Randomized Approximation Algorithms for Query Optimization
Problems on T'wo Processors *

Eduardo Laber Ojas Parekh
PUC-RIO Carnegie Mellon University
laber@inf.puc-rio.br odp@andrew.cmu.edu
R. Ravi

Carnegie Mellon University
Carnegie Mellon University ravi@andrew.cmu.edu

Abstract

Query optimization problems for expensive predicates have received much attention in the database
community. In these situations, the output to the database query is a set of tuples that obey certain
conditions, where the conditions may be expensive to evaluate computationally. In the simplest case
when the query looks for the set of tuples that simultaneously satisfy two expensive conditions on
the tuples and these can be checked in two different distributed processors, the problem reduces to
one of ordering the condition evaluations at each processor to minimize the time to output all the
tuples that are answers to the query.

We improve upon a previously known deterministic 3-approximation for this problem: In the case
when the times to evaluate all conditions at both processors are identical, we give a 2-approximation;
In the case of non-uniform evaluation times, we present a %—approximation that uses randomization.
While it was known earlier that no deterministic algorithm (even with exponential running time)
can achieve a performance ratio better than 2, we show a corresponding lower bound of % for any
randomized algorithm.

1 Introduction

The main goal of query optimization in databases is to determine how a query over a database must be
processed in order to minimize the user response time. A typical query extracts the tuples in a relational
database that satisfy a set of conditions (predicates in database terminology). For example, consider the
set of tuples {(a1,b1), (a1, b2), (a1,b3), (az2,b1)} and a query which seeks to extract the subset of tuples
(a;, bj) for which a; has property p(a) and b; has property p(b). In many scenarios, the time to evaluate
the property p(z) for element z in the tuple can be assumed to be constant (i.e., O(1)) and hence the
solution involves scanning through all the tuples in turn and checking for the properties. However, in
the case of evaluating expensive predicates, when a relation contains complex data as images and tables,
this assumption is not necessarily true. In fact, image processing and table manipulation may be very
time consuming. In this case, the time spent by those operations must be taken into account when
designing a query optimization algorithm. There is some work in this direction [1, 2, 3, 5, 7, 8]. In [7],
it is proposed the Cherry Picking (CP) approach which reduces the dynamic query evaluation problem
to DBOP (Dynamic Bipartite Ordering Problem), a graph optimization problem, which is the focus of
our improvement in this paper.

*This work was supported by an NSF-cNPQcollaborative research grant CCR-9900304.

1.1 Problem Statement

An instance of DBOP consists of a weighted bipartite graph G = (V, E) with bipartition (A, B) and a
hidden function 6 : V' — {0,1}. The weight w(v) of a node v € V is the estimated time required to
evaluate the function ¢ over v. The goal is to compute as fast as possible the function v : E — {0,1}
defined by ~y(u,v) = §(u) x§(v). The only allowed operation is to evaluate the function § over a node. In
this formulation, note that sets A and B correspond to different attributes of the relation that is queried
— the nodes correspond to distinct attribute values and the edges to tuples in the relation. Figure 1(a)
shows a graph corresponding to the set of tuples {(a1,b1), (a1,b2), (a1,bs), (a2, b1)}.

As in [7], we assume a distributed scenario with two available processors: D; and Dy that are used
to evaluate the function § over the nodes of A and B respectively. The goal is to minimize some sort of
"makespan,” that is, the maximum time by which both D; and D5 finish all their evaluations of § so as
to determine all the answers to the given query. Figure 1(b) shows an instance for DBOP . The value
inside each node indicates the value of the hidden function §. Assume that w(a) = 1 for every a € A
and w(b) = 3 for every b € B. In this case, a greedy algorithm that evaluates the nodes with largest
degree first has makespan 6 since Dy evaluates a; followed by a2 and a4, while Dy evaluates by followed
by bs. Note that after these evaluations, given the shown § values, we can conclude that we have output
all the tuples with v = 1 even without having examined many nodes (such as as or b2). Thus the crux
of the problem is to choose dynamically (based on the given w’s and the revealed § values) an order of
evaluation of the nodes for the two processors to minimize makespan.

