
Parallelizing Elimination Orders with Linear FillClaudson Bornstein1 Bruce Maggs2 Gary Miller3 R. Ravi4School of Computer Science1;2;3 andGraduate School of Industrial Administration4Carnegie Mellon UniversityPittsburgh, PA 15213AbstractThis paper presents an algorithm for �nding parallelelimination orders for Gaussian elimination. Viewinga system of equations as a graph, the algorithm can beapplied directly to interval graphs and chordal graphs.For general graphs, the algorithm can be used to paral-lelize the order produced by some other heuristic suchas minimum degree. In this case, the algorithm is ap-plied to the chordal completion that the heuristic gen-erates from the input graph. In general, the input tothe algorithm is a chordal graph G with n nodes andm edges. The algorithm produces an order with heightat most O(log3 n) times optimal, �ll at most O(m),and work at most O(W �(G)), where W �(G) is theminimum possible work over all elimination orders forG. Experimental results show that when applied aftersome other heuristic, the increase in work and �ll isusually small. In some instances the algorithm obtainsan order that is actually better, in terms of work and�ll, than the original one. We also present an algo-rithm that produces an order with a factor of logn lessheight, but with a factor of O(plogn) more �ll.1 IntroductionOne of the most popular methods for solving a sys-tem of linear equations is Gaussian elimination. Thecrux of this method is to pivot on the variables of thesystem one-at-a-time according to some order. For ex-ample, suppose that the variables x1; : : : ; xn are to beeliminated according to an order �. Then in the ith1E-mail:cfb@cs.cmu.edu2BruceMaggs is supported in part by the Air ForceMaterielCommand (AFMC) and ARPA under Contract F196828-93-C-0193, by ARPA Contracts F33615-93-1-1330 and N00014-95-1-1246, and by an NSF National Young Investigator Award, No.CCR-94-57766, with matching funds providedby NEC ResearchInstitute and Sun Microsystems. E-mail:bmm@cs.cmu.edu3Gary Miller is supported in part by NSF Grant CCR-95-05472 and ARPA under Contract N00014-95-1-1246.E-mail:glmiller@cs.cmu.edu4R. Ravi is supported in part by an NSF CAREER AwardCCR-96-25297. E-mail:ravi+@andrew.cmu.eduThe views and conclusions contained here are those of theauthors and should not be interpreted as necessarily represent-ing the o�cial policies or endorsements, either express or im-plied, of AFMC, ARPA, CMU, or the U.S. Government.

pivoting step, variable x�(i) is eliminated from equa-tions �(i+ 1); �(i+ 2); : : : ; �(n).The system of equations is typically represented asa matrix, and as the pivots are performed some entriesin the matrix that were originally zero may becomenon-zero. The number of new non-zeros produced insolving the system is called the �ll. Among the manydi�erent orders of the variables, one is typically chosenso as to minimize the �ll. Minimizing the �ll is desir-able because it limits the amount of storage needed tosolve the problem, and also because the �ll is stronglycorrelated with the total number of operations (work)performed.Gaussian elimination can also be viewed as an algo-rithm that is performed on the graph whose adjacencymatrix is the matrix representing the system of equa-tions [32, 34]. Pivoting on a variable corresponds toremoving a vertex from the graph and forming a cliqueof its neighbors. The number of new edges added tothe graph in this process constitutes the �ll.Throughout this paper we assume that our matricesare symmetric positive de�nite, so that our graphs areundirected, our pivots are always non-zero, and we canignore the issue of numerical stability.1.1 Heuristics for sparse Gaussian elimi-nationA number of heuristics for minimizing �ll for sparsematrices are available, the most popular being nesteddissection and minimum-degree.Nested dissection, as the name suggests, is a recur-sive elimination procedure. It identi�es a balancedseparator in the graph and sets the nodes in the sepa-rator apart for elimination at the very end. The com-ponents resulting from removing the separator are re-cursively ordered, one after the other, and placed be-fore the separator in the elimination order. George[13] �rst proposed this method for eliminating nodesin a mesh, and later generalized it in a paper with Liu[14] for eliminating the nodes in an arbitrary graph.Bounds on the �ll induced by nested dissection ordersare known for planar graphs and arbitrary graphs withbounded degree [1, 15, 23].The minimum-degree heuristic repeatedly �nds avertex of minimum degree and eliminates it. Thisheuristic originated with the work of Markowitz in the



