
B

n
�

a

i

V

n
l

Journal of Computer and System Sciences 58, 101�108 (1999)

A Constant-Factor Approximation

Avrim

School of Computer Science, Carnegie Mello
E-mail: avrim

R. R

Graduate School of Industrial Administration, Carneg
E-mail: rav

an

Santosh

School of Computer Science, Carnegie Mello
E-mail: svempa

Received Septe

Given an undirected graph with nonnegative edge costs and an
integer k, the k-MST problem is that of finding a tree of minimum cost
on k nodes. This problem is known to be NP-hard. We present a simple
approximation algorithm that finds a solution whose cost is less than 17
times the cost of the optimum. This improves upon previous perfor-
mance ratios for this problem &O(- k) due to Ravi et al., O(log2 k)
due to Awerbuch et al., and the previous best bound of O(log k) due
to Rajagopalan and Vazirani. Given any 0<:<1, we first present a
bicriteria approximation algorithm that outputs a tree on p�:k vertices
of total cost at most 2pL�(1&:)k, where L is the cost of the optimal
k-MST. The running time of the algorithm is O(n2 log2 n) on an n-node
graph. We then show how to use this algorithm to derive a constant
factor approximation algorithm for the k-MST problem. The main
subroutine in our algorithm is an approximation algorithm of Goemans
and Williamson for the prize-collecting Steiner tree problem.] 1999

Academic Press

1. INTRODUCTION

Given an undirected graph G=(V, E) with nonnegative
edge costs and an integer k, the k-MST problem is that of
finding a tree of minimum cost that spans k vertices of G.
We refer to a tree that spans k vertices as a k-tree. Note that
we may assume that the edge costs satisfy the triangle
inequality without loss of generality [15].

The main result of this paper is a constant factor approxi-
mation algorithm for the k-MST problem. This algorithm
naturally extends to give constant factor approximations for

Article ID jcss.1997.1542, available online at http:��www.idealibrary.com on

* Supported in part by NSF National Young Investigator Grant
CCR-9357793 and a Sloan Foundation Research Fellow ship.

- Supported in part by NSF CAREER Grant CCR-9625297.
10
Algorithm for the k-MST Problem

lum*

University, Pittsburgh, Pennsylvania 15213

cs.cmu.edu

vi-

ie Mellon University, Pittsburgh, Pennsylvania 15213

�cmu.edu

d

empala

University, Pittsburgh, Pennsylvania 15213

a�cs.cmu.edu

mber 16, 1996

several problems whose solution is based on the k-MST.
One example is the quota-driven TSP in which we are given
an undirected graph with distances on the edges and values
(positive real numbers) on the vertices. Our goal is to find
a tour such that the sum of the values of the vertices reached
is at least some specified quota, while minimizing the total
distance traveled. Other examples are the more general
prize-collecting traveling salesman problem of Balas [3]
and the orienteering problem of Golden, Levy and Vohra
[11]. More details of the relation of these problems to the
k-MST problem can be found in [2].

1.1. Previous Work

The k-MST problem was shown to be NP-hard by
R. Ravi, Sundaram, Marathe, Rosenkrantz, and S. S. Ravi
[15] and independently by Fischetti et al. [6], and also
by Zelikovsky and Lozevanu [16]. Ravi et al. [15] also
presented an O(- k)-approximation algorithm for this
problem. This was improved by Awerbuch, Azar, Blum,
and Vempala [2] who gave an O(log2 k)-approximation
algorithm. Recently, Rajagopalan, and Vazirani [14] obtained
an O(log k)-approximation algorithm for the k-MST
problem.

For the k-MST problem arising from points in the plane,
Ravi et al. [15] presented an O(k1�4)-approximation algo-
rithm. The approximation ratio was improved to O(log k)
by Garg and Hochbaum [8], and subsequently to a constant
factor by Blum, Chalasani, and Vempala [5]. A smaller
constant was obtained by Mitchell [12].
1 0022-0000�99 �30.00
Copyright � 1999 by Academic Press

All rights of reproduction in any form reserved.