A B

al bl al bl

a2 b2

a2 b2

b3 a3 b3

@

a4 b4

b5

Figure 1: An instance of DBOP

For an ordering algorithm Alg on a DBOP instance I, let ¢(Alg, I) denote the time for Alg to evaluate
v on I, that is, c(Alg,I) = max{c(Alg,D1,I),c(Alg,Do,1I)}, where c(Alg, D1,I) and c¢(Alg, Do, I)
indicate, respectively, the time in which Dy and D» finish their evaluations. In the complexity measure
¢ only the time incurred by the evaluation of § over the nodes of the graph is charged. When the context
is clear we may drop some of the ¢ arguments. We use t(Alg) to denote the total running time spent by
Alg on arriving at the evaluation orders in the worst case. Typically, we would like £ to be a low-order
polynomial in the size of the bipartite graph G.

Define the quality (performance ratio) of an Algorithm Alg for instance I as

c(Alg, I)
Q(Algv I) - C(Opt, I)a

where Opt is the optimal algorithm for the corresponding instance - the one with minimum evaluation
time. Furthermore, define the absolute quality (quality for short) of an Algorithm Alg as

c(Alg, I) }
Alg) = anlg,)
a(Alg) Ietnst { c(Opt, 1)}’

where Inst is the set of all possible instances for DBOP .

1.2 Our Results

In [7], it was shown that no deterministic algorithm has quality smaller than 2. A simple algorithm
called MBC (Minimum Balanced Cover) was proposed in that paper, which is optimal under the quality
metric (has quality 2) but has ¢t(M BC') exponential in the size of G. In order to circumvent this problem,
a variant, MBC*, was proposed, that runs in polynomial time, that is t(MBC*) = O(|G|?), but with
slightly worse quality: (M BC*) = 3.

In this paper, we first present a simple linear time deterministic algorithm for DBOP which has
the best-possible quality of 2 in the case when all weights w are uniform. In the non-uniform case, we
present a randomized algorithm that achieves quality %. Furthermore, we prove that % is a lower bound
on the expected quality of any (even exponential-time) randomized strategy.

Our paper is organized as follows. In Section 2, we present lower bounds on ¢(Opt, I). In section 3,
we present a deterministic algorithm for uniform weights. In section 4, we present the rMBC algorithm,
a randomized version of MBC*. This algorithm is used as a subroutine for 2rMBC , the %—expected
quality algorithm proposed in Section 5. In Section 6, we present a lower bound on the quality of any
randomized algorithm for DBOP . Finally, in Section 7 we present our conclusions and indicate some
open problems.

2 Lower Bounds

Let G = (AU B, E) be a simple bipartite graph with node weights w(-). A (vertex) cover for G is the
union of two subsets X and Y, X C A and Y C B, such as that for every edge e € F, at least one of
e’s endpoints is in X UY. Given V' C V, define w(V’) to be 3, ¢y w(v).

Given a graph G and non-negative numbers g; and gy, the MinMax Cover M M C(gy, g2) problem is
to find a cover X UY for G that minimizes max {g; + w(X), g2 + w(Y')}, among all possible covers for
G. This problem is NP-complete as shown in [7]. Furthermore, it admits the following natural integer
programming formulation.

Minimize ¢

subject to

g1+ > wla)a <t
icA

g2+ Y wlb)b; <t
jeB

ai+b;>1 V(i,j)€E
a; €{0,1} Vi€A
b € {0,1} VjeB

In the above program, a variable a; (b;) is assigned to 1 if the node a; belongs to the cover and it
is set to 0, otherwise.

We also consider the well known Minimum Bipartite Vertex Cover (MBVC) problem, which consists
of finding a cover X UY for G, with X C A and Y C B, that minimizes w(X) + w(Y"). This problem
can be solved in O(|E|(|A| + |B])log(|E|)) time through a max st flow algorithm [4, 6]. We have the
following lemmas.