late 50's and has undergone several enhancements inthe years since [25]. Its popularity is attested to by itsinclusion in various publicly available codes such asMA28, YALESMP, and SPARSPAK. In contrast tonested dissection, no performance guarantee is knownfor the �ll induced by this heuristic. In fact, there ex-ist graphs for which the �ll induced by the minimum-degree order can be very high [4].Recently, some hybrid algorithms have been ex-perimentally shown to produce orders that comparefavorably with those produced by either minimum-degree or nested dissection alone. Hendrickson andRothberg [16], and independently Liu and Ashcraft[2], proposed algorithms that �rst �nd a separa-tor that partitions the graph into small components.The minimum-degree heuristic is then used to orderthe vertices within each component, and also withinthe separators. In practice, both algorithms pro-duce orders that compare favorably with state-of-the-art minimum-degree and nested-dissection algorithms,but no bounds on the amount of �ll that they intro-duce are known.1.2 Our resultsIn this paper we focus on parallel elimination or-ders for chordal graphs. Chordal graphs are a naturalchoice, because they are rich in structure and becausethey are intimately related to Gaussian elimination or-ders; in fact, chordal graphs are exactly the class ofgraphs that have zero-�ll elimination orders. More-over, since any elimination order constructs a chordalcompletion of a graph, that is, adds edges to the graphso as to make it chordal, we can apply our algorithm tothe chordal completion induced by any good orderingalgorithm.Chordal graphs already have zero-�ll eliminationorders, so how can we possibly improve on that? Wepropose that some extra �ll might be tolerable if paral-lelism can be exposed. Although we have thus far de-scribed Gaussian elimination as if vertices were elim-inated one-at-a-time, in fact a set of vertices can beeliminated in parallel if they are independent, i.e., notwo vertices in the set are neighbors. Thus, in a par-allel elimination order, we allow independent sets tobe eliminated in one step, and we de�ne the height tobe the total number of steps. A lower bound on theheight of any elimination order is the size of the maxi-mum clique in the graph, since the vertices in a cliquecannot be eliminated in parallel.Although a strictly sequential order has height n,it is often possible to expose some parallelism in asequential order. The idea is to view a sequential or-der as a partial order that constrains each vertex tobe eliminated before any of its neighbors that appearlater in the sequential order. Thus, we can de�ne theheight of a sequential order to be the minimum-heightparallel order that is consistent with the partial or-der. Nested dissection is known to produce low-heightorders, in particular, within a polylogarithmic factorof the minimum possible [1, 31]. On the other hand,minimum-degree orders can have a polynomial factormore height than the minimumpossible (e.g., a path).Trying to achieve fast parallel solutions while keep-

ing the space overhead minimal corresponds to �nd-ing an order that has simultaneously low height andlow �ll. Gilbert conjectured the existence of a par-allel elimination order that has the minimum possibleheight among all orders and �ll that is only a constantfactor more than the number of edges in a minimum-�ll order (see [3]). The hope was that a small increasein �ll could be traded for faster parallel solutions. Asp-vall [3] disproved this conjecture, however, by exhibit-ing a graph for which any order that has the minimumpossible height requires a polynomial factor more �llthan the minimum possible.Given an interval graph (a subclass of chordalgraphs) with n vertices and m edges, can we �nd anorder with O(m) �ll and height close to the minimumpossible? In particular, does a nested dissection orderaccomplish this? We show that the classical nesteddissection procedure applied to interval graphs pro-duces an order with O(plogn �m) �ll and with heightat mostO(logn) times the optimumfor that graph. Infact, the bound on �ll is tight if the nested dissectionalgorithm is forced to choose a (1/2)-balanced separa-tor, thus providing a negative answer to our question.Even in this very restricted class of graphs, nested dis-section may generate undesirable �ll.On the positive side, we show that an extensionof nested dissection provides good orders. We ex-hibit an interval graph algorithm that produces orderswith O(m) �ll and height within a factor of O(log2 n)times the optimum. This same algorithm can thenbe generalized to chordal graphs, and produces ordersthat also have O(m) �ll, while having height withinan O(log3 n) factor of the minimum possible. Whilethis guarantee is worse in terms of height than theone nested dissection provides, it is signi�cantly bet-ter than that given by either a perfect elimination or-der or by the minimum-degree heuristic. In additionto the balanced separators used in nested dissection,we utilize another kind of separator that we call sen-tinels. Sentinels help localize the �ll induced by ourorders without increasing the height by much. In ad-dition to the bound on the �ll, we also show that thetotal work as well as the front size1 of our orders arewithin a constant factor of the minimum possible.Preliminary experiments show that the overheadsin �ll and height are much better than predicted byour theoretical analysis. For instance, we observedthe following interesting behavior in two-dimensionalgrids. Minimum-degree performs better than nesteddissection in terms of �ll and work on grids with highaspect ratio [2]. In this case, however, the ordersproduced by minimum-degree are very sequential innature and exhibit large height. Our algorithm, ap-plied to the chordal completion obtained from theminimum-degree order generates an order that hasgood height and low �ll and work. In fact, when com-pared to a nested dissection order of the original grid,our order exhibits worse height, but slightly better �lland work (See Table 2).1The front size corresponds roughly to the size of a maximumclique in the �lled graph.