1.2. Main Result

The rooted version of the k-MST problem requires
inclusion of a specific root node in the k-tree. As observed
in [2], solving the rooted and unrooted versions are essen-
tially equivalent. We present a solution to the rooted version
of the problem for simplicity.

Theorem 1. There is an approximation algorithm for the
rooted k-MST problem on general graphs with performance
ratio at most 17 and running time O(n2 log4 n) on an n-node
graph.

The key ingredient in proving the above theorem is the
following bicriteria approximation algorithm.

Theorem 2. Given any 0<:<1, there is an approxima-
tion algorithm for the rooted k-MST problem that outputs a
tree on p�:k vertices of total cost at most 2pL�(1&:) k,
where L is the cost of the (optimal) k-MST. The running time
of the algorithm is O(n2 log2 n) on an n-node graph.

Our proof of the above theorem involves a reduction to
a prize-collecting Steiner tree problem. This problem is
defined on an undirected graph with costs on edges, a subset
of nodes specified as terminals, and nonnegative penalty
values on the terminals. The goal is to find a tree such that
the total cost of edges in the tree plus the penalties of all the
terminals not in the tree is minimized.

We prove Theorem 2 by reducing our bicriteria problem
to a version of a prize-collecting Steiner tree problem and
applying an approximation algorithm of Goemans and
Williamson [10] for the prize-collecting Steiner tree problem.
However, the performance guarantee they prove for their
algorithm is not sufficient for our purposes, and we prove a
strengthening of it in Theorem 4.

We can solve the unrooted problem by trying all the
different vertices as roots and outputting the minimum tree
obtained. This gives us an extra factor of n in the running
time. As an easy consequence of Theorem 2 and Lemma 1
(see Section 4) we also get the following result for the
unrooted problem.

Theorem 3. Given any 0<:<1 there is an approxima-
tion algorithm for the unrooted k-MST problem that outputs
a tree on p vertices, :k�p�2:k, of cost at most 2pL�(1&:)k.
The running time of the algorithm is O(n3 log2 n).

In the next section, we present the main bicriteria approx-
imation algorithm used to prove Theorem 2 by showing a
reduction to the prize-collecting problem. For the sake of
completeness, we include a description of the Goemans�
Williamson algorithm for prize-collecting Steiner trees.

102 BLUM, RAVI, A
In the following section, we present our analysis of the
performance ratio and the running time. In Section 4, we
show how Theorem 1 follows from Theorem 2.
2. ALGORITHM

We will consider the rooted version of the k-MST problem
where we are given a root r and the tree is required to contain
the root. Suppose we know that the cost of the optimal tree
with k vertices is L. We will clarify this issue later in Section 3.1.
In this section we show how to find a tree with p vertices,
p�:k, of cost at most p } (2L�(1&:) k) for any 0<:<1.

First, we reduce our problem to an instance of the rooted
prize-collecting Steiner tree problem. The root node for the
Steiner tree problem is the same as that for the k-MST
problem. All nodes in the graph are designated terminal
nodes and assigned the same penalty value of ?=L�(1&:) k.
Next, we apply the approximation algorithm of Goemans
and Williamson [10] to this prize-collecting problem. We
include an intuitive overview and formal description of the
prize-collecting approximation algorithm of Goemans and
Williamson as applied to our problem for completeness.1

In the next section, we prove a slight strengthening of their
performance guarantee and use that in deriving our
performance bounds in Theorem 2.

