
Randomized Approximation Algorithms for Query OptimizationProblems on Two Processors �Eduardo LaberPUC-RIOlaber@inf.puc-rio.br Ojas ParekhCarnegie Mellon Universityodp@andrew.cmu.eduR. RaviCarnegie Mellon UniversityCarnegie Mellon University ravi@andrew.cmu.eduAbstractQuery optimization problems for expensive predicates have received much attention in the databasecommunity. In these situations, the output to the database query is a set of tuples that obey certainconditions, where the conditions may be expensive to evaluate computationally. In the simplest casewhen the query looks for the set of tuples that simultaneously satisfy two expensive conditions onthe tuples and these can be checked in two di�erent distributed processors, the problem reduces toone of ordering the condition evaluations at each processor to minimize the time to output all thetuples that are answers to the query.We improve upon a previously known deterministic 3-approximation for this problem: In the casewhen the times to evaluate all conditions at both processors are identical, we give a 2-approximation;In the case of non-uniform evaluation times, we present a 83 -approximation that uses randomization.While it was known earlier that no deterministic algorithm (even with exponential running time)can achieve a performance ratio better than 2, we show a corresponding lower bound of 32 for anyrandomized algorithm.1 IntroductionThe main goal of query optimization in databases is to determine how a query over a database must beprocessed in order to minimize the user response time. A typical query extracts the tuples in a relationaldatabase that satisfy a set of conditions (predicates in database terminology). For example, consider theset of tuples f(a1; b1); (a1; b2); (a1; b3); (a2; b1)g and a query which seeks to extract the subset of tuples(ai; bj) for which ai has property p(a) and bj has property p(b). In many scenarios, the time to evaluatethe property p(x) for element x in the tuple can be assumed to be constant (i.e., O(1)) and hence thesolution involves scanning through all the tuples in turn and checking for the properties. However, inthe case of evaluating expensive predicates, when a relation contains complex data as images and tables,this assumption is not necessarily true. In fact, image processing and table manipulation may be verytime consuming. In this case, the time spent by those operations must be taken into account whendesigning a query optimization algorithm. There is some work in this direction [1, 2, 3, 5, 7, 8]. In [7],it is proposed the Cherry Picking (CP) approach which reduces the dynamic query evaluation problemto DBOP (Dynamic Bipartite Ordering Problem), a graph optimization problem, which is the focus ofour improvement in this paper.�This work was supported by an NSF-cNPQcollaborative research grant CCR-9900304.1

1.1 Problem StatementAn instance of DBOP consists of a weighted bipartite graph G = (V;E) with bipartition (A;B) and ahidden function � : V ! f0; 1g. The weight w(v) of a node v 2 V is the estimated time required toevaluate the function � over v. The goal is to compute as fast as possible the function
 : E ! f0; 1gde�ned by
(u; v) = �(u)��(v). The only allowed operation is to evaluate the function � over a node. Inthis formulation, note that sets A and B correspond to di�erent attributes of the relation that is queried{ the nodes correspond to distinct attribute values and the edges to tuples in the relation. Figure 1(a)shows a graph corresponding to the set of tuples f(a1; b1); (a1; b2); (a1; b3); (a2; b1)g.As in [7], we assume a distributed scenario with two available processors: D1 and D2 that are usedto evaluate the function � over the nodes of A and B respectively. The goal is to minimize some sort of"makespan," that is, the maximum time by which both D1 and D2 �nish all their evaluations of � so asto determine all the answers to the given query. Figure 1(b) shows an instance for DBOP . The valueinside each node indicates the value of the hidden function �. Assume that w(a) = 1 for every a 2 Aand w(b) = 3 for every b 2 B. In this case, a greedy algorithm that evaluates the nodes with largestdegree �rst has makespan 6 since D1 evaluates a1 followed by a2 and a4, while D2 evaluates b1 followedby b4. Note that after these evaluations, given the shown � values, we can conclude that we have outputall the tuples with
 = 1 even without having examined many nodes (such as a3 or b2). Thus the cruxof the problem is to choose dynamically (based on the given w's and the revealed � values) an order ofevaluation of the nodes for the two processors to minimize makespan.
0