The proofs of the lemmas contained here have beenomitted, and can be found in [6].1.3 Related work: FillThe problem of �nding an elimination order thatminimizes the �ll for arbitrary graphs is known to beNP-hard [35].The �rst analysis for a variant of nested dissectionfor graphs with small separators (of size O(pn) in ann-node graph) was given by Lipton, Rose and Tarjan[23]. The �ll introduced by this variant is O(n logn)on an n-node graph. Subsequently, Gilbert and Tar-jan [15] analyzed the original nested dissection algo-rithm of George and Liu for planar graphs, and showedthat using small separators in the recursive procedureyields a �ll of O(n logn) [24]. They also point outthat this method does not work in general for graphswith small separators by constructing a counterexam-ple. Both of these papers [15, 23] also show a boundof O(n 32 ) on the work of the orders. It is interestingto note that there are n-node planar graphs (squaregrids in particular) for which any elimination orderintroduces �ll 
(n logn) [8, 17].Agrawal, Klein and Ravi [1] gave the �rst approxi-mation algorithms for �nding elimination orders thatsimultaneously minimize the �ll, height and the work,all to within a polylogarithmic factor of optimal whenthe degree of the input graph is bounded. Their al-gorithm is essentially the nested dissection algorithmusing approximatelyminimum-size balanced node sep-arators [20] to construct the recursive decomposition.They also analyze the �ll and the height of their orderwhen the degree of the graph is not bounded. The keydi�erence between our work and these results is thatwe start with a chordal completion of a graph, andfocus our e�orts on �nding parallel elimination orderswith linear �ll.1.4 Related work: HeightIgnoring �ll, computing an elimination order for agiven graph with minimumheight is NP-hard [33], andremains so even if an additive error in the estimate ofthe height is allowed [5]. Pan and Reif give one of the�rst analyses of the parallel height of nested dissectionorders and show how nested dissection can be used forsolving the shortest path problem in graphs [31, 30].Bodlaender et al. [5] uses an approach similar to [1] to�nd elimination orders with bounds on the height andseveral related parameters. Both these papers [1, 5]give elimination orders with height at most O(log2 n)times the minimum possible, for any n-node graph.Numerous heuristics without performance guaranteesare also known for this problem [11, 21, 22, 26, 27].1.5 OutlineThe remainder of this paper is organized as follows.In the next section, we introduce some de�nitions. InSection 3 we present two algorithms for �nding par-allel elimination orders for interval graphs. The �rstalgorithm, which is based on nested dissection, is de-scribed in Section 3.1. The second, which has lin-ear �ll, is presented in Section 3.2. We then show inSection 4 how these algorithms can be used to �nd

elimination orders for chordal graphs. Some experi-mental results obtained for an implementation of thealgorithm in Section 4 can be found in Section 5. Weconclude with some remarks in Section 6.2 De�nitionsIn order to proceed, we need to establish some no-tation concerning matrices and graphs.Each step of Gaussian elimination on a symmetricmatrix M corresponds to choosing a vertex v in G,adding edges to G if necessary to make v's neighbor-hood a clique and then removing v from G. v is saidto have been eliminated from G. Any new edges in-troduced by the elimination of a vertex are called �lledges, or simply �ll. A vertex v is simplicial in G ifits neighborhood N (v) is a clique of G. Simplicial ver-tices are of special interest, since the elimination of asimplicial vertex does not introduce any �ll edges.Alternatively, we can think of Gaussian eliminationas simply inserting the �ll edges in a graph withoutever really removing any vertices. In this case, theelimination of a vertex corresponds to the introduc-tion of edges between any pair of its neighbors thatare not connected, and are later in the eliminationorder than the vertex being considered. The graphaugmented with all the �ll edges is referred to as theupdated graph. Given two non-adjacent vertices v andw in a graph G, there exists a �ll edge (v; w) in theupdated graph i� there exists a path from v to w thatonly goes through vertices that are eliminated beforeboth v and w.An order v1; v2; : : : ; vn of the vertices of G is a per-fect elimination order if it does not introduce any �lledges, i.e., if each vi is simplicial in G�fv1; : : : ; vi�1g.A graph is said to be chordal if it has a perfect elim-ination order. Equivalently, a graph is chordal if ev-ery simple cycle with more than three vertices has achord [10, 34], i.e., no subset of vertices of G induces asubgraph isomorphic to a cycle with more than threevertices.The intersection graph of a family F of sets Si isthe graph obtained by associating a vertex vi witheach set Si, and edges (vi; vj) whenever Si intersectsSj . One characterization of chordal graphs that hasproven particularly useful is as the intersection graphsof subtrees, that is, connected subgraphs, of a tree.We call the tree in question a skeleton of the chordalgraph G. Along with the subtrees it forms a tree rep-resentation of G. A tree representation of a graph Gis said to be minimal if the associated skeleton has theminimum number of nodes possible. Gavril [12] andBuneman [7] showed that in a minimal representationthere is a one-to-one correspondence between verticesof T and maximal cliques of G. Alternatively, we canconsider the nodes of T to be formed by sets of ver-tices of G so that for each vertex v of G a subtree Tvinduced in T by the nodes that contain v can be usedto represent v. Tv is said to be the representative sub-tree of v. A minimal tree representation of G is calleda clique tree of G.Throughout this paper, we refer to vertices in agraph, but we reserve the term node to refer to verticesin the skeleton of a chordal graph and to vertices in