2.1. Overview

The input to the algorithm is an undirected graph
G=(V, E) with edge costs ce�0, a root r, the cost L of an
optimal k-tree containing r, and a fraction :. The algorithm
outputs a tree F $ containing r and at least :k nodes. Viewed
as a rooted prize-collecting Steiner tree problem, the algo-
rithm tries to find a tree containing the root r such that the
total cost of the edges in the tree plus the sum of the penalties
of nodes not in the tree is minimized. Note that the penalty
term is exactly equal to the number of nodes not in the tree
times the uniform penalty value of L�(1&:) k.

The Goemans�Williamson algorithm for this problem is
based on the primal�dual method applied to the following
linear programming relaxation of the prize-collecting problem.
For a subset of vertices S let $(S) denote the set of edges
with one endpoint in S and the other outside S:

Minimize :
e # e

cexe+ :
v{r

(1&zv) ?v

subject to :
e # $(S)

xe�zv , v # S; r � S

xe�0, e # E

zv�0, v # V.

In the integral strengthening of the program, the variables
xe and zv are required to be binary. The indicator variable
zv denotes whether the node v is included in the tree, and the

ND VEMPALA
nontrivial constraints insist that cuts which separate the

1 Readers familiar with this algorithm can skim the overview and
description of the algorithm.

O

root from a node included in the tree must be covered
or crossed at least once. The dual to the above linear
programming relaxation is the following:

Maximize :
S: r � S

yS

subject to :
S: e # $(S)

yS�ce , e # E

:
S/T

yS� :
v # T

?v , T/V; r � T

yS�0, S/V; r � S.

We begin with an intuitive description of the algorithm.
The algorithm runs in two phases. In the first phase we
grow clusters while simultaneously building a tree for each
cluster, and in the second, we prune inessential edges to
retain the desired tree.

In the first phase the algorithm grows clusters while
maintaining a forest F of edges that contains one tree per
cluster. Each cluster also has a potential value which is used
to guide the growth process. We can think of the potential
of a cluster as the price it is willing to pay for connecting
into the tree containing r. Initially, F is empty and, hence,
each vertex is in a connected component (cluster) by itself.
All initial components except the one containing the root
node are considered active, i.e., ready to grow. The potential
of every initial cluster (node) is set to ?v=L�(1&:) k,
where : is our input parameter.

The algorithm is perhaps better visualized as running in
continuous, rather than discrete time. As time progresses,
every cluster grows a breadth-first region around it, with all
clusters growing at the same rate. To grow for a ``width'' or
breadth-first distance of =, the cluster must expend potential
equal to =. As the algorithm proceeds, some clusters may
meet; for instance, the very first meeting will occur when the
clusters growing from the two nearest neighbors in the
graph meet at the midpoint of the edge between them. When
two clusters meet, they are merged into a single cluster and
their remaining potentials are added together to become the
remaining potential of the new cluster. At this point, the
edge along which they meet is added to connect up the trees
of the two merging clusters into a single tree for the new
cluster. Another event that may happen is that a cluster may
expend all its potential without meeting another cluster. In
this case, the cluster stops growing and is deactivated. When
a cluster is deactivated, the nodes inside are stamped with
the ``time of death'' (technically, they are labeled with the set
of vertices in the cluster).

Formally, to determine the choices in the first phase, the
algorithm keeps a set of growth variables, yS , one for each

CONSTANT-FACTOR APPR
subset S of vertices. These are all initially implicitly set to
zero. A growth variable can be positive for a subset of
vertices, iff the vertices form an active component at some
point in the first phase. A useful property that results is that
if yS>0 and yS$>0 then either S and S$ are disjoint, or else
one of the two contains the other.