0

1

1

0

1

1

1

1

b1

b2

b3

b4

b5

a1

a2

a3

a4

A
 B

a1

a2

b1

b2

b3

A
 B

(a)

(b)
Figure 1: An instance of DBOPFor an ordering algorithmAlg on a DBOP instance I, let c(Alg; I) denote the time for Alg to evaluate
 on I, that is, c(Alg; I) = maxfc(Alg;D1; I); c(Alg;D2 ; I)g, where c(Alg;D1; I) and c(Alg;D2; I)indicate, respectively, the time in which D1 and D2 �nish their evaluations. In the complexity measurec only the time incurred by the evaluation of � over the nodes of the graph is charged. When the contextis clear we may drop some of the c arguments. We use t(Alg) to denote the total running time spent byAlg on arriving at the evaluation orders in the worst case. Typically, we would like t to be a low-orderpolynomial in the size of the bipartite graph G.De�ne the quality (performance ratio) of an Algorithm Alg for instance I asq(Alg; I) = c(Alg; I)c(Opt; I) ;where Opt is the optimal algorithm for the corresponding instance - the one with minimum evaluationtime. Furthermore, de�ne the absolute quality (quality for short) of an Algorithm Alg asq(Alg) = maxI2Inst� c(Alg; I)c(Opt; I)� ;where Inst is the set of all possible instances for DBOP .2

1.2 Our ResultsIn [7], it was shown that no deterministic algorithm has quality smaller than 2. A simple algorithmcalled MBC (Minimum Balanced Cover) was proposed in that paper, which is optimal under the qualitymetric (has quality 2) but has t(MBC) exponential in the size of G. In order to circumvent this problem,a variant, MBC�, was proposed, that runs in polynomial time, that is t(MBC�) = O(jGj3), but withslightly worse quality: q(MBC�) = 3.In this paper, we �rst present a simple linear time deterministic algorithm for DBOP which hasthe best-possible quality of 2 in the case when all weights w are uniform. In the non-uniform case, wepresent a randomized algorithm that achieves quality 83 . Furthermore, we prove that 32 is a lower boundon the expected quality of any (even exponential-time) randomized strategy.Our paper is organized as follows. In Section 2, we present lower bounds on c(Opt; I). In section 3,we present a deterministic algorithm for uniform weights. In section 4, we present the rMBC algorithm,a randomized version of MBC�. This algorithm is used as a subroutine for 2rMBC , the 83 -expectedquality algorithm proposed in Section 5. In Section 6, we present a lower bound on the quality of anyrandomized algorithm for DBOP . Finally, in Section 7 we present our conclusions and indicate someopen problems.2 Lower BoundsLet G = (A [B;E) be a simple bipartite graph with node weights w(�). A (vertex) cover for G is theunion of two subsets X and Y , X � A and Y � B, such as that for every edge e 2 E, at least one ofe's endpoints is in X [Y . Given V 0 � V , de�ne w(V 0) to be Pv2V 0 w(v).Given a graph G and non-negative numbers g1 and g2, the MinMax Cover MMC(g1; g2) problem isto �nd a cover X [Y for G that minimizes max fg1 + w(X); g2 + w(Y)g, among all possible covers forG. This problem is NP-complete as shown in [7]. Furthermore, it admits the following natural integerprogramming formulation. Minimize tsubject tog1 +Xi2Aw(ai)ai � tg2 +Xj2Bw(bj)bj � tai + bj � 1 8(i; j) 2 Eai 2 f0; 1g 8i 2 Abj 2 f0; 1g 8j 2 BIn the above program, a variable ai (bj) is assigned to 1 if the node ai belongs to the cover and itis set to 0, otherwise.We also consider the well known Minimum Bipartite Vertex Cover (MBVC) problem, which consistsof �nding a cover X [Y for G, with X � A and Y � B, that minimizes w(X) + w(Y). This problemcan be solved in O(jEj(jAj + jBj) log(jEj)) time through a max st
ow algorithm [4, 6]. We have thefollowing lemmas.Lemma 1 Let I = (G; �) be an instance of DBOP and let X� [Y � be a solution of MMC(0,0) for G.Then c(Opt; I) � max fw(X�); w(Y �)g. 3