Lemma 1 Let I = (G,9) be an instance of DBOP and let X* UY™ be a solution of MMC(0,0) for G.
Then ¢(Opt, I) > max {w(X™*),w(Y™*)}.

Proof: For every edge e € E, at least one of its endpoints must be evaluated, otherwise it is
not possible to determine y(e). Let X, U Yy, be the set of nodes evaluated by Opt when it solves I.
Clearly, X, U Yoy is a cover for G, otherwise there is an edge e € E such that none of its endpoints is
evaluated by Opt. Since X* UY™ is an optimal solution of MMC(0,0) for G, it follows that
c(opt, I) > max{w(Xop), w(Yope) } > max {w(X*),w(Y*)}. O

Lemma 2 Let I = (G, 6) be an instance of DBOP and let X UY be a solution of MBVC for G. Then,
c(Opt, 1) > (w(X) +w(Y))/2 (1)
and
c(Opt, I) > w(z), (2)
for every z€ X UY

Proof: The correctness of (1) follows from lemma 1 and from the fact that
(w(X) + w(Y))/2 < max {w(X"),w(Y™)},

where X* U Y™ be a solution of MMC(0,0) for G.

Now, let z be a node in X UY and let N(z) be the set of nodes adjacent to z in A U B. We
observe that either Opt evaluates z or every node in N(z), otherwise there is an edge e € E such
that none of its endpoints is evaluated by Opt. Hence, ¢(Opt, I) > min{w(z),w(N(z))}. Nevertheless,
min{w(z),w(N(z))} = w(z), otherwise replacing z by N(z) we would have a solution for MBVC with
weight smaller than that of X UY, which is a contradiction. O

2.1 Further Hybrid Lower Bounds

For the next lower bound, we need additional notation. Let V' be a subset of V. We define T'(V")
(denoting the "True” nodes of V') by T'(V') = {v € V'|d(v) = 1}. Moreover, we use N (V') to indicate
the neighborhood of V'. Finally, we define NT' (V') by N(T'(V")).

Lemma 3 Let I = (G,6) an instance of DBOP . Then,
(Opt,) > max {w(NT(B)), w(NT(4))}

Proof: Let a € NT(B). It implies that there is b € B, with §(B) = 1 such that (a,b) € E. Hence,
in order to determine whether v(a,b) = 1 or not, the node a must be evaluated. Hence, every node in
NT(B) must be evaluated by any algorithm for /. A symmetric argument shows that every node in
NT(A) must be evaluated. O

We now present our last lower bound that can be viewed as a generalization of the lower bounds
presented in Lemmas 1 and 3. We need to introduce the concept of a essential set.

Definition 1 A set V! CV is a essential set if and only if v € NT (V) for allv € V.

We observe that if V' is a a essential set, then all of its nodes must be evaluated by any algorithm,
and in particular, by Opt.

Lemma 4 Let I = (G,0) an instance of DBOP . Furthermore, given two essential sets A" and B', with
A" C A and B' C B, let G' be the graph induced by V' \ (A’ UB'). If AUB, with AC A and B C B,
solves MMC(w(A’),w(B’)) for the graph G', then

c(Opt, I) > max{w(A") + w(A),w(B") + w(B)}

Proof: Let Xopt U Yope, with X, C A and Y,,; C B be the set of nodes evaluated by Opt when
it solves the instance I. Since A’ and B’ are essential sets, it follows that A’ C X, and B C Yo
Furthermore, (X5 \ A") U (Yope \ B’) is a cover for G’, otherwise one of the edges in G’ cannot be
determined. Since A U B solves MMC(w(A’),w(B’)) for the graph G',

max{w(A4") + w(A),w(B") + w(B)} < max{w(A4") + w(Xep \ A"),w(B") +w(Yop \ B')}
= max{w(Xop), w(Yopt)} < c(Opt, I).

a

3 An Algorithm for Uniform Weights

In this section we present a simple deterministic algorithm which runs in linear time and delivers a
quality of 2 in the case when the values of the query weights are identical for all nodes in V.

