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a b s t r a c t

We consider the Survivable Network Design Problem (SNDP) and the Symmetric Traveling Salesman
Problem (STSP). We give simpler proofs of the existence of a 12 -edge and 1-edge in any extreme point of
the natural LP relaxations for the SNDP and STSP, respectively. We formulate a common generalization
of both problems and show our results by a new counting argument. We also obtain a simpler proof of
the existence of a 12 -edge in any extreme point of the set-pair LP relaxation for the element connectivity
Survivable Network Design Problem (SNDPelt ).
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1. Introduction

We consider two well-studied combinatorial optimization
problems, the Survivable Network Design Problem (SNDP) and
the Symmetric Traveling Salesman Problem (STSP). Given an
undirected graph G = (V , E) and connectivity requirements ruv
for all undirected pairs u, v ∈ V of vertices, a Steiner network
is a subgraph of G in which there are at least ruv edge-disjoint
paths between u and v for all pairs u, v ∈ V . The Survivable Net-
work Design Problem is a general network design problemwhere
we are given an edge-weighted graph G = (V , E) and connec-
tivity requirements

{
ruv | (u, v) ∈

(
V
2

)}
, and the task is to find a

minimum-cost Steiner network.
A Hamiltonian cycle in graph G = (V , E) is a connected

subgraph of G that has degree 2 at every vertex of V . In the
Symmetric Traveling Salesman problem (STSP), we are given an
edge-weighted undirected graph G = (V , E), and the goal is to
compute a minimum-cost Hamiltonian cycle.
Linear programming methods have been successfully used in

solving both these problems in practice [1,8]. Strong theoretical
results have also been obtained by analyzing linear programming
(LP) relaxations for these problems [7,8]. We present a common
generalization of these problems and its natural LP relaxation.
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Using this LP and a newcounting argument,we prove the following
results in Section 2.

Theorem 1.1. Given any extreme point x of the LP relaxation (LPsndp)
for Survivable Network Design, there exists an edge e such that
xe ≥ 1

2 .

Theorem 1.2. Given any extreme point x of the LP relaxation (LPstsp)
for the Symmetric Traveling Salesman, there exists an edge e such
that xe = 1.

Theorem 1.1 was originally proved by Jain [9], and Theorem 1.2 by
Boyd and Pulleyblank [3]. In fact [3] showed that any extremepoint
of the LP relaxation to the STSP has at least three 1-edges.
We also consider the element connectivity Survivable Network

Design Problem (SNDPelt ) in Section 3. This is a well-known
generalization of the usual (edge-connectivity) SNDP, where the
input is an edge-weighted undirected graph G = (V , E), a set
U ⊆ V of terminals, and connectivity requirements ruv for all
undirected pairs u, v ∈ U of terminals. The vertices V \U and edges
E of the graph are called elements. The goal in SNDPelt is to find the
minimum-cost subgraph that contains at least ruv element-disjoint
paths between u and v for every u, v ∈ U . Using the new counting
argument, we provide a shorter proof of the following theorem for
its natural LP relaxation considered in Fleischer et al. [5].

Theorem 1.3. Given any extreme point x of the LP relaxation (LPelt)
for element connectivity Survivable Network Design, there exists
an edge e such that xe ≥ 1

2 .
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This result is originally due to Fleischer et al. [5], where they used
it to obtain a 2-approximation algorithm for SNDPelt . Recently,
Chuzhoy and Khanna [4] gave a very elegant reduction from the
(even more general) vertex-connectivity SNDP to the element-
connectivity SNDP; using this 2-approximation for SNDPelt , they
obtained an O(k3 log n)-approximation algorithm for the vertex-
connectivity SNDP (here k is the maximum requirement and n is
the number of vertices).
Our proofs are based on a new counting argument that involves

distributing fractional tokens. This idea was used earlier in Bansal
et al. [2] for degree-bounded network design problems in directed
graphs, and also appears implicit in the proofs of Gabow et al. [6]
for the k-edge connected subgraph problem.
Notation. For any subset F ⊆ E of edges, the characteristic vector
χ(F) ∈ {0, 1}E (also denoted χF ) contains a 1 corresponding to
each edge e ∈ F , and a 0 otherwise. For any assignment x : E → R+
of non-negative real values to the edges and any subset F ⊆ E, x(F)
denotes the sum

∑
e∈F xe.