Proof: For every edge e 2 E, at least one of its endpoints must be evaluated, otherwise it isnot possible to determine
(e). Let Xopt [Yopt be the set of nodes evaluated by Opt when it solves I.Clearly, Xopt [Yopt is a cover for G, otherwise there is an edge e 2 E such that none of its endpoints isevaluated by Opt. Since X� [Y � is an optimal solution of MMC(0,0) for G, it follows thatc(opt; I) � maxfw(Xopt); w(Yopt)g � max fw(X�); w(Y �)g. 2Lemma 2 Let I = (G; �) be an instance of DBOP and let X [Y be a solution of MBVC for G. Then,c(Opt; I) � (w(X) +w(Y))=2 (1)and c(Opt; I) � w(z); (2)for every z 2 X [YProof: The correctness of (1) follows from lemma 1 and from the fact that(w(X) + w(Y))=2 � max fw(X�); w(Y �)g ;where X� [Y � be a solution of MMC(0,0) for G.Now, let z be a node in X [Y and let N(z) be the set of nodes adjacent to z in A [B. Weobserve that either Opt evaluates z or every node in N(z), otherwise there is an edge e 2 E suchthat none of its endpoints is evaluated by Opt. Hence, c(Opt; I) � minfw(z); w(N(z))g. Nevertheless,minfw(z); w(N(z))g = w(z), otherwise replacing z by N(z) we would have a solution for MBVC withweight smaller than that of X [Y , which is a contradiction. 22.1 Further Hybrid Lower BoundsFor the next lower bound, we need additional notation. Let V 0 be a subset of V . We de�ne T (V 0)(denoting the "True" nodes of V 0) by T (V 0) = fv 2 V 0j�(v) = 1g. Moreover, we use N(V 0) to indicatethe neighborhood of V 0. Finally, we de�ne NT (V 0) by N(T (V 0)).Lemma 3 Let I = (G; �) an instance of DBOP . Then,c(Opt; I) � max fw(NT (B)); w(NT (A))gProof: Let a 2 NT (B). It implies that there is b 2 B, with �(B) = 1 such that (a; b) 2 E. Hence,in order to determine whether
(a; b) = 1 or not, the node a must be evaluated. Hence, every node inNT (B) must be evaluated by any algorithm for I. A symmetric argument shows that every node inNT (A) must be evaluated. 2We now present our last lower bound that can be viewed as a generalization of the lower boundspresented in Lemmas 1 and 3. We need to introduce the concept of a essential set.De�nition 1 A set V 0 � V is a essential set if and only if v 2 NT (V) for all v 2 V 0.We observe that if V 0 is a a essential set, then all of its nodes must be evaluated by any algorithm,and in particular, by Opt.Lemma 4 Let I = (G; �) an instance of DBOP . Furthermore, given two essential sets A0 and B0, withA0 � A and B0 � B, let G0 be the graph induced by V n (A0 [B0). If A [B, with A � A and B � B,solves MMC(w(A'),w(B')) for the graph G0, thenc(Opt; I) � maxfw(A0) + w(A); w(B0) + w(B)g4