We assume w.l.o.g that w(v) =1 for all v € V. Let M be some maximal matching of G, and let
Mjy=MnNAand Mp = MnN B. Finally we set K4 = NT(Mp) \ Ma and K = NT(My) \ Mp.

In the first phase of the algorithm we evaluate the function § in parallel for the nodes in M4 and
Mp. This takes time |M| = |M4| = |Mp|. In the second phase we evaluate § for K4 and Kp in parallel,
requring time max{|K 4|, |Kp|}. Since M4 U Mp is a cover of G, § is evaluated for at least one endpoint
of each edge in the first phase. After the second phase, we have either evaluated both endpoints of an
edge, or we have that § is 0 on one of its endpoints, hence the algorithm is correct.

For the analysis of the quality guarantee we appeal to Lemma 4. Let G’ be the graph induced by
V\ (K4UKg), and let AU B be an optimizer for MMC(|K 4],|Kp|) in the graph G’ induced by the
bipartition (A \ K4, B\ Kp). By Lemma 4, we have that c(Opt,I) > max{|K| + |A|,|Kg| + |B|}.
Thus

(M + max{|Kal, [Kpl} _ o [M]+ max{|Kal, Kp[} _ M| +max{|Kal,| K} _,
= tmax{|Kal + JAL [Kp| + [BI} ~ “|Kal + [A| + [Kp| + [B] = M|+ |Kal+[Kp| ~

where the penultimate inequality follows from the fact that since G’ contains M, and A U B is a cover
of G', [4] + [B| > M|

4 A Randomized Algorithm

In this section we present rMBC , a randomized algorithm for DBOP . This algorithm is used as a
subroutine by the 2rMBC algorithm presented in the next section. rMBC can be viewed as a randomized
version of the M BC* algorithm proposed in [7].

Before presenting rtMBC , we briefly outline the M BC* algorithm. M BC* is divided into three
steps. In the first step, the MBVC problem is solved for the input graph G. Let A* U B*, with A* C A
and B* C B, be the solution for MBVC obtained in the first step. In the second step, the function §
is evaluated for the vertices in A* U B*. At the end of this step, at least one endpoint of every edge
has already been computed. Let e = (a,b). If one of the e endpoints, say a, evaluated at the second
phase is such that 6(a) = 0, then the evaluation of the other endpoint b is not necessary since y(e) = 0.
Therefore, only those vertices adjacent to at least one vertex with § value equal to 1 are evaluated in
the third step. The rMBC algorithm is similar to M BC™*, except for the fact that it evaluates the
cover nodes following a randomly selected order, while M BC* follows a fixed order. Figure 2 shows the
pseudo-code for rMBC .

From now, we assume w.l.o.g. that w(A’) > w(B’). In this case, the processor D; does not become
idle during the while loop, and as a consequence,

Step 1 : Solve MBVC for the graph G obtaining the sets A" and B’.

Do in Parallel
Processor D;:
Ne(A") « 0
For i:=1 to |A|

Evaluate (a)
Ne(A') « Ne(A') UNT(a)

or Dy has not processed all the nodes from B’

Evaluate d(a)

Processor D, :
Ne(B') «+ 0
For i:=1to |B|

Evaluate §(b)
Ne(B') « Ne(B') U NT(b)

or D; has not processed all the nodes from A’

Evaluate §(b)

Select randomly a node a from A’ that has not been evaluated yet

While there exists a node in Ne(B') that has not been evaluated

Let a be a node from Ne(B') that has not been evaluated yet

Select randomly a node b from B’ that has not been evaluated yet

While there exists a node in Ne(A') that has not been evaluated

Let b be a node from Ne(A’) that has not been evaluated yet

Figure 2: rtMBC Algorithm

(D1, 1) = w(A') + w(NT(B') \ A')

We start the analyzis of rMBC presenting a technical lemma.