The values assigned to the growth variables by the
algorithm are such that they form a feasible solution to the
dual program for the prize-collecting problem. In this way,
the two events mentioned above correspond to making the
two different types of constraints in the dual program tight.
More formally, at each step of the first phase we increase
uniformly the yS 's for all the active components by a value
= which is the largest possible without violating one of the
following two constraints arising from the dual program:

(a) For all e # E,

:
S: e # $(S)

yS�ce . (1)

(b) For all T/V,

:
S�T

yS� :
i # T

?i . (2)

Increasing yS 's causes one of the above constraints to
become tight. If a constraint of the first type becomes tight,
that happens for some edge e between two connected compo-
nents and the algorithm adds this edge to F. If a constraint
of the second type becomes tight, this happens for some
active component, and we then deactivate the component.
In this way, we maintain that the set of variables yS form a
feasible solution to the dual of the prize-collecting problem.
Suppose OPT $ denotes an optimal solution for the prize-
collecting problem. We get the following observation as a
consequence of weak duality.

Fact 1.

OPT $�:
S

yS .

In the second phase, we prune some edges from the forest
F found in the first phase to obtain the final solution. In
particular, we remove as many edges as we can from F while
maintaining two properties: first, all unlabeled vertices in
the root component must remain connected to the root
node. Second, if a vertex with label C is connected to the
root, then every vertex with label C� $C must be connected
to the root as well.

A simple two-step procedure can accomplish this pruning;
first, we consider the subtree formed by all edges in F that
lie on some path between an unlabeled node and the root.
Then, for every labeled vertex in this subtree, if its label is C,

103XIMATION ALGORITHM
we retain all edges that connect vertices with labels C� $C to
the root. Note that if a tree in F does not contain the root
node, then all its edges are deleted. After the pruning is

c
FIG. 1. The approximation algorithm for prize-

completed, let C$ be the resulting connected component
containing the root, and let F $ be the set of its edges.

The complete description of the algorithm is in Fig. 1.

3. ANALYSIS

Our analysis relies on the following observation which
was made independently in [9]. Let OPT $ be the cost
of a minimum solution to the prize-collecting Steiner tree
problem.

Theorem 4. The algorithm produces a connected compo-
nent C$ with a set of edges F $ such that

104 BLUM, RAVI, A
:
e # F $

ce+2 :
i � C$

?i�2OPT $.
ollecting trees applied to find a bicriteria k-MST.

The theorem says that the sum of the costs of the edges of
the tree output by the algorithm plus twice the penalties on
nodes not in the tree is at most twice the minimum possible.
We now exploit this fact via an appropriate choice of
penalties on the nodes, ?i=L�(1&:)k.

Corollary 5. The cost of the tree output by the algorithm
is at most 2pL�(1&:) k and it has at least :k vertices.

Proof. Let ?i=L�(1&:) k. Let p be the number of
vertices in the final tree output. Then from Theorem 4 we
have

ND VEMPALA
:
e # F $

ce+2(n& p)
L

(1&:) k
�2 \L+(n&k)

L
(1&:) k+ .

O

Rearranging terms,

:
e # F $

ce�
2(p&:k) L

(1&:) k

whence the claim. K

Proof of Theorem 4. The proof of this theorem follows
the proof of the analogous theorem in [10].

Recall that Cr is the component containing the root at the
termination of the first phase of the algorithm. After the
pruning in the second phase, a subset of the nodes C$�Cr

are retained in the final tree F $.
First, we consider vertices that are not in the component

Cr . Since all such vertices belong to deactivated components
(at termination) and we maintain the condition in Eq. (2),
we have that

:
i � Cr

?i= :
S: S�V"Cr

yS . (3)

Next consider the vertices in Cr . By the construction,
every vertex of Cr not spanned by F $ lies in a component
deactivated at some point in the algorithm. Further, if a
vertex v in a deactivated component Ci is not spanned by F $,
then no vertex of Ci is spanned by F $. With these observa-
tions we can partition the vertices of Cr not spanned by F $
into disjoint deactivated components C1 , ..., Cl . Thus Cr is
the disjoint union of the sets C$, C1 , ..., Cl .

Using Fact 1 that �S yS is a lower bound on OPT $, what
we need to show is

:
e # F $

ce+2 :
j

:
i # Cj

? i+2 :
i � Cr

? i

�2 :
S�V"Cr

yS+2 :
S�Cr

yS .