separator trees, that is, trees whose nodes correspondto separators in the original graph. In both cases,nodes typically correspond to sets of one or more ver-tices. Similarly, we reserve the term link to refer toedges between nodes in a skeleton of a chordal graph.A subtree Tv is said to cover a node/link of the skele-ton if that node/link is in Tv. A terminal branch of Tis a maximal path from a leaf v to a node w in T that,except for v and w, contains only degree-2 nodes.An important subclass of chordal graphs are theinterval graphs, which are chordal graphs that have askeleton that is a path. A tree representation witha path for a skeleton is also called an interval repre-sentation, for the representative subtrees are also justpaths, and can be interpreted as intervals.3 Parallel elimination orders for inter-val graphs3.1 Nested dissectionIn this section we analyze a simple nested dissec-tion algorithm that chooses a balanced separator ateach step, thus producing a logarithmic depth separa-tor tree. We show an upper bound of O(m � plogn)on the amount of �ll for the orders produced.Given a graph G, an �-balanced separator of G =(V;E) is a set of nodes S � V such that no connectedcomponent of V �S has more than � � jV j vertices, forsome � < 1. An �-balanced separator tree is one whosenodes are �-balanced separators of the subgraphs ofG. The root of the tree is an �-balanced separator ofG, and we build a tree recursively for each componentand attach them as subtrees of the root. From now on,whenever we use the term balanced separator we sim-ply mean an �-balanced separator, for some constant�. Nested dissection on an interval graph I builds abalanced separator tree whose nodes are minimal sep-arators of subgraphs of I. For interval graphs, everyminimal separator corresponds to the set of verticesthat cover some link of its skeleton P . We order thistree so that an in-order traversal of the separator treecorresponds to a left-to-right traversal of the links ofP . When necessary we will refer to an ordered sepa-rator tree to make it clear that we are considering aseparator tree whose children are ordered as describedhere.As long as the algorithm chooses �-balanced sep-arators, the depth of the separator tree is O(logn),since both the left and right subtrees of each nodehave no more than an �-fraction of the vertices in thesubtree rooted at that node.3.1.1 AnalysisGiven a separator tree, we obtain a correspondingelimination order by recursively eliminating the rootseparator's subtrees in parallel and then eliminatingthe root separator itself. Even though a nested dis-section separator tree has depth O(logn), the corre-sponding elimination order potentially can be fairlyunbalanced, since the separators will probably have

di�erent sizes. Every separator is a clique in the cor-responding graph and hence its size is a lower boundon the height of any elimination order. If the depthof the separator tree is d, we get the following lemma,which assures that this unbalance can be at most alogarithmic factor for our nested dissection algorithm.Lemma 1 [1] Let G be a graph. A depth d mini-mal balanced separator tree for G produces an order ofdepth within a factor of d of the optimal.We now proceed to bound the total number of �lledges introduced by the nested dissection algorithm.In the lemmas that follow, we only consider non-trivialinterval graphs, that is, we assume that the graphs inquestion have at least two distinct maximal cliques.We also assume that any pre-existing simplicial ver-tices have been eliminated from the graph, so that af-ter this pre-processing step no representative subtreeconsists of a single node.
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BFigure 1: Fill among vertices in a separator tree of aninterval graph.Figure 1 shows part of a separator tree of an in-terval graph. Each node in the tree corresponds to aminimal separator of the graph. The elimination or-der speci�ed by the separator tree might introduce �lledges between a vertex v in A and vertices in B's rightsubtree, as depicted by the dotted edges. In this casev must be adjacent to some vertex in B's right subtreeas depicted by the edge in the �gure.We de�ne an inner path of a node A in an orderedbinary tree as the path that starts with the edge tothe left or right child of A, and goes all the way to thein-order predecessor or successor of A, respectively.The next lemma states that amounts of �ll in excessof O(m) must be between a node and its inner paths.Lemma 2 Let I be a connected interval graph. Thetotal amount of �ll between vertices in separator nodesof an ordered balanced separator tree of I and verticesnot in the corresponding inner paths is O(m).



Lemma 2 allows us to concentrate on �ll involvingvertices in inner paths. Consider one such inner path.Lemma 3 Let I be a connected interval graph, andlet V0 be a node in an ordered balanced separator treeof I. Let V1; V2; : : : ; Vk be the nodes in V0's right innerpath. The total amount of �ll between V0 and verticesin its right inner path is at most O(pk �Pki=0 jVij2).A separator is in at most 4 inner paths, two startingat itself, one starting at its parent, and one starting atsome other ancestor. Since a balanced separator treehas O(logn) depth, Lemmas 2 and 3 give the followingcorollary:Corollary 1 Let I be a connected interval graph, witha balanced separator tree. The total amount of �ll in-duced by the order speci�ed by the tree is O(m�plogn).It is not hard to �nd examples of interval graphs onwhich a nested dissection algorithm that is forced tochoose (1=2)-balanced separators produces an order-ing with �ll 
(m �plogn) [6], showing that the boundderived in the previous section is tight.3.2 A linear-�ll O(log2 n)-depth algorithmIn this section we present a recursive algorithmthat, given an interval graph, �nds an O(log2 n)-depthseparator tree that represents the elimination order forthe vertices in the graph. Unlike traditional separatortrees, vertices can appear multiple times in the tree,and should be eliminated at the top level separator itappears in.The algorithm is composed of three steps, whichoperate on a skeleton path of an interval graph. Theanalysis of the algorithm uses a potential functionwhose value is O(m) initially and is used to accountfor the �ll edges. The last of the three steps is carriedout to ensure that we do not charge to the same partof the potential function multiple times. This is doneby keeping track of which edges are \depleted" of theircontribution to the potential, and dividing the graphinto subgraphs on which to recurse, each of which hasno depleted edges.The �rst step, Homogenize, �nds a sequence of upto k = O(logn) separators that divide the graph intok + 1 components. The sizes of these separators aregeometrically decreasing, a property that is useful inaccounting for �ll induced to any of these separatorvertices. The next step, which we call Halving, is anal-ogous to a regular nested dissection iteration: we sim-ply select a separator that divides the skeleton of theinterval graph we are currently working with in half.As in nested dissection, this ensures that the algo-rithm �nishes within O(logn) iterations of the steps,thus producing an order with good height. Finally,the algorithm performs the Kill step. As mentionedearlier, the purpose of this step is to ensure that thepotential function is used correctly to account for the�ll. The Kill step accomplishes this by choosing spe-cial kinds of separators called sentinels that localizesubsequent �ll to subgraphs that contain only non-depleted edges (whose potential contribution is as yet