2. The STSP and the edge-connectivity SNDP

Given a subset S ⊆ V , let δ(S) = {(u, v) ∈ E | u ∈ S, v 6∈ S}
denote the set of edges with exactly one end-point in S. We also
denote δ({v}) by δ(v). Then, the classical LP relaxation (LPstsp) for
the STSP has the following constraints:

x(δ(S)) ≥ 2 ∀ ∅ ( S ( V (cut constraints)
x(δ(v)) = 2 ∀ v ∈ V (degree constraints)
0 ≤ xe ≤ 1 ∀ e ∈ E.

We now consider the LP relaxation (LPsndp) for the SNDP. A
function f from subsets of V to the integers is called weakly
supermodular if f (V ) = f (∅) = 0 and, for all S, T ⊆ V , one of
the following holds.

f (S)+ f (T ) ≤ f (S ∪ T )+ f (S ∩ T ), or
f (S)+ f (T ) ≤ f (S \ T )+ f (T \ S).

It is easy to see that the function f defined by f (S) = maxu∈S,v 6∈S
ruv for each subset S ⊆ V is weakly supermodular. It can be veri-
fied that the above function encodes the connectivity requirements
{ru,v}. We state the LP relaxation [9] for any network design prob-
lem with weakly supermodular connectivity requirement (which
contains the SNDP as a special case).

x(δ(S)) ≥ f (S) ∀ S ⊆ V (cut constraints)
0 ≤ xe ≤ 1 ∀ e ∈ E.

Now we present the LP relaxation of a generalization of both
the SNDP and the STSP. The input consists of an undirected graph
G = (V , E) with edge-costs c : E → R+, a weakly supermodular
function f : 2V → Z, and a designated subsetW ⊆ V of vertices.
The LP corresponding to this is as follows.

(LP) minimize
∑
e∈E

ce xe

subject to x(δ(S)) ≥ f (S) ∀ S ⊆ V
x(δ(v)) = f (v) ∀ v ∈ W
0 ≤ xe ≤ 1 ∀ e ∈ E.

Note that the first set of constraints above enforces the connec-
tivity requirements f , the second set of constraints enforces the de-
gree constraints onW , and the last set of constraints ensures that
only a subgraph is chosen.
Given graph G, edge-costs c and connectivity requirements{
ru,v | (u, v) ∈

(
V
2

)}
, the LP relaxation (LPsndp) of this SNDP in-

stance is obtained by setting, in (LP), f (S) = maxu∈S,v 6∈S ruv for
each subset S ⊆ V and W = ∅. For an instance of the STSP
given by graph G and edge-costs c , the corresponding LP relax-
ation (LPstsp) is obtained by setting f (S) = 2 for each ∅ ( S ( V ,
f (∅) = f (V ) = 0, andW = V .
We prove the following theorem, which implies Theorems 1.1 and
1.2.

Theorem 2.1. Let x be a basic feasible solution to (LP) where f is
weakly supermodular.

A. There exists an edge e ∈ E such that xe ≥ 1
2 .

B. Moreover, if f (S) is even for each subset S ⊆ V , then there exists
an edge e ∈ E such that xe = 1.

The first part of Theorem 2.1 was at the heart of the iterative 2-
approximation algorithm for the SNDP [9].
Before the proof of Theorem 2.1, we state some properties of

tight constraints of extreme points. Two sets X, Y are intersecting
if X ∩ Y , X − Y and Y − X are nonempty. A family of sets is laminar
if no two sets are intersecting. The proof of the following lemma is
immediate from the uncrossing lemma in Jain [9].