Proof: Let Xopt [Yopt, with Xopt � A and Yopt � B be the set of nodes evaluated by Opt whenit solves the instance I. Since A0 and B0 are essential sets, it follows that A0 � Xopt and B0 � Yopt.Furthermore, (Xopt n A0) [(Yopt n B0) is a cover for G0, otherwise one of the edges in G0 cannot bedetermined. Since A [B solves MMC(w(A'),w(B')) for the graph G0,maxfw(A0) + w(A); w(B0) + w(B)g � maxfw(A0) + w(Xopt n A0); w(B0) + w(Yopt n B0)g= maxfw(Xopt); w(Yopt)g � c(Opt; I):23 An Algorithm for Uniform WeightsIn this section we present a simple deterministic algorithm which runs in linear time and delivers aquality of 2 in the case when the values of the query weights are identical for all nodes in V .We assume w.l.o.g that w(v) = 1 for all v 2 V . Let M be some maximal matching of G, and letMA =M \A and MB =M \B. Finally we set KA = NT (MB) nMA and KB = NT (MA) nMB.In the �rst phase of the algorithm we evaluate the function � in parallel for the nodes in MA andMB . This takes time jM j = jMAj = jMB j. In the second phase we evaluate � for KA and KB in parallel,requring time maxfjKAj; jKB jg. Since MA[MB is a cover of G, � is evaluated for at least one endpointof each edge in the �rst phase. After the second phase, we have either evaluated both endpoints of anedge, or we have that � is 0 on one of its endpoints, hence the algorithm is correct.For the analysis of the quality guarantee we appeal to Lemma 4. Let G0 be the graph induced byV n (KA [KB), and let A [B be an optimizer for MMC(jKAj; jKB j) in the graph G0 induced by thebipartition (A n KA; B n KB). By Lemma 4, we have that c(Opt; I) � maxfjKAj + jAj; jKB j + jBjg.Thusq � jM j+maxfjKAj; jKB jgmaxfjKAj+ jAj; jKB j+ jBjg � 2 jM j+maxfjKAj; jKB jgjKAj+ jAj+ jKB j+ jBj � 2 jM j+maxfjKAj; jKB jgjM j+ jKAj+ jKB j � 2;where the penultimate inequality follows from the fact that since G0 contains M , and A [B is a coverof G0, jAj+ jBj � jM j.4 A Randomized AlgorithmIn this section we present rMBC , a randomized algorithm for DBOP . This algorithm is used as asubroutine by the 2rMBC algorithm presented in the next section. rMBC can be viewed as a randomizedversion of the MBC� algorithm proposed in [7].Before presenting rMBC , we brie
y outline the MBC� algorithm. MBC� is divided into threesteps. In the �rst step, the MBVC problem is solved for the input graph G. Let A� [B�, with A� � Aand B� � B, be the solution for MBVC obtained in the �rst step. In the second step, the function �is evaluated for the vertices in A� [B�. At the end of this step, at least one endpoint of every edgehas already been computed. Let e = (a; b). If one of the e endpoints, say a, evaluated at the secondphase is such that �(a) = 0, then the evaluation of the other endpoint b is not necessary since
(e) = 0.Therefore, only those vertices adjacent to at least one vertex with � value equal to 1 are evaluated inthe third step. The rMBC algorithm is similar to MBC�, except for the fact that it evaluates thecover nodes following a randomly selected order, while MBC� follows a �xed order. Figure 2 shows thepseudo-code for rMBC .From now, we assume w.l.o.g. that w(A0) � w(B0). In this case, the processor D1 does not becomeidle during the while loop, and as a consequence, 5