Using Eq. (3) above, this reduces to showing

:
e # F $

ce+2 :
j

:
i # Cj

?i�2 :
S�Cr

yS ,

which is the same as

:
e # F $

:
S: e # $(S)

yS+2 :
j

:
S�Cj

yS�2 :
S�Cr

yS .

Rewriting the first term in the LHS (summing over S
instead of over e), we have

CONSTANT-FACTOR APPR
:
S�Cr

yS |F $ & $(S)|+2 :
j

:
S�Cj

yS�2 :
S�Cr

yS . (4)
We show by induction that the above condition is main-
tained at every step of the algorithm. Initially this is true
since all the yS 's are zero.

At some stage let C be the set of active components. Let
H be the graph formed by considering active and inactive
components that are subsets of Cr as vertices and the edges
e # F $ & $(C) for active C�Cr as the edges of H. Discard
vertices corresponding to isolated inactive vertices.

We need some more notation. Let Na and N i denote the
active and inactive vertices in H, respectively. Let Nd denote
the vertices active in H, but in some inactive component Cj

at the end of the algorithm. Finally, let degv denote the
degree of a vertex in H. Note that Nd corresponds to vertices
that are subsets of some deactivated component not
spanned by F $, so Nd=[v # Na : degv=0].

At the current step, the increase in the LHS of (4) is
=(�v # Na

degv+2 |Nd |) while the increase in the RHS is
2= |Na |. We would like to show that �v # Na

degv+2 |Nd |�
2 |Na |. Since the degree of a vertex in Nd is zero, it is enough
to show that �v # Na&Nd

degv+2 |Nd |�2 |Na | which is
equivalent to

:
v # Na&Nd

degv�2 |Na&Nd |.

To prove this we shall need one last fact, namely that all
but one of the leaves of H are all active vertices. For suppose
that v is an inactive leaf of H not containing r, adjacent
to edge e, and let Cv be the connected component corre-
sponding to v. Since Cv was deactivated, no vertex of Cv is
unlabeled; Also since it is a leaf it is not on a path between
any unlabeled vertex and r. So the edge e can be deleted in
the second phase and e � F $, a contradiction. Therefore,

:
v # Na&Nd

degv � :
v # (Na&Nd) _ Ni

degv& :
v # Ni

degv

�2(|(Na&Nd) _ Ni |&1)&(2 |Ni |&1)

�2 |Na&Nd |&1.

We used above the fact that all but one inactive vertex
have degree at least 2, and that H is a tree on the vertices
(Na&Nd) _ Ni . K

3.1. Turning the Proof into an Algorithm

The algorithm in the proof of Theorem 2 assumes that L,
the cost of a k-MST is known. One simple way to fix this
lack of information is to run the algorithm for a guess value
of L and perform binary search on the guess value depend-

105XIMATION ALGORITHM
ing on the outcome of the algorithm (a smaller value results
in the algorithm terminating with fewer unlabeled nodes in
the root component). This would require O(log L�) invocations

of the basic algorithm where L� is the sum of the k&1 largest
edge-costs in the graph.

The number of invocations of the basic algorithm can be
reduced to O(log k) by providing an upper bound and a
lower bound on the value of L that differ by a factor of at
most k. Let l denote the shortest distance such that there
exists at least k nodes within distance l from the root r.
Then l�L�k } l, and we have the required bound.

The running time of the algorithm then follows from
noting that the basic algorithm can be implemented in
O(n2 log n) time using ideas from [10].

4. COMPLETION

The algorithm presented so far has the following guarantee.
Given an integer k, a bound L on the cost of the optimal
k-MST, and : # (0, 1), the algorithm finds a tree on p�:k
vertices of cost at most p } (2L�(1&:) k).