Lemma 2.2 ([9]). Let x be a basic feasible solution to (LP) with f being
weakly supermodular, such that 0 < xe < 1 for all edges e ∈ E. Then,
there exists a laminar familyL of subsets such that

1. x is the unique solution to {x(δ(S)) = f (S),∀ S ∈ L};
2. the vectors χδ(S) for S ∈ L are linearly independent; and
3. |E| = |L|.

Proof. Lemma 4.3 in [9] proves this lemma when W = ∅;
that proof is based on standard uncrossing arguments. In the
general case, there are additional equalities for singleton vertex-
sets corresponding to W . Let (LP′) denote the polytope given by
just the first and third sets of constraints in (LP), i.e., without
equality constraints onW . Note that the polytope (LP) is a face of
polytope (LP′). Hence any extreme point in (LP) is also an extreme
point in (LP′), for which the lemma from [9] applies. �

We now prove Theorem 2.1. Let x be any basic feasible solution
to (LP).

Proof of Theorem 2.1 (A). We first prove that xe ≥ 1
2 for some

edge e ∈ E. Suppose for the sake of contradiction that xe < 1
2

for each e ∈ E. If xe = 0 for some e ∈ E, we can remove edge e
from the graph G and variable xe from (LP). The residual solution
x remains a basic feasible solution to the modified (LP). Thus we
assume without loss of generality that xe > 0 for all e ∈ E, and so
Lemma 2.2 applies.
We will show a contradiction to Lemma 2.2 by means of a new

counting argument. The counting argument proceeds as follows.
We assign one token to each edge in E, and then reassign the tokens
such that we can collect strictly more than one token per set in the
laminar familyL: this would imply |E| > |L|, which is the desired
contradiction.
For any sets S, R ∈ L, we say that S is the parent of R (or

equivalently, that R is a child of S) if S is the smallest set in L
containing R. Each edge e = (u, v) ∈ E is given a unit token, which
it reassigns as follows.

1. (Rule 1) Let S be the smallest set inL containing u, and R be the
smallest set inL containing v. Then e assigns xe tokens to each
of S and R.

2. (Rule 2) Let T be the smallest set in L containing both u and v.
Then e assigns 1− 2xe tokens to T .
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Fig. 1. Example for the expression x(δ(S)) −
∑k
i=1 x(δ(Ri)) with k = 2 children.

The dashed edges cancel out in the expression. Edge-sets A, B, C are shown with
their respective coefficients.

We now show that each set in L receives at least one token.
Let S ∈ L have k children R1, . . . , Rk in L (if S does not have any
children then k = 0). We have the following tight inequalities for
the extreme point x.

x(δ(S)) = f (S) and x(δ(Ri)) = f (Ri) ∀ 1 ≤ i ≤ k.

Subtracting, we obtain

x(δ(S))−
k∑
i=1

x(δ(Ri)) = f (S)−
k∑
i=1

f (Ri)⇒

x(A)− x(B)− 2x(C) = f (S)−
k∑
i=1

f (Ri)

where

A = {e : |e ∩ (∪i Ri)| = 0, |e ∩ S| = 1}
B = {e : |e ∩ (∪i Ri)| = 1, |e ∩ S| = 2}
C = {e : |e ∩ (∪i Ri)| = 2, |e ∩ S| = 2}.

Observe that A∪B∪C 6= ∅: otherwise, we have the dependence
χδ(S) =

∑k
i=1 χδ(Ri). Also, S receives xe tokens for each edge e ∈ A

(by Rule 1), 1− xe tokens for each edge e ∈ B (by Rules 1 & 2), and
1 − 2xe tokens for each edge e ∈ C (by Rule 2). Hence, the total
number of tokens received by S is exactly∑
e∈A

xe +
∑
e∈B

(1− xe)+
∑
e∈C

(1− 2xe)

= x(A)+ |B| − x(B)+ |C | − 2x(C)