Step 1 : Solve MBVC for the graph G obtaining the sets A0 and B0.Do in ParallelProcessor D1:Ne(A0) ;For i := 1 to jA0jSelect randomly a node a from A0 that has not been evaluated yetEvaluate �(a)Ne(A0) Ne(A0) [NT (a)While there exists a node in Ne(B0) that has not been evaluatedor D2 has not processed all the nodes from B0Let a be a node from Ne(B0) that has not been evaluated yetEvaluate �(a)Processor D2 :Ne(B0) ;For i := 1 to jB0jSelect randomly a node b from B0 that has not been evaluated yetEvaluate �(b)Ne(B0) Ne(B0) [NT (b)While there exists a node in Ne(A0) that has not been evaluatedor D1 has not processed all the nodes from A0Let b be a node from Ne(A0) that has not been evaluated yetEvaluate �(b) Figure 2: rMBC Algorithmc(D1; I) = w(A0) + w(NT (B0) nA0) (3)We start the analyzis of rMBC presenting a technical lemma.Lemma 5 Let �(A0) be a random permutation of the nodes in A0 and let �(i) be the ith node in thispermutation. Moreover, let � be the reverse permutation of �, that is, �(i) = �(n�i+1), for i = 1; : : : ; n.Being c(D2; �) the time in which D2 ends its task, assuming an execution of rMBC over a permutation�, then maxfc(D2; �); c(D2; �)gc(Opt; I) � 3 (4)and c(D2; �) + c(D2; �)c(Opt; I) � 5 (5)Proof: First, we prove (4). We have thatmaxfc(D2; �); c(D2; �)g � w(B0) + w(NT (A))On the other hand, it follows from lemmas 2 and 3 thatc(Opt; I) � maxf(w(A0) + w(B0))=2; w(NT (A))gThe inequality (4) follows from the two previous inequalities.6

Now, we consider the inequality (5). Let �j(A0) be the set f�(1); �(2); : : : ; �(j)g and let �(k) be the�rst node of �(A0) such that after its evaluation by D1, the processor D2 does not become idle anymore.Then, we have that c(D2; �) = w(�k(A0)) +w(NT (A0) nNT (�k�1(A0))); (6)Now, let �(k) be the �rst node of �(A0) such that after its evaluation, the processor D2 does notbecome idle anymore. In this case,c(D2; �) = w(�k(A0)) +w(NT (A0) nNT (�k�1(A0))): (7)We divide the analysis into two casescase 1) k + k � jA0j + 1. In this case we have w(�k(A0)) + w(�k(A0)) � w(A0) + w(�(k)), hence itfollows from (6) and (7) thatc(D2; �) + c(D2; �) � w(A0) + maxa2A0fw(a)g + 2w(NT (A0)): (8)case 2) k+k > jA0j+1. In this case we have, (NT (A0)nNT (�k�1(A0)))\(NT (A0)nNT (�k�1(A0))) =;. This in addition with the sum of (6) and (7) yields,c(D2; �) + c(D2; �) � 2w(A0) + w(NT (A0)): (9)On the other hand, it follows from lemmas 2 and 3 thatc(Opt; I) � maxfw(A0)=2;maxa2A0fw(a)g; w(NT (A0))g (10)The inequality (5) can be established through some algebraic manipulations involving (8), (9) and(10). 2Theorem 6 Let I = (G; �) be an instance of DBOP . Ifc(D1; I)c(Opt; I) � 7=3;then E[q(rMBC; I)] � 8=3Proof: Let � be the set of all possible permutations for the nodes in A0. By de�nition,E[q(rMBC; I)] = 1jA0j! X�2�max� c(D1; I)c(Opt; I) ; c(D2; �)c(Opt; I)� � 1jA0j! X�2�max�73 ; c(D2; �)c(Opt; I)�= 12jA0j! X�2��max�73 ; c(D2; �)c(Opt; I)�+max�73 ; c(D2; �)c(Opt; I)��Hence, in order to establish the result, it su�ces to prove thatmax�73 ; c(D2; �)c(Opt; I)�+max�73 ; c(D2; �)c(Opt; I)� � 16=3; (11)for every � 2 �. We assume w.l.o.g. that c(D2; �) � c(D2; �). If c(D2; �) � 8=3, we are done.Hence, we assume that c(D2; �) > 8=3. The correctness of (11) can be established by applying theinequality (4) in the cases where c(D2; �)=c(Opt; I) � 7=3 and the inequality (5) in the case wherec(D2; �)=c(Opt; I) > 7=3. 2 7