(3)

Lemma 5 Let n(A') be a random permutation of the nodes in A' and let w(i) be the ith node in this
permutation. Moreover, let T be the reverse permutation of w, that is, (i) = w(n—i+1), fori =1,...,n.
Being ¢(Do,) the time in which Dy ends its task, assuming an execution of rMBC over a permutation

m, then
max{c(Dg, 7'('), C(D2aﬁ)}
<3
c(Opt, I) B
and D Do =
¢(D2,) + ¢(D2,T) <5

c(Opt, I)
Proof: First, we prove (4). We have that
max{c(Ds,7),c(D2,7)} < w(B') + w(NT(A))
On the other hand, it follows from lemmas 2 and 3 that
c(Opt, I) > max{(w(4") + w(B'))/2,w(NT(A))}

The inequality (4) follows from the two previous inequalities.

(4)

Now, we consider the inequality (5). Let m;(A’) be the set {m(1),7(2),...,7(j)} and let 7(k) be the
first node of m(A’) such that after its evaluation by D, the processor Dy does not become idle anymore.
Then, we have that

(D2, m) = w(m(A")) + w(NT(A") \ NT(m—1(A))), (6)

Now, let 7(k) be the first node of 7(A’) such that after its evaluation, the processor Dy does not
become idle anymore. In this case,

c(D2,7) = w(Tg(A") + w(NT(A) \ NT (7_, (4))). (7)
We divide the analysis into two cases

case 1) k 4+ k < |A’| + 1. In this case we have w(m(A4")) + w(Tz(A4")) < w(A") + w(w(k)), hence it
follows from (6) and (7) that

¢(D2,) + ¢(Dy,) < w(A') + max{w(a)} + 2w(NT(A")). (8)

acA’

case 2) k+k > |A'|+1. In this case we have, (NT(A")\NT (1 (A"))N(NT(A)\NT(73_,(4"))) =
(). This in addition with the sum of (6) and (7) yields,

¢(Dg,) + ¢(Dy,7) < 2w(A") + w(NT(4")). 9)

On the other hand, it follows from lemmas 2 and 3 that

c(Opt, 1) 2 max{uw(A')/2, ma{w(a)}, w(NT(4')} (10)

The inequality (5) can be established through some algebraic manipulations involving (8), (9) and
(10). O
Theorem 6 Let I = (G,4) be an instance of DBOP . If

C(Dl,I)

— <
c(Opt, I) — 7/3,

then
Elg(rMBC, I)] < 8/3

Proof: Let II be the set of all possible permutations for the nodes in A’. By definition,

B o(D1,I) ¢(Dy,m 7 c(Dy,m)
BlarMBC, D] = |A/|lZ { Oplt) (o;u} IA’I'Zma {3 AOnt I)}

- g 5 (= i) (5 o)

Hence, in order to establish the result, it suffices to prove that

7 C(D2,7T) 7 C(D2a) }
- — <16/3 11

max{3’c(opt,1)}+max{3 qopt, 1)) = 1073 (1D
for every m € II. We assume w.l.o.g. that ¢(D2,7) > ¢(D2, 7). If ¢(D2,7) < 8/3, we are done.
Hence, we assume that c¢(Dy,7) > 8/3. The correctness of (11) can be established by applying the
inequality (4) in the cases where ¢(D2,7)/c(Opt,I) < 7/3 and the inequality (5) in the case where
c(Dy,m)/c(Opt,I) >7/3. O

5 2rMBC Algorithm

At this section, we present the 2rMBC Algorithm, a polynomial time algorithm with expected quality
8/3.