There are two issues that must be dealt with to yield our
final k-MST result. First, it is possible that the algorithm
finds a tree with too many vertices; i.e., p is much larger than
k. Second, if p<k then we need to ``boost'' the tree found to
a k-MST.

We handle the first problem as follows. Before running
the algorithm, we remove all vertices of distance greater
than L from the root, as these cannot possibly be in the
optimal tree. We now run the algorithm. If the result is a tree
on p>k vertices, we apply the following lemma with q=k.

Lemma 1. Given a tree T on p vertices and an integer
q�p, we can find a subtree T $ of T on p$ vertices such that
p$ # [q, 2q] and cost(T $)�(p$�p) cost(T). The running time
of this procedure is O(n2).

Lemma 1 (with q=k) guarantees that the resulting tree
T $ has at least k vertices and cost at most 4L�(1&:). We
then pay an additional cost at most L to connect T $ to the
root, resulting in a total cost at most L+4L�(1&:). So, for
instance, if we run the bicriteria algorithm with :=1�2 and
it produces a tree on too many vertices, we can use this
lemma to find a k-tree of cost at most 9L.

Proof of Lemma 1. If p�2q we are done. Otherwise,
notice that in any tree of p vertices, there exists some vertex
v such that removing v produces a forest in which each tree
has at most p�2 vertices. Let T1 , ..., Td be the trees produced
by removing v. Let pi be the number of vertices in Ti and let
Ci be the cost of Ti plus the length of the edge connecting Ti

to v in the original tree. This means that the cost of T is
C1+ } } } +Cd and p= p1+ } } } + pd+1. Therefore, there
must exist some i such that Ci �pi�cost(T)�p. So, we simply

106 BLUM, RAVI, A
remove tree Ti from T, which preserves (or improves) the
cost-to-vertices ratio of the tree remaining and repeat.
Notice that each iteration reduces the size of T by less than
a factor of 2, so we can be assured that its size will eventually
fall within our desired window. K

We now handle the second problem listed: boosting the
tree found in the case that it is too small. We do this using
the notion of an (a, b)-tree approximator following [4]. An
(a, b)-tree approximator is given quantities = and L and has
the following guarantee: if there exists a rooted tree on at
least (1&=) n vertices having total weight at most L, the
algorithm will find a rooted tree on at least (1&a=) vertices
having total weight at most bL. It is easy to see (as noted
in [4]) that the results of Goemans and Williamson on
approximating the prize-collecting Steiner tree problem [10]
yield a (3, 6)-tree approximator. Goemans and Kleinberg
[9] show that the Goemans�Williamson algorithm in fact
produces a (2, 4)-tree approximator. These approximators
work by calling the prize-collecting Steiner tree algorithm
with a suitable choice of penalties. Using this fact, we prove
the following theorem.

Theorem 6. Let L be an upper bound on the cost of the
optimal rooted k-MST, and let # # [0, 1�2]. Given a rooted
tree on (1&#) k vertices having cost at most 4L, in time
O(n2 log2 n) we can produce either:

(i) A rooted tree on at least (1&20�21#) k vertices of
cost at most 4L, or

(ii) A rooted tree on at least k vertices of cost at most 17L.

We can satisfy the preconditions of Theorem 6, in
particular that #�1�2, by initially running the bicriteria
algorithm with :=1�2. Assuming the ``first problem''
discussed above does not occur, this will find a tree on at least
k�2 vertices with cost at most 4L. (If the ``first problem'' does
occur, then as noted above we can find a tree on k vertices
of total cost at most 9L and we are done.) Now, applying
Theorem 6 O(log k) times yields a constant factor solution
to the k-MST. Note that we do this for each of possibly
O(log k) guess values for L. This gives the performance ratio
and the running time claimed in Theorem 1.