5 2rMBC AlgorithmAt this section, we present the 2rMBC Algorithm, a polynomial time algorithm with expected quality8/3.First, the rMBC algorithm is executed until D2 �nishes evaluating the nodes in B0 (we are assumingw.l.o.g. that w(B0) � w(A0)). At this point, the execution is interrupted and 2rMBC analyzes theinformation achieved so far. Based on this analysis, it takes one of the two following decisions: Eitherto resume the execution of rMBC or to execute a second, new algorithm called 2ndCover . Thus, thealgorithm has two phases. The phase 1 is divided into two steps. Let K = NT (B0) n A0. In step 1,2rMBC checks if c(D1; rMBC; I)c(opt; I) � w(A0) + w(K)maxfw(NT (B0)); (w(A0) + w(B0))=2g � 73 (12)If the ratio is not larger than 7=3, then it follows from Theorem 6 that the expected quality of2rMBC (rMBC) for the current instance is not larger than 8/3. In this case, the execution of rMBC isresumed.If the test in step 1 fails, then step 2 is executed. In this step, 2rMBC computes a new lower boundon c(Opt; I). Let G0 the bipartite graph induced by V nK. It is easy to check that K is a essential set.It follows from Lemma 4 that if A [B is a solution to the graph G0, then maxf(w(K) + w(A); w(B)gis a lower bound on c(Opt; I). The main problem is that solving MMC may require exponential time.Hence, instead of solvingMMC(w(K); 0) on G0, 2rMBC solves a linear programming (LP) relaxation ofthe integer programming formulation for MMC(w(K); 0) presented in Section 2. The LP relaxation isobtained replacing the constraints ai 2 f0; 1g and bj 2 f0; 1g by 0 � ai � 1 and 0 � bj � 1 respectively.Let (a�; b�; t�) the optimum solution for the LP relaxation. The end of step 2 consists in checkingwhether c(D1; rMBC; I)c(Opt; I) � w(A0) + w(K)t� � 73 (13)In the positive case, the execution of rMBC is resumed. Otherwise, the following 2ndCover algorithmis executed.5.1 The 2ndCover AlgorithmFirst, the solution of the LP relaxation solved in Step 2 is rounded to obtain a feasible cover A2 [B2for G0, where A2 � A nK and B2 � B. Let x =Pi2AnK a�iw(ai) and y =Pj2B b�jw(bj).The cover is obtained through the following procedure:0) A2 ;; B2 ;1) For every i 2 A nK such that a�i � x=(y + x)A2 A2 [faig20 For every j 2 B such that b�j � y=(y + x)B2 B2 [fbjgNow the processors D1 and D2 are used to evaluate the nodes in A2 and B2 respectively. FinallyD1 and D2 evaluate the nodes from NT (B0 [B2) and NT (A2), respectively, that have not yet beenprocessed.5.2 Algorithm AnalysisIn this section, we analyze the performance of 2rMBC .8