unused). In choosing sentinels, we incur an extra lognfactor in the height of our order, since we select up tologn sentinels per Kill step.We also analyze a chordal graph version of our in-terval graph algorithm, which is described in more de-tail in Section 4. The algorithms are essentially thesame, except that when dealing with chordal graphswe have a skeleton that is a tree, not a path. We canapply the interval graph algorithms to eliminate eachof the branches (paths) of the skeleton that lead toleaves of the tree. We repeat this step until the wholetree has been processed.3.2.1 De�nitions used in the algorithmAn edge is said to be an extremity of a tree if it is anedge to some leaf of the tree. To insert a link e of theskeleton into the separator tree consists of adding tothe tree the separator formed by those vertices of thechordal graph whose representative subtrees cover e.A link of the skeleton is said to be a root if it has beeninserted into the separator tree. A rooted skeleton isa skeleton whose extremities are roots.A vertex v and its representative subtree Tv are saidto be pinned at a link r if r is a root and either Tvcovers r or Tv is a singleton covering one of the nodesof r. The term \depleted" is used to help us keep trackof which edges in the input graph have been used topay for �ll and can no longer be used. Some subset ofthe roots may be said to be depleted in G. A vertexis said to be depleted if it is pinned at a depletedlink. Whenever we refer to a pinned vertex, it is notdepleted, unless explicitly stated. Edges between pairsof depleted vertices are also said to be depleted. Edgesbetween pinned vertices are said to be pinned edges.Unless otherwise stated, the term pinned edges onlyrefers to non-depleted pinned edges. A vertex is saidto be internal to a graph if it is not pinned. Edges tointernal vertices are also said to be internal, regardlessof whether the other endpoint of the edge is internal.Let G be an interval graph, with skeleton T . Pl;rdenotes the path between and including the two linksl and r in T . P (l; r) denotes the interval graph ob-tained by restricting G to Pl;r and eliminating anysingle vertex representative subtrees. Given a repre-sentative subtree Tv associated with a vertex v of G,let T 0v be the path induced in Tv by Pl;r . P (l; r) isthe interval graph that has those T 0v with two or morenodes in their representative subtrees on the skeletonPl;r.The ply pe of a link e of T is the number of subtreesTv that cover that link.3.2.2 The algorithmGiven an interval graph I, and an interval representa-tion of I, with skeleton P , whose extremities are l andr, we remove any simplicial vertices of I, insert bothl and r into the separator tree, and apply the stepHomogenize to it. Eliminating simplicial vertices doesnot change the skeleton of the graph, but rather elim-inates any single node representative subtrees. Since



none of the steps of the algorithm creates these single-node sub-paths, later steps do not have to deal withthem.Each step of the algorithm inserts one or more linksof the skeleton into the separator tree, resulting ina number of subgraphs. Let Kl(ei; ei+1) denote theinterval graph obtained from P (ei; ei+1) by removingall vertices pinned at l as well as those that cover bothei and ei+1.The algorithm consists of three major steps thatcall each other recursively. Each step inserts some ver-tices into the separator tree, thus creating subgraphsto which the next step is applied provided there ex-ists at least one vertex internal to the subgraph. Eachstep operates on an interval graph I, a skeleton path Pof I, and P 's two extremities, l and r. The �rst step,Homogenize, divides the interval graph in a number ofsubgraphs and then applies the Halving step to eachone of them. The ply of the links for each subgraph isrelatively homogeneous in the sense that internal linkshave ply at least equal to half of the ply of the rootsof that subgraph.Homogenize(I; P; l; r)Select l, and traverse P towards r, selectingthe �rst link whose ply is at most half theply of the last selected link. Repeat until ris reached. Apply the same algorithm from rto l. Let ei, 0 � i � k + 1, be the linksthat were selected ordered from l to r, includ-ing l = e0 and r = ek+1. Insert all the se-lected links except l and r into the separator tree,and do Halving(P (ei; ei+1); Pei;ei+1 ; ei; ei+1), foreach i between 0 and k for which some vertex inP (ei; ei+1) is not in the separator tree yet.The Halving step simply does what its name suggests,that is, divides the problem in two subproblems thatare no more than half the size of the original one.Halving(I; P; l; r)Choose a link m in P such that when m is in-serted into the separator tree, both Pl;m andPm;r have no more than half as many skeletonlinks as P did. Then do Kill(P (l;m); Pl;m; l;m)(and Kill(P (m; r); Pm;r;m; r)), provided thatP (l;m) (P (m; r)) has some vertex that has notbeen inserted in the separator tree.Finally, the Kill step divides an interval graph into anumber of subgraphs, and from each one it removesvertices that have either been depleted or cover theentire piece of the skeleton corresponding to that sub-graph. This reestablishes the preconditions of the Ho-mogenize step (as described in Lemma 6), which isapplied to each of the resulting subgraphs.