First, the rMBC algorithm is executed until D5 finishes evaluating the nodes in B’ (we are assuming
w.lo.g. that w(B') < w(A")). At this point, the execution is interrupted and 2rMBC analyzes the
information achieved so far. Based on this analysis, it takes one of the two following decisions: Either
to resume the execution of rMBC or to execute a second, new algorithm called 2ndCover . Thus, the
algorithm has two phases. The phase 1 is divided into two steps. Let K = NT(B') \ A". In step 1,
2rMBC checks if

¢(D1,rMBC, I w(A") + w(K) 7
Coph D) = max{w(NT(B), (w(A) + w(B))/2] = 3 (12)

If the ratio is not larger than 7/3, then it follows from Theorem 6 that the expected quality of
2rMBC (rMBC) for the current instance is not larger than 8/3. In this case, the execution of rMBC is
resumed.

If the test in step 1 fails, then step 2 is executed. In this step, 2rMBC computes a new lower bound
on ¢(Opt, I). Let G' the bipartite graph induced by V' \ K. It is easy to check that K is a essential set.
It follows from Lemma 4 that if AU B is a solution to the graph G’, then maz{(w(K) + w(A),w(B)}
is a lower bound on ¢(Opt,I). The main problem is that solving MMC may require exponential time.
Hence, instead of solving M M C(w(K),0) on G', 2rMBC solves a linear programming (LP) relaxation of
the integer programming formulation for M M C(w(K),0) presented in Section 2. The LP relaxation is
obtained replacing the constraints a; € {0,1} and b; € {0,1} by 0 < a; <1 and 0 < b; < 1 respectively.
Let (a*,b*,t*) the optimum solution for the LP relaxation. The end of step 2 consists in checking
whether

¢(Dy,rMBC,1) < w(A") + w(K)
c(Opt, I) - t*
In the positive case, the execution of rMBC is resumed. Otherwise, the following 2ndCover algorithm
is executed.

<

w3

(13)

5.1 The 2ndCover Algorithm

First, the solution of the LP relaxation solved in Step 2 is rounded to obtain a feasible cover A2 U B2
for G', where A2 C A\ K and B2 C B. Let = }7;c 4\ g a;w(a;) and y = 3¢ g biw(by).
The cover is obtained through the following procedure:

0) A2+ 0; B2+ 0
1) For every i € A\ K such that af > z/(y +)
A2 +— A2 U {a;}
20 For every j € B such that b7 > y/(y +)
B2 < B2U {b;}
Now the processors D; and Dy are used to evaluate the nodes in A2 and B2 respectively. Finally
D; and Dy evaluate the nodes from NT(B' U B2) and NT(A2), respectively, that have not yet been
processed.

5.2 Algorithm Analysis

In this section, we analyze the performance of 2rMBC .

Theorem 7 2rMBC is correct.

Proof: 1If either inequality (12) or inequality (13) holds, then 2rMBC ’s correctness follows from
that of rMBC , which in turn follows from the correctness of M BC* outlined in the introduction of
Section 4. On the other hand, if neither inequality (12) nor inequality (13) hold then 2ndCover is
executed. Since A’ U B’ is a cover of G, B’ must contain the neighbors of K, hence the algorithm
processes both endpoints of any edge with an endpoint in K. If A2 U B2 is a cover of G’ = G[V \ K]
then again an argument analogous to the one used to establish the correctness of M BC* shows that
upon termination of the algorithm, v may be evaluated for the edges of G'. Thus the only thing
which remains to be shown is that A2 U B2 indeed covers G’. For an edge ij of G’, we have that
aj +b7 >1=ux/(y +) +y/(y + z), hence at least one of i and j must belong to A2U B2. 0O

Lemma 8 Let A2 U B2 be the cover for G' obtained by 2ndCover algorithm. Then,
max{w(A2),w(B2)} <z +y