Theorem 7 2rMBC is correct.Proof: If either inequality (12) or inequality (13) holds, then 2rMBC 's correctness follows fromthat of rMBC , which in turn follows from the correctness of MBC� outlined in the introduction ofSection 4. On the other hand, if neither inequality (12) nor inequality (13) hold then 2ndCover isexecuted. Since A0 [B0 is a cover of G, B0 must contain the neighbors of K, hence the algorithmprocesses both endpoints of any edge with an endpoint in K. If A2 [B2 is a cover of G0 = G[V nK]then again an argument analogous to the one used to establish the correctness of MBC� shows thatupon termination of the algorithm,
 may be evaluated for the edges of G0. Thus the only thingwhich remains to be shown is that A2 [B2 indeed covers G0. For an edge ij of G0, we have thata�i + b�j � 1 = x=(y + x) + y=(y + x), hence at least one of i and j must belong to A2 [B2. 2Lemma 8 Let A2 [B2 be the cover for G0 obtained by 2ndCover algorithm. Then,maxfw(A2); w(B2)g � x+ yProof: It follows from the rounding scheme thatw(A2) = Xi2A2wi � Xi2AnK a�iwi(y + x)=x � y + xx Xi2AnK a�iwi = y + x:The analysis for B2 is symmetric. 2Theorem 9 E[q(2rMBC))] � 8=3Proof: First, we consider the case when the execution of rMBC is resumed after the interruption.In this case, either the test at Step 1 or the test at Step 2 is positive, which implies thatw(A0) + w(K)c(Opt; I) � 73 :Therefore, it follows from theorem 6 that E[q(rMBC; I)] � 8=3:Now, we assume that 2ndCover is executed. In this case, the tests performed at Step 1 and 2 fail,that is, inequalities (12) and (13) do not hold. First, using the observation that inequality (12) fails, wehave that w(K) � w(A0)6 + 7w(B0)6 : (14)Using the fact that w(K) + x � t�, and the fact that (13) does not hold, we have that7x � 3w(A0)� 4w(K) (15)Replacing the upper bound on w(K) given by inequality (14) in the inequality above, we conclude thatx � w(A0)=3 � 2w(B0)=3 (16)We have the following upper bound on c(2rMBC; I).c(2rMBC; I) � w(B0) + maxfw(A2); w(B2)g +maxfw(NT (A)); w(NT (B))g:Since w(A2) � x+ y, w(B2) � x+ y and y � t�, we have thatc(2rMBC; I) � w(B0) + x+ t� +maxfw(NT (A)); w(NT (B))g; (17)Since w(NT (A)), w(NT (B)), (w(A) + w(B))=2 and t� are lower bounds on c(Opt; I), thenq(2rMBC; I) � w(B0) + x+ t� +maxfw(NT (A)); w(NT (B)gmaxfw(NT (A)); w(NT (B)); t� ; (w(A0) + w(B0))=2g� 2 + w(B0) + x(w(A0) + w(B0))=2 � 8=3;where the last inequality follows from (16). 2 9

6 A 3/2 Lower Bound for Randomized AlgorithmsIn order to give a lower on the expected quality of any randomized algorithm for DBOP , we applyYao's minmax principle [9].We consider a distribution D for the instances of DBOP , where the only instances with nonzeroprobability are all equally likely and have the following properties.(i) The input graphG = (V;E) has bipartition (A;B), whereA = fa1; : : : ; a2ng andB = fb1; : : : ; b2ng.Moreover, E = f(ai; bi)j1 � i � 2ng and w(v) = 1 for every v 2 V .(ii) jT (A)j = jT (B)j = n and
(e) = 0 for every e 2 E.Observe that there are exactly �2nn � instances with these properties. In distribution D, all of themhave probability 1=�2nn �. By Yao's principle, the average case quality of an optimal deterministic algo-rithm for D is a lower bound on the expected quality of any randomized algorithm for DBOP .Our �rst observation is that c(Opt; I) = nfor every instance I with nonzero probability, once Opt evaluates in parallel the nodes in A n T (A) andB n T (B). Let OptD be the optimal deterministic algorithm for distribution D. The expected qualityof OptD is given by the expected cost of OptD divided by n.In order to evaluate the expected cost of OptD, we �rst calculate the expected cost of the optimalsequential algorithm for distribution D. Next, we argue that the optimal parallel algorithm for Dcannot overcome the sequantial one by a factor larger thatn 2. The sequential algorithm uses only oneprocessor to evaluate � over the nodes of the graph. Hence, its cost is given by the number of evaluatednodes. Let k1 � k2. We use P (k1; k2) to denote the expected cost of an optimal sequential algorithmfor a distribution Dk1;k2 , where the only instances with nonzero probability are all equally likely andhave the following properties:(i) The input graph G = (V;E) has bipartition (A;B), where A = fa1; : : : ; ak1+k2g and B =fb1; : : : ; bk1+k2g. Moreover, E = f(ai; bi)j1 � i � k1 + k2g.(ii) maxfA n jT (A)j; B n jT (B)jg = k1, minfA n jT (A)j; B n jT (B)jg = k2 and
(e) = 0 for everye 2 E.Clearly, the optimal algorithm for distribution Dk1;k2 �rstly evaluates a node from the side with k1false node. If it succeds to �nd a false node, say v, then it does not need to evaluate the node adjacentto v. Otherwise, it has. We can formulate the following recursive equation when k1 � k2 > 0.P (k1; k2) = k1k1 + k2 [1 + P (maxfk1 � 1; k2g;minfk1 � 1; k2g)] + k2k1 + k2 [2 + P (k1; k2 � 1)];Moreover, P (k1; 0) = k1, since the optimal algorithm just need to evaluate the nodes from one sideof the graph. It is possible to verify that limn!1 P (n; n)n = 3Since, the optimal parallel algorithm OptD cannot overcome the sequential one by a factor largerthan 2, we have that limn!1 E[c(OptD)]n � 3=2Therefore, we can state the following theorem.Theorem 10 Let Alg be a randomized algorithm for DBOP . Then, E[q(Alg)] � 1:5.10