Kill(I; P; l; r)Assume the ply at l is at least the ply at r, i.e.,pl � pr. Otherwise, swap the roles of l and rin this algorithm. From r to l in P , select the�rst link that covers a node that is pinned atl. Keep scanning P towards l, and selecting the�rst link that covers at least twice as many ver-tices pinned at l as did the last selected link. Callthese milestone links. Also select the links adja-cent to the milestones, which are closer to r thanthe corresponding milestone, and call those sen-tinels. Insert the links that were selected into theseparator tree in order, from l to r. Call thoselinks ei, including l = e0 and r = ek+1. Ap-ply Homogenize(Kl(ei; ei+1); Pei;ei+1 ; ei; ei+1),for all i such that Kl(ei; ei+1) has at least onevertex that hasn't been inserted into the sepa-rator tree. Note that when ei and ei+1 are amilestone and its corresponding sentinel all ver-tices in Pei;ei+1 have already been ordered.3.2.3 Fill AnalysisWe now de�ne a potential function that will be used tobound the amount of �ll introduced by the algorithms.Let G be a chordal graph and let T be a skeleton of Gat some stage in the algorithm. Let s be the numberof links of T that are not roots. Let x be the numberof internal edges of G, and y the number of pinned,non-depleted edges. The potential �(G) is given by�(G) = 3 � x+ y + s:Given an initial connected graph, we take the skeletonT to be a clique tree of the graph. Since the graphis chordal, T can only have as many vertices as theoriginal graph, and thus the potential of a graph isO(m+n). This potential is used to pay for all the �llintroduced by our algorithm. To do this, at each stepin the recursion, we ensure that some �xed constanttimes the di�erence in potential between the initialgraph and the subgraphs into which that step dividesthe graph is enough to pay for any �ll edges that areintroduced because of that step (see condition (iii)later in this section).By examining the di�erent kinds of edges in theinterval graph, we can determine the following changein the potential function when a new node is insertedin the separator tree.Lemma 4 Let I be an interval graph and let P be arooted skeleton path of I with roots l and r, such thatonly l is depleted. Let m be a link in the skeleton,distinct from l and r. If m and l are roots in P (l;m),l being depleted in P (l;m), and m and r are rootsin P (m; r), m being depleted in P (m; r) (but not inP (l;m)) then �(I) � (�(P (l;m)) + �(P (m; r))) � 1 +m0(m0 � 1) + 2m0(pm �m0), where m0 is the numberof internal vertices that cover m in P .



We now present an analysis of the performance ofour algorithms in terms of �ll. The next lemma saysthat �ll is local to the subgraphs de�ned by the sepa-rators in the separator tree.Lemma 5 Let I be an interval graph and let P be arooted skeleton path of I with extremity roots l and r.Then any link m in P distinct from l and r can be in-serted into the separator tree, thus dividing I into twosubgraphs P (l;m), with roots l and m, and P (m; r),with roots m and r, so that the vertices internal to eachof the subgraphs can only have �ll to other vertices inthat same subgraph.Let P (l; r) be an interval graph at the beginning ofa step (either Homogenize, Halving or Kill) and let ebe a link of its skeleton path P , distinct from its rootsl and r. When inserting e into the graph's separatortree we require that:i. �ll between vertices rooted at l and r must havebeen accounted for in some previous step, if ei-ther l or r is depleted, and otherwise must beaccounted for in the current step.ii. �ll between vertices pinned at e and those pinnedat l (and r) must be accounted for in the currentstep, if at least one of e or l (respectively r) isdepleted.iii. A constant times the di�erence in potential be-tween the original graph and the parts must beenough to pay in that step for any �ll.Since condition (iii) refers to the di�erence in po-tential, the total amount of �ll allowed by (iii) is aconstant times the potential of the initial graph andthus O(m). In the next lemmas, we show that theabove three invariants are maintained as we performeach of the three steps described in Section 3.2.2.Given an interval graph I, the Homogenize step di-vides the problem of �nding an order for the verticesof I into a number of subproblems, each of which hasthe same desirable property, namely except for the ex-tremities, the ply of every link in the skeleton of thesubgraphs is at least half of that of the extremity ofthe skeleton with the largest ply. If this condition isalready met, the Homogenize step does not insert anylinks into the separator tree, and we go into the nextstep of the algorithm with no depleted links.Lemma 6 (Homogenize Step) Let I be an intervalgraph, with a rooted skeleton path P . Let l and r beroots of P , neither being depleted, and let pl � pr.Then Homogenize(I,P,l,r) �nds k = O(logpl) links ofthe skeleton P . If k > 0 then the selected links can beinserted into the separator tree in any order, de�ningsubgraphs P (ei; ei+1) rooted at ei and ei+1, ei beingdepleted. Moreover, except for possibly ei or ei+1 thelinks of the skeleton Pei;ei+1 have ply greater than orequal to half the larger of pei and pei+1 and conditions(i), (ii) and (iii) can be satis�ed.