Proof of Theorem 6. The idea is similar to that used in
[2] to reduce their performance ratio by a logarithmic
factor. We are given a rooted tree with (1&#) k vertices. We
know that in the graph obtained by contracting the current
tree nodes into the root, there exists a rooted tree on #k
vertices of total cost at most L. We now apply our bicriteria
approximation algorithm with :=5�7 on the remaining
graph. Let us assume for now that the tree returned has at
most #k vertices, and so its cost is at most 7L; we will return
to the case that it has too many vertices at the end of the
proof (If the tree found has more than #k vertices, we can,

ND VEMPALA
immediately achieve using Lemma 1 a k-tree of cost of at
most 4L+(L+4L�(1&:))=19L; the extra complication is
just in reducing this cost to 17L.)

O

Let T be the union of our original tree and the new tree
found, and p be the number of vertices in T. Note that
p�(1&#) k+5�7#k=(1&2�7#) k.

Define ==#�3, and let us run the (2, 4)-tree approximator
on the subgraph induced by the nodes of the tree T using
this =. By our metric assumption on the costs, note that the
subgraph induced by T has distances equal to the shortest
path distance in G. If it is the case that the optimal tree has
at least (1&=) p vertices inside T, then the approximator
will find a tree on at least (1&2=) p vertices of total cost at
most 4L. Using our definition of = and our bound on p, this
tree contains at least (1&2�3#)(1&2�7#) k�(1&20�21#) k
vertices, satisfying property (i) of the Theorem as desired.

If the approximator fails to find the desired number of
vertices at the desired cost, it means that the optimal tree
has fewer than (1&=) p vertices inside T, and therefore
at least k$=k&(1&=)p vertices outside T. We now run
our bicriteria algorithm one final time, with := 1

2 , on the
remaining graph with tree T contracted to a root node. We
are now guaranteed that our total number of vertices found
is at least

p+ 1
2 (k&(1&=) p)= 1

2k+(1
2+=�2) p

� 1
2k+(1

2+#�6)(1& 2
7#) k

=k+(#�42�21) k

�k (since #�1�2).

If we did not run into our ``first problem'' of finding too
many vertices in this run of the algorithm (i.e., we found
between 1

2 k$ and k$ vertices), we are done with total cost at
most 4L+7L+4L=15L. If the tree found did have more
than k$ vertices, we apply Lemma 1 with q= 1

2k$ to find a
low cost subtree having between 1

2k$ and k$ vertices. In this
case we may need to pay an additional cost L to connect the
subtree to the root, for a total of 16L.

We have now proven the theorem assuming that we are
satisfied with a total cost of 19L. To reduce the constant to
17 we must handle the case that when we ran the bicriteria
algorithm with :=5�7, we found too many vertices. We do
this by applying the algorithm of Lemma 1 with q=(5�7)#k,
and consider two cases depending on the number of vertices
p$ in the subtree found:

1. The first case is that p$ # [#k, (10�7)#k]. This means
that the cost of the subtree is at most 10�7 } 2L�(1&:)
=10L, or a total of 11L when we connect it to the root.
Adding this cost to the 4L cost of our initial tree results in
a k-tree of cost at most 15L.

CONSTANT-FACTOR APPR
2. The second case is that p$ # [(5�7)#k, #k]. This means
that the cost of the subtree is at most 7L, or 8L when we
connect it to the root. We can thus continue in the proof as
if this were the tree returned by the bicriteria algorithm,
paying an extra cost of L for a total of 17L.

To show the running time, note that we used at most two
calls to our bicriteria approximator, one call to the (2, 4)-
tree approximator of [9], and one call to the procedure in
the proof of Lemma 1. The tree approximator in [9] can be
implemented using at most log n calls to the prize-collecting
Steiner tree approximation algorithm of [10] giving a
running time O(n2 log2 n). The bicriteria approximation has
running time from Theorem 2. The procedure in Lemma 1
takes O(n2) time. Thus the overall running time is as claimed.