7 ConclusionIn this paper we have addressed the problem of evaluating queries in the presence of expensive predicates.We presented a randomized polynomial time algorithm with expected quality 8/3 for the case of generalweights. For the case of uniform weights, we show that a very simple deterministic linear time algorithmhas quality 2, which is the best possible quality achievable by a deterministic algorithm [7]. On theother hand, we gave a lower bound of 1.5 on the expected quality of any randomized algorithm. Twomajor questions remain open:1. Is there a polynomial time deterministic algorithm with quality 2 for non uniform weights ?2. Where exactly in between 1.5 and 2.667 is the exact value of the quality of the best possiblepolynomial randomized algorithm for DBOP ?For future research, we intend to perform experiments comparing the results from the randomizedalgorithm presented in this paper with other available algorithms, in particular, those proposed earlierin [1, 5, 7].References[1] L. Bouganim, F. Fabret, F. Porto, and P. Valduriez, Processing queries with expensive functions andlarge objects in distributed mediator systems, in Proc. 17th Intl. Conf. on Data Engineering, April 2-6, 2001,Heidelberg, Germany, 2001, pp. 91{98.[2] S. Chaudhuri and K. Shim, Query optimization in the presence of foreign functions, in Proc. 19th Intl.Conf. on Very Large Data Bases, August 24-27, 1993, Dublin, Ireland, 1993, pp. 529{542.[3] D. Chimenti, R. Gamboa, and R. Krishnamurthy, Towards on open architecture for LDL, in Proc. 15thIntl. Conf. on Very Large Data Bases, August 22-25, 1989, Amsterdam, The Netherlands, 1989, pp. 195{203.[4] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum
ow problem, in Proceedings ofthe Eighteenth Annual ACM Symposium on Theory of Computing, Berkeley, California, 28{30 May 1986,pp. 136{146.[5] J. M. Hellerstein and M. Stonebraker, Predicate migration: Optimizing queries with expensive predi-cates, in Proc. 1993 ACM SIGMOD Intl. Conf. on Management of Data, May 26-28, 1993, Washington, D.C.,USA, 1993, pp. 267{276.[6] D. S. Hochbaum, Approximating clique and biclique problems, Journal of Algorithms, 29 (1998), pp. 174{200.[7] E. S. Laber, F. Porto, P. Valduriez, and R. Guarino, Improving the complexity of warm-up algorithm,Tech. Rep. 01, Departamento de Inform�atica, PUC-RJ, Rio de Janeiro, Brasil, April 2002.[8] T. Mayr and P. Seshadri, Client-site query extensions, in Proc. 1999 ACM SIGMOD Intl. Conf. onManagement of Data, June 1-3,1999, Philadelphia, Pennsylvania, USA, 1999, pp. 347{358.[9] A. C. Yao, Probabilistic computations : Toward a uni�ed measure of complexity, in 18th Annual Symposiumon Foundations of Computer Science, Long Beach, Ca., USA, Oct. 1977, IEEE Computer Society Press,pp. 222{227.

11