= |B| + |C | + f (S)−
k∑
i=1

f (Ri). (1)

Observe that, for every edge e ∈ E, xe, 1 − xe, 1 − 2xe > 0
since 0 < xe < 1

2 ; combined with the fact that A ∪ B ∪ C 6= ∅, the
number of tokens assigned to S is strictly positive (using the first
expression in Eq. (1)). On the other hand, the last expression in (1)
implies that the number of tokens assigned to S is integral. Thus
every S ∈ L gets at least one token in this assignment (Fig. 1).
Now we show that there are some unassigned tokens, thereby

showing the strict inequality |L| < |E|. Let R be a maximum-
cardinality set in L; note that none of the sets in L \ {R} contains
R and R 6= V since f (V ) = 0. Consider any edge e ∈ δ(R) 6= ∅: the
token by Rule 2 for edge e is unassigned as there is no set such that
|T ∩ e| = 2. This gives us the desired contradiction, and proves the
first part of Theorem 2.1. �

Proof of Theorem 2.1 (B). We now consider the case when f (S) is
even for each S ⊆ V , and show that, for any basic feasible solution x
to (LP), there is always an edge e ∈ Ewith xe = 1. The proof follows
the same approach as above but with a scaled token assignment.
For the sake of contradiction, we assume that xe < 1 for each e ∈ E.
As before, we can assume without loss of generality that xe > 0.
Again, we will show a contradiction to Lemma 2.2 by showing that
|L| < |E|. The counting argument proceeds as follows. We assign
one token to each edge e = (u, v) ∈ E, which it redistributes as
follows.

1. (Rule 1′) Let S be the smallest set inL containing u, and R be the
smallest set inL containing v. Then e assigns xe2 tokens to each
of S and R.

2. (Rule 2′) Let T be the smallest set inL containing both u and v.
Then e assigns 1− xe tokens to T .

We now show that each set inL receives at least one token. As
before, let S ∈ L have children R1, . . . , Rk (k ≥ 0). We have the
following tight inequalities.

x(δ(S)) = f (S) and x(δ(Ri)) = f (Ri) ∀ 1 ≤ i ≤ k.

Dividing by two and subtracting, we obtain

1
2

[
x(δ(S))−

∑
i

x(δ(Ri))

]
=
1
2

[
f (S)−

∑
i

f (Ri)

]
⇒

x(A)− x(B)
2

− x(C) =
1
2

[
f (S)−

∑
i

f (Ri)

]
where the edge sets A, B, C are exactly as in the earlier case. Ob-
serve that A ∪ B ∪ C 6= ∅: else there is a dependence in the con-
straints for S and its children. Also, S receives xe2 tokens for each
edge e ∈ A (Rule 1′), 1 − xe

2 tokens for each edge e ∈ B (Rules 1
′ &

2′), and 1− xe tokens for each edge e ∈ C (Rule 2′). Hence, the total
number of tokens received by S is∑
e∈A

xe
2
+

∑
e∈B

(
1−

xe
2

)
+

∑
e∈C

(1− xe)

=
x(A)
2
+ |B| −

x(B)
2
+ |C | − x(C)

= |B| + |C | +
f (S)−

∑
i
f (Ri)

2
.

Following the same reasoning as before, this quantity is a positive
integer (here f is an even-valued function, so the number of tokens
is still integral). Thus every set S ∈ L receives at least one token
in this assignment. Finally, note that some tokens corresponding
to the maximal sets in L are unassigned. This shows the strict in-
equality |L| < |E|, and gives us the desired contradiction. This
proves the second part of Theorem 2.1. �

3. The element-connectivity SNDP

In this section,we consider the element-connectivity survivable
network design problem (SNDPelt ). In this problem, we are given
an undirected graph G = (V , E) with edge-costs c : E → R+,
a set U ⊆ V of terminals, and connectivity requirements ruv for
all undirected pairs u, v ∈ U of terminals. Vertices in V \ U are
called non-terminals. The edges and non-terminals of the graph
are called elements. The goal inSNDPelt is to find theminimum-cost
subgraph that contains at least ruv element-disjoint paths between
u and v for every u, v ∈ U . Fleischer et al. [5] used iterative
rounding to obtain a 2-approximation algorithm for this problem.
They [5] showed that SNDPelt can be formulated as a suitable
integer program (defined formally below), such that any extreme
point solution to its LP-relaxation contains an edge with solution
value at least half. We give a short proof of this result using a new
counting argument generalizing the results in the previous section.
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A set-pair is an ordered tuple (S, S ′) where S, S ′ ⊆ V . Let F
denote some family of set-pairs. A two-set function f : F → Z+ is
called weakly two-supermodular if, for any (S, S ′) and (T , T ′) ∈ F ,
at least one of the following holds.

1. (S ∩ T , S ′ ∪ T ′) and (S ∪ T , S ′ ∩ T ′) ∈ F , and we have

f (S ∩ T , S ′ ∪ T ′)+ f (S ∪ T , S ′ ∩ T ′) ≥ f (S, S ′)+ f (T , T ′).

2. (S ∩ T ′, S ′ ∪ T ) and (S ∪ T ′, S ′ ∩ T ) ∈ F , and we have

f (S ∩ T ′, S ′ ∪ T )+ f (S ∪ T ′, S ′ ∩ T ) ≥ f (S, S ′)+ f (T , T ′).

For any set-pair (S, S ′), let E(S, S ′) = {e = (u, v) ∈ E | u ∈
S, v ∈ S ′} denote the edges with one end-point in S and the other
in S ′. For any assignment x : E → R+ and set-pair (S, S ′), we
abbreviate x(E(S, S ′)) by just x(S, S ′). The LP-relaxation forSNDPelt
considered in [5] is the following.

(LPelt) minimize
∑
e∈E

ce xe

subject to x(S, S ′) ≥ f (S, S ′) ∀ (S, S ′) ∈ F
0 ≤ xe ≤ 1 ∀ e ∈ E,

where F =
{
(S, S ′) | S

⋂
S ′ = ∅, U ⊆ S

⋃
S ′
}
, and

f (S, S ′) = max{ruv | u ∈ S ∩ U, v ∈ S ′ ∩ U}
− |V − S − S ′| for any (S, S ′) ∈ F .

Note that f is a weakly two-supermodular function on set-pairsF .
Wewill prove the following that immediately implies Theorem1.3.

Theorem 3.1. Let x be a basic feasible solution to (LPelt), where f :
F → Z+ is weakly two-supermodular; then there exists an e ∈ E
such that xe ≥ 1

2 .

As mentioned earlier, this theorem was proved earlier in Fleischer
et al. [5], and is the main ingredient in the 2-approximation
algorithm for the element-connectivity SNDP.
We first introduce some definitions from [5] that are required for
the proof. Define a partial order on set-pairswhere (S, S ′) ≤ (T , T ′)
iff S ⊆ T and T ′ ⊆ S ′; in this case we say that (S, S ′) is smaller
than (T , T ′). We also say that (S, S ′) and (T , T ′) are comparable if
either (S, S ′) ≤ (T , T ′) or (T , T ′) ≤ (S, S ′); otherwise they are
incomparable.
Set-pairs (S, S ′) and (T , T ′) are said to pair-cross iff none of the
following holds.

C1. S ⊆ T and T ′ ⊆ S ′; i.e., (S, S ′) ≤ (T , T ′).
C2. S ′ ⊆ T ′ and T ⊆ S; i.e., (S, S ′) ≥ (T , T ′).
C3. S ⊆ T ′ and T ⊆ S ′.

A collection of set-pairs is pair-laminar if no two of thempair-cross.
The following result appears as Corollary 4.6 and Lemma 4.7 in
Fleischer et al. [5].