Proof: It follows from the rounding scheme that

w(A2) = > wi < D ajwi(y+a)/z < Y ajwi=y+a.
icA2 i€ MNK T eak

y+x

The analysis for B2 is symmetric. O

Theorem 9
Elq(2rMBO))] < 8/3

Proof: First, we consider the case when the execution of rMBC is resumed after the interruption.
In this case, either the test at Step 1 or the test at Step 2 is positive, which implies that

w(A") + w(K) < 7
c(Opt, I) — 3
Therefore, it follows from theorem 6 that Elq(rM BC,I)] < 8/3.
Now, we assume that 2ndCover is executed. In this case, the tests performed at Step 1 and 2 fail,
that is, inequalities (12) and (13) do not hold. First, using the observation that inequality (12) fails, we

have that
w(A") Tw(B')

w(K) > 6 + 6 (14)
Using the fact that w(K) + z < t*, and the fact that (13) does not hold, we have that
7z < 3w(A') — dw(K) (15)

Replacing the upper bound on w(K) given by inequality (14) in the inequality above, we conclude that
z <w(A")/3 —2w(B')/3 (16)
We have the following upper bound on ¢(2rM BC, I).
c(2r MBC, I) < w(B') + max{w(A2),w(B2)} + max{w(NT(A)),w(NT(B))}.
Since w(A2) <z +y, w(B2) <z +y and y < t*, we have that
c(2rMBC,I) < w(B') 4+ z + t* + max{w(NT(A)),w(NT(B))}, (17)
Since w(NT(A)), w(NT(B)), (w(A) + w(B))/2 and t* are lower bounds on ¢(Opt, I'), then
w(B') + z + t* + max{w(NT(A)),w(NT(B)}
max{w(NT(A)),w(NT(B)),t*, (w(A") +w(B"))/2}
w(B") +z <
(w(A") +w(B))/2 ~

where the last inequality follows from (16). O

q(2rM BC, I)

< 24

8/3,

6 A 3/2 Lower Bound for Randomized Algorithms

In order to give a lower on the expected quality of any randomized algorithm for DBOP | we apply
Yao’s minmax principle [9].

We counsider a distribution D for the instances of DBOP , where the only instances with nonzero
probability are all equally likely and have the following properties.

(i) The input graph G = (V, E) has bipartition (A, B), where A = {a1,...,a2,} and B = {by, ..., ba, }.
Moreover, E = {(a;,b;)|1 <i < 2n} and w(v) =1 for every v € V.

(ii) |T'(A)| = |T(B)| = n and y(e) = 0 for every e € E.

Observe that there are exactly (2:) instances with these properties. In distribution D, all of them
have probability 1/ (2:) By Yao’s principle, the average case quality of an optimal deterministic algo-
rithm for D is a lower bound on the expected quality of any randomized algorithm for DBOP .

Our first observation is that

c(Opt,I)=n

for every instance I with nonzero probability, once Opt evaluates in parallel the nodes in A\ T'(A) and
B\ T(B). Let Optp be the optimal deterministic algorithm for distribution D. The expected quality
of Optp is given by the expected cost of Optp divided by n.

In order to evaluate the expected cost of Optp, we first calculate the expected cost of the optimal
sequential algorithm for distribution D. Next, we argue that the optimal parallel algorithm for D
cannot overcome the sequantial one by a factor larger thatn 2. The sequential algorithm uses only one
processor to evaluate ¢ over the nodes of the graph. Hence, its cost is given by the number of evaluated
nodes. Let k1 > ko. We use P(ky1,k2) to denote the expected cost of an optimal sequential algorithm
for a distribution Dy, x,, where the only instances with nonzero probability are all equally likely and
have the following properties:

(i) The input graph G = (V, E) has bipartition (A, B), where A = {a1,...,a5,4%,} and B =
{b1,... bk 1k, }- Moreover, E = {(a;,b;)|1 <i < ki + ko}.

(ii) max{A \ |T(A)|, B\ |T'(B)|} = ki, min{A \ |T'(A)|,B \ |T(B)|} = k2 and y(e) = 0 for every
ec k.