Proof. Sketch: The whole selection process selectsno more than k � log pl + log pr = O(logpl) links ofthe skeleton, aside from l and r. The depletion ofthe endpoints can be seen as making l depleted, andthen applying Lemma 4 repeatedly. Making l depletedreduces the potential of the graph by pl(pl�1)=2, whileaccording to Lemma 4 each insertion produces twosubgraphs, further reducing the potential by at least1 unit. By considering where �ll might be induced, wecan verify the amount of �ll introduced can be payedfor by the decrease in potential.Speci�c orders for the links selected by the Homog-enize algorithm can result in smaller constants whencomputing �ll, and in better or worse orders in termsof the depth of the separator tree.As long as the skeleton of a subgraph generatedby the algorithm described in this lemma has internalvertices, it satis�es all the pre-conditions for Lemma7 regarding the next step in the algorithm.Lemma 7 (Halving Step) Let I be an interval graph,and let P be a rooted skeleton path of I with at least 3links. Let l and r be its roots, l being possibly depleted.Moreover, let pe � max(pl; pr)=2, for all links e inP . Then, Halving(I,P,l,r) inserts a link m into theseparator tree such that if l is depleted in P (l;m) andm is depleted in P (m; r), conditions (i), (ii) and (iii)are satis�ed.Proof. Sketch: As long as P has more than two linksthe Halving step will �nd such a linkm. All that needsto be shown is that the �ll described in conditions (i)and (ii) can be paid for with a constant times thedi�erence in potential between I and the subgraphsP (l;m) and P (m; r), as prescribed in (iii).For the last step in the algorithm, the depletedroot must be the root with largest ply. The follow-ing lemma makes sure that is the case, by allowing usto relabel them if needed.Lemma 8 Let P be a rooted skeleton of an intervalgraph I. Let l and r be the extremities of P , r beingdepleted. Then if pl � pr the depleted status of l andr can be exchanged, without increasing the potential ofI. Coming into the Halving step, we know that pe waslarger than or equal to max(pl; pr). Now, since pmcould be larger than either of those plies, we don'thave that condition anymore. However, we can stilluse the fact that pe � minfpl; prg=2, where l and r arethe extremities of the interval graph being considered.Lemma 9 (Kill Step) Let I be an interval graph, witha rooted skeleton path P whose roots are l and r, l be-ing depleted in I. Let pl � pr, and pe � pr=2, for alllinks e in P . Then Kill(I,P,l,r) �nds k = O(logpl)links that when inserted into the separator tree in or-der, from l to r, satisfy conditions (i) and (iii) whileproducing subgraphs Kl(ei; ei+1) where ei and ei+1are non-depleted roots, 0 � i � k, and also payingfor �ll between vertices in P (ei; ei+1) and those inP (ei; ei+1) � Kl(ei; ei+1) (which includes but is notrestricted to the �ll described in (ii).)



Proof. Sketch: The proof involves examining all pos-sible sources of �ll and verifying that they can be paidfor with a constant times the decrease in potentialcaused by this step.A chordal graph, and in particular an interval graphI has at most n maximal cliques, and thus at most nnodes in its clique tree. Just before the �rst recur-sive invocation of Homogenize, the three steps havepartitioned I into subgraphs that have skeletons withno more than half the number of links in the skeletonof I. Since the three steps add O(logn) nodes to theseparator tree, and logn iterations of those three stepsmight be necessary, the depth of the tree generated bythis algorithm is O(log2 n). Since every separator isa clique of I, the order produced has height at mostO(C � log2 n), where C is the size of the maximumclique of I.We can obtain similar bounds on the amount ofwork that is induced by the orders produced by ouralgorithm. Our results are summarized in the nextlemma. The work analysis can be found in [6].Lemma 10 Let I be an interval graph with n verticesand m edges. When applied to I, the algorithm pre-sented in Section 3.2.2 produces an order with heightO(C � log2 n), �ll O(m), and work O(W �(I)), where Cis the size of the largest clique in I and W �(I) is theminimum amount of work required to perform Gaus-sian elimination on I according to any order.4 Chordal graphsIn this section we show how to �nd an elimina-tion order for a chordal graph G by repeatedly ap-plying one of the interval graph algorithms we've al-ready described to branches of G's skeleton. Thistree-contraction like approach was also used by Naor,Naor and Sch�a�er [28] when developing algorithms forchordal graphs.Using either the algorithm in Section 3.1 or Sec-tion 3.2, we can derive an algorithm for chordalgraphs. Consider a chordal graph G, and its skele-ton tree T . The chordal graph algorithm consists of�nding terminal branches of the skeleton T , and apply-ing an interval graph algorithm to the branches. Allterminal branches can be processed in parallel. By re-iterating this process we order the tree with O(logn)calls to an interval graph algorithm.The actual algorithm that is to be applied to thepath P (l; r) is essentially the Kill step. The only dif-ferences are that r is not a root, and we do not haveany sort of bounds on the plies of the links in theskeleton path. This algorithm will divide P (l; r) in anumber of subgraphs, that will then be used as inputto an ordering algorithm for interval graphs.We add an imaginary link r0 to the skeleton ofP (l; r), so that r0 is now the last link of the skele-ton, as opposed to r. Call r0 a root. Since p0r = 0,the ply conditions in Lemma 9 are trivially satis�ed,and we can apply the Kill step to partition P (l; r) inrooted subgraphs, with no depleted roots. P (l; r) doesnot include any single-vertex subtrees that might be