Lemma 3.2 ([5]). Let x be a basic feasible solution to (LPelt), such that
0 < xe < 1 for all edges e ∈ E. Then, there exists a pair-laminar family
L of set-pairs such that

1. x is the unique solution to {x(S, S ′) = f (S, S ′), ∀(S, S ′) ∈ L};
2. the vectors χE(S,S′) for (S, S ′) ∈ L are linearly independent;
3. the poset induced by ≤ on L is a forest; i.e., for any (X, X ′),
(Y , Y ′), (Z, Z ′) ∈ L with (X, X ′) ≤ (Y , Y ′) and (X, X ′) ≤
(Z, Z ′), the set-pairs (Y , Y ′) and (Z, Z ′) are comparable; and

4. |E| = |L|.

We also refer to set-pairs in L as nodes. For any node (S, S ′) ∈ L,
its parent is the smallest node (T , T ′) ∈ L \ {(S, S ′)} that is larger
than (S, S ′) (i.e., satisfying (T , T ′) ≥ (S, S ′)); in this case (S, S ′) is
called a child of (T , T ′). If there is no node in L \ {(S, S ′)} that is
larger than (S, S ′), then node (S, S ′) is called amaximal node. Node
(R, R′) ∈ L is a descendent of (S, S ′) ∈ L iff (R, R′) ≤ (S, S ′).
Proof of Theorem 3.1. Suppose for a contradiction that the claim
does not hold, and let x be an extreme point solution with xe < 1

2
for all e ∈ E. If xe = 0 for some e ∈ E, we can remove edge e
from the graph G and variable xe from (LPelt). The residual solution
x remains a basic feasible solution to the modified (LPelt). Thus we
assume without loss of generality that xe > 0 for all e ∈ E, and so
Lemma 3.2 applies.Wewill derive a contradiction using a counting
argument similar to the one in the previous section. Each edge
e = (i, j) ∈ E is assigned one unit of token, which it distributes
to nodes inL as follows.

1. Rule I: assign xe tokens to the smallest node (S, S ′) ∈ L such
that either i ∈ S or {i, j} ∩ S ′ = ∅.

2. Rule II: assign xe tokens to the smallest node (T , T ′) ∈ L such
that either j ∈ T or {i, j} ∩ T ′ = ∅.

3. Rule III: assign 1− 2 xe tokens to the smallest node (R, R′) ∈ L
such that {i, j} ∩ R′ = ∅.

Note that both xe and 1 − 2xe are strictly positive for any edge
e. Additionally, by Lemma 4.8 in Fleischer et al. [5], it follows that
each of Rules I, II and III assigns tokens to at most one node. Hence
each edge in E distributes a total of at most one token.
We now show that each node ofL receives a total of at least one

token. Consider any node (S, S ′) ∈ Lwith children {(Ri, R′i)}
k
i=1; if

(S, S ′) is a leaf then k = 0. For each i ∈ [k], we have (A) R′i ⊇ S
′,

since (S, S ′) ≥ (Ri, R′i); and (B) R
′

i ⊇ Rj for all j ∈ [k] \ {i}, since
(Ri, R′i) and (Rj, R

′

j) are incomparable, and they satisfy condition
(C3). Additionally, the {Ri}ki=1 are disjoint subsets of S. Define the
following edge-sets:

H =
k⋃
i=1

E(Ri, R′i \ S
′)

C = {e ∈ H : |e ∩ (∪i Ri)| = 2}
B = {e ∈ H : |e ∩ (∪i Ri)| = 1}

D =
k⋃
i=1

E(Ri, S ′)

A = E
(
S \ (∪i Ri), S ′

)
.

Thus we can write
∑k
i=1 x(E(Ri, R

′

i)) = 2 · x(C)+ x(B)+ x(D), and
x(E(S, S ′)) = x(D)+x(A). Recall that the tight LP constraints imply
that

x(E(S, S ′)) = f (S, S ′) and x(E(Ri, R′i)) = f (Ri, R
′

i) ∀ 1 ≤ i ≤ k.