K

5. SUBSEQUENT WORK

Subsequent to our work, Garg [7] has shown how a
variant of our approach achieves a 3-approximation algo-
rithm for the k-MST problem. He also shows that the
integrality gap of a natural integer programming formula-
tion for the k-MST problem is also three, which suggests
that a different approach may be needed to further improve
the performance ratio for the k-MST problem. For the case
of the k-MST problem on points in the plane, polynomial-
time approximation schemes have been derived independently
by Arora [1] and Mitchell [13].

ACKNOWLEDGMENTS

The authors thank Naveen Garg and Balaji Raghavachari for
stimulating discussions on the k-MST problem.

REFERENCES

1. S. Arora, Polynomial-time approximation schemes for Euclidean TSP
and other geometric problems, in ``Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, 1996,'' pp. 2�13.

2. B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, Improved approxi-
mation guarantees for minimum-weight k-trees and prize-collecting
salesmen, in ``Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, May 1995,'' pp. 277�283.

3. E. Balas, The prize collecting travelling salesman problem, Networks
19 (1989), 621�636.

4. A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan,
and M Sudan, The minimum latency problem, in ``Proceedings of
the 26th Annual ACM Symposium on Theory of Computing 1994,''
pp. 163�171.

5. A. Blum, P. Chalasani, and S. Vempala, A constant-factor approxima-
tion for the k-MST problem in the plane, in ``Proceedings of the 27th
Annual ACM Symposium on Theory of Computing, May, 1995,''
pp. 294�302.

6. M. Fischetti, H. W. Hamacher, K. Jrnsten, and F. Maffioli, Weighted
k-cardinality trees: complexity and polyhedral structure, Networks 24

107XIMATION ALGORITHM
(1994), 11�21.
7. N. Garg, A 3-Approximation for the Minimum Tree Spanning k

Vertices, in ``Proceedings of the 37th Annual Symposium on Founda-
tions of Computer Science, 1996,'' pp. 302�309.

8. N. Garg and D. Hochbaum, An O(log k) approximation algorithm for
the k minimum spanning tree problem in the plane, in ``Proceedings of
the 26th Annual ACM Symposium on Theory of Computing, 1994,''
pp. 432�438.

9. M. Goemans and J. Kleinberg, An improved approximation ratio for
the minimum latency problem, in ``Proceedings of the 7th Annual
ACM-SIAM Symposium on Discrete Algorithms, 1996,'' pp. 152�158.

10. M. Goemans and D. Williamson, A general approximation technique
for constrained forest problems, SIAM J. Comput. 24 (1995), 296�
317.

11. B. L. Golden, L. Levy, and R. Vohra, The orienteering problem, Naval
Res. Logistics 34 (1987), 307�318.

12. J. S. B. Mitchell, Guillotine subdivisions approximate polygonal
subdivisions: A simple new method for the geometric k-MST problem,

108 BLUM, RAVI, A
in ``Proceedings of the 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, 1996,'' pp. 402�408.

13. J. S. B. Mitchell, Guillotine subdivisions approximate polygonal
subdivisions: Part II��A simple polynomial-time approximation
scheme for geometric k-MST, TSP, and related problems, manuscript,
April 30, 1996. [SIAM J. Comput., to appear]

14. S. Rajagopalan and V. Vazirani, Logarithmic approximation of
minimum weight k trees, unpublished manuscript.

15. R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and
S. S. Ravi, Spanning trees short and small, in ``Proceedings of the 5th
Annual ACM-SIAM Symposium on Discrete Algorithms, 1994.''

16. A. Zelikovsky and D. Lozevanu, Minimal and bounded trees, in
``Tezele Cong. XVIII Acad. Romano-Americane, Kishinev, 1993,''
pp. 25�26.

ND VEMPALA

	1. INTRODUCTION
	2. ALGORITHM
	FIG. 1

	3. ANALYSIS
	4. COMPLETION
	5. SUBSEQUENT WORK
	ACKNOWLEDGMENTS
	REFERENCES