Clearly, the optimal algorithm for distribution Dy, , firstly evaluates a node from the side with &;

false node. If it succeds to find a false node, say v, then it does not need to evaluate the node adjacent
to v. Otherwise, it has. We can formulate the following recursive equation when ky > ko > 0.

k1
k1 + ko

ks

P(ki, ko) =
(17 2) k1 + ko

1+ P(max{k; — 1, ko },min{k; — 1,k })] +

24 P(ky, k2 — 1)),

Moreover, P(k;,0) = ki, since the optimal algorithm just need to evaluate the nodes from one side
of the graph. It is possible to verify that

lim 2™
n—0o0 n

=3

Since, the optimal parallel algorithm Optp cannot overcome the sequential one by a factor larger
than 2, we have that

lim
n—o0

E[C(OptD)] > 3/2

Therefore, we can state the following theorem.

Theorem 10 Let Alg be a randomized algorithm for DBOP . Then, E[q(Alg)] > 1.5.

10

7 Conclusion

In this paper we have addressed the problem of evaluating queries in the presence of expensive predicates.
We presented a randomized polynomial time algorithm with expected quality 8/3 for the case of general
weights. For the case of uniform weights, we show that a very simple deterministic linear time algorithm
has quality 2, which is the best possible quality achievable by a deterministic algorithm [7]. On the
other hand, we gave a lower bound of 1.5 on the expected quality of any randomized algorithm. Two
major questions remain open:

1. Is there a polynomial time deterministic algorithm with quality 2 for non uniform weights 7
2. Where exactly in between 1.5 and 2.667 is the exact value of the quality of the best possible
polynomial randomized algorithm for DBOP 7

For future research, we intend to perform experiments comparing the results from the randomized
algorithm presented in this paper with other available algorithms, in particular, those proposed earlier
in [1, 5, 7].

References

[1] L. BoucaNiM, F. FABRET, F. PORTO, AND P. VALDURIEZ, Processing queries with expensive functions and
large objects in distributed mediator systems, in Proc. 17th Intl. Conf. on Data Engineering, April 2-6, 2001,
Heidelberg, Germany, 2001, pp. 91-98.

[2] S. CHAUDHURI AND K. SHIM, Query optimization in the presence of foreign functions, in Proc. 19th Intl.
Conf. on Very Large Data Bases, August 24-27, 1993, Dublin, Ireland, 1993, pp. 529-542.

[3] D. CHIMENTI, R. GAMBOA, AND R. KRISHNAMURTHY, Towards on open architecture for LDL, in Proc. 15th
Intl. Conf. on Very Large Data Bases, August 22-25, 1989, Amsterdam, The Netherlands, 1989, pp. 195-203.

[4] A. V. GOLDBERG AND R. E. TARJAN, A new approach to the mazimum flow problem, in Proceedings of
the Eighteenth Annual ACM Symposium on Theory of Computing, Berkeley, California, 28-30 May 1986,
pp. 136-146.

[5] J. M. HELLERSTEIN AND M. STONEBRAKER, Predicate migration: Optimizing queries with expensive predi-
cates, in Proc. 1993 ACM SIGMOD Intl. Conf. on Management of Data, May 26-28, 1993, Washington, D.C.,
USA, 1993, pp. 267-276.

[6] D.S. HOCHBAUM, Approzimating cliqgue and biclique problems, Journal of Algorithms, 29 (1998), pp. 174-200.

[7] E. S. LABER, F. PorTO, P. VALDURIEZ, AND R. GUARINO, Improving the complezity of warm-up algorithm,
Tech. Rep. 01, Departamento de Informética, PUC-RJ, Rio de Janeiro, Brasil, April 2002.

[8] T. MAYR AND P. SESHADRI, Client-site query extensions, in Proc. 1999 ACM SIGMOD Intl. Conf. on
Management of Data, June 1-3,1999, Philadelphia, Pennsylvania, USA, 1999, pp. 347-358.

[9] A. C. Yao0, Probabilistic computations : Toward a unified measure of complezity, in 18th Annual Symposium
on Foundations of Computer Science, Long Beach, Ca., USA, Oct. 1977, IEEE Computer Society Press,
pp. 222-227.

11