Subtracting, we obtain (since the f -values are all integral)

x(E(S, S ′))−
k∑
i=1

x(E(Ri, R′i)) = f (S, S
′)−

k∑
i=1

f (Ri, R′i) ∈ Z

⇒ x(A)− x(B)− 2x(C) ∈ Z.

Adding |B|+ |C | (an integer) to the above expression, we obtain∑
e∈A

xe +
∑
e∈B

(1− xe)+
∑
e∈C

(1− 2 xe) ∈ Z.

Note that A ∪ B ∪ C 6= ∅; otherwise, χ(E(S, S ′)) =
∑k
i=1 χ

(E(Ri, R′i)), contradicting the linear independence in Lemma 3.2.
Since 0 < xe < 1

2 for all e ∈ E, the left-hand side above is strictly
positive, and∑
e∈A

xe +
∑
e∈B

(1− xe)+
∑
e∈C

(1− 2 xe) ≥ 1. (2)

We now show that the tokens assigned to (S, S ′) total to at least
the left-hand side in Inequality (2).
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• Edge e = (u, v) ∈ A. Let u ∈ S \ (∪i Ri) and v ∈ S ′. We claim
that the token assigned by Rule I goes to (S, S ′). Clearly, (S, S ′)
is the smallest set-pair with u ∈ S. For any descendant (T , T ′)
of (S, S ′), we must have T ′ ⊇ S ′ 3 v; thus we cannot have
u, v 6∈ T ′. Hence (S, S ′) receives xe tokens from e.
• Edge e = (u, v) ∈ C . Let u ∈ Ri and v ∈ Rj for i, j ∈ [k], i 6= j. We
claim that the token assigned by Rule III goes to (S, S ′). Clearly
u, v 6∈ S ′. Furthermore, for any child (R`, R′`) of (S, S

′) we have
R′` ⊇ Ri 3 u or R

′

` ⊇ Rj 3 v. Hence (S, S
′) receives 1 − 2xe

tokens from e.
• Edge e = (u, v) ∈ B. Let u ∈ Ri and v ∈ R′i \ S

′ for some i ∈ [k].
We first claim that the token assigned by Rule III goes to (S, S ′).
Clearly u, v 6∈ S ′. We show that {u, v} ∩ R′` 6= ∅ for every child
(R`, R′`) of (S, S

′).
1. Suppose ` = i; then v ∈ R′i .
2. Suppose ` ∈ [k] \ {i}; then u ∈ Ri ⊆ R′`.
That is, (S, S ′) receives the token by Rule III. We next claim
that the token assigned by Rule II also goes to (S, S ′). Note that
v 6∈ ∪i Ri, so no descendant (T , T ′) of (S, S ′) can have v ∈ T . As
seen above, (S, S ′) is the smallest nodewith u, v 6∈ S ′; i.e., (S, S ′)
receives the token by Rule II. Hence (S, S ′) receives in total 1−xe
tokens from e.

Thus each node ofL receives at least a unit token.
We now show that there is some positive amount of unused to-

kens. Let (P, P ′) ∈ L be any maximal node inL. Note that there is
at least one maximal node (P, P ′) ∈ L and E(P, P ′) 6= ∅. We claim
that the token of any edge (u, v) ∈ E(P, P ′) given by Rule III is un-
used. Let u ∈ P and v ∈ P ′. For any descendent (T , T ′) of (P, P ′),
we have T ′ ⊇ P ′ 3 v; so T ′

⋂
{u, v} 6= ∅. Any node (Q ,Q ′) ∈ L

that is not a descendent of (P, P ′) is incomparable to (P, P ′), andwe
have Q ′ ⊇ P 3 u. Thus {u, v} ∩ S ′ 6= ∅ for all (S, S ′) ∈ L, i.e., the
Rule III token of edge (u, v) is unassigned. Thus there is a positive
amount of unused tokens. However, this implies that |E| > |L|,
which contradicts Lemma 3.2.
This completes the proof of Theorem 3.1. �
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