present in the chordal graph. These should be elimi-nated before any of the other vertices of P (l; r), thusnot introducing any �ll.The lemmas that follow allow us to extend the anal-ysis we have for each of the interval graph algorithmsto the chordal case.Lemma 11 Let G be a chordal graph with a skeletontree T . Let r be a link to a leaf of T , and l be the otherextremity of the terminal branch of T that includesr. Let l be a depleted root in P (l; r) and let G0 bethe graph obtained from G by removing all verticesof G that are internal to P (l; r). Then the potential�(G) = �(G0) + �(P (l; r)) + 1.Let G, G0 and P (l; r) be as described in Lemma 11.Lemma 12 If l is the only root in P (l; r), then anyorder for the remaining vertices of P (l; r) does notinduce any �ll in G to vertices of G� P (l; r).Given a graph G, with n vertices and m edges, andwhose largest clique has size C, we can show the fol-lowing results.� The chordal version of the nested dissection al-gorithm (Section 3.1) produces an order withO(C � log2 n) height and O(mplogn) �ll.� The chordal version of our linear �ll algorithm(Section 3.2) produces an order with O(C � log3 n)height, O(m) �ll, and O(W �(G)) work, whereW �(G) is the minimum amount of work, over allpossible orders for G.5 Experimental resultsWe implemented the chordal version of the algo-rithm presented in Section 4, and performed some ex-periments. Matrix Vertices Edgesbcsstk30 28924 1007284bcsstk31 35588 572914bcsstk32 44609 985046bcsstk35 30237 709963bcsstk36 23052 560044bcsstk37 25503 557737nasasrb 54870 1311227sf10 7294 44922sf5 30169 190377G256x256 65536 130560G64x1024 65536 129984G16x4096 65536 126960Table 1: Number of vertices and edges of the inputgraphs.The bcsstk matrices used in our experiments comefrom structural engineering problems, and were ob-tained from the Harwell-Boeing collection, and fromTimothy Davis's \University of Florida Sparse MatrixCollection" (the matrices were provided to Davis by



Non-zeros Non-zeros / AMD Non-zeros Height Height / AMD HeightMatrix AMD Post METIS Post Hybrid Post AMD Post METIS Post Hybrid PostAMD METIS hybrid AMD METIS Hybridbcsstk30 3853728 1.1037 1.2850 1.2664 1.0098 1.0307 2764 0.77 0.47 0.47 0.65 0.60bcsstk31 5557200 1.0637 0.9328 0.9223 0.7527 0.7638 2285 1.02 0.62 0.62 0.72 0.72bcsstk32 4986503 1.0313 1.3673 1.3541 1.0162 1.0339 2457 0.86 0.68 0.68 0.72 0.68bcsstk35 2732030 1.0359 1.4467 1.4279 1.0160 1.0268 1262 0.95 0.94 0.94 0.86 0.85bcsstk36 2732511 1.0123 1.3458 1.3349 0.9350 0.9527 1540 0.93 0.88 0.88 0.81 0.85bcsstk37 2799200 1.0325 1.3145 1.3029 0.9620 0.9785 1333 1.07 0.94 0.94 0.87 0.89nasasrb 11953582 1.1559 0.9885 0.9832 0.8169 0.8529 4829 0.75 0.39 0.39 0.70 0.58sf10 675708 1.0223 0.8766 0.8748 0.7858 0.7916 793 1.00 0.71 0.69 0.89 0.87sf5 5244006 1.0203 0.8045 0.8039 0.7385 0.8001 2341 1.00 0.61 0.60 0.78 0.81G256x256 1971395 1.0125 1.1353 1.1333 0.8495 0.8549 1617 0.98 0.50 0.50 0.62 0.61G64x1024 1425433 1.1949 1.2283 1.2263 0.9476 0.9641 2791 0.42 0.17 0.17 0.35 0.28G16x4096 656963 1.4748 1.5018 1.4991 1.3240 1.3624 8464 0.04 0.02 0.02 0.09 0.04Table 2: Results obtained by post-processing good existing orders relative to an AMD order.AMD Work Work / AMD WorkMatrix AMD Post METIS Post Hybrid PostAMD METIS Hybridbcsstk30 9.416e+08 1.3828 1.5803 1.5569 0.9944 1.0631bcsstk31 2.898e+09 1.2143 0.5635 0.5597 0.3999 0.4179bcsstk32 9.479e+08 1.0929 2.1996 2.1796 1.0116 1.0708bcsstk35 3.832e+08 1.1391 2.5535 2.5097 1.0287 1.0558bcsstk36 6.201e+08 1.0452 1.9545 1.9448 0.7792 0.8429bcsstk37 5.322e+08 1.1313 1.9560 1.9429 0.8968 0.9605nasasrb 4.771e+09 1.6860 1.0067 1.0034 0.5911 0.6866sf10 1.366e+08 1.0681 0.6400 0.6395 0.5178 0.5279sf5 2.781e+09 1.0550 0.5358 0.5358 0.4585 0.6228G256x256 2.607e+08 1.0591 1.1998 1.1991 0.7280 0.7484G64x1024 8.470e+07 1.9492 1.5643 1.5679 0.9843 1.0581G16x4096 8.507e+06 3.1186 2.9023 2.9035 2.4168 2.6284Table 3: Work results obtained by post-processing good existing orders relative to an AMD order.Roger Grimes, at Boeing.) The nasasrb matrix mod-els the structure of the NASA Langley shuttle rocketbooster, while the sf matrices are used in the simula-tion of an earthquake in the San Fernando Valley [29].The G matrices are h � w grids. The number of ver-tices and edges in each graph can be found in Table 1.We applied our algorithm as a post processing stepto the orders produced by a version of the approximateminimum-degree heuristic (AMD) 2 [9], to the nesteddissection orders produced by METIS 3 [19] and to theorders produced by a hybrid of min-degree and nesteddissection obtained from Rothberg [16].Table 2 shows the results we obtained as a func-tion of the numbers obtained for an AMD order. Thenumber of non-zeros includes entries that are in theoriginal graph as well as any �ll entries, above and in-cluding the diagonal. The height entries correspond tothe height of a minimum height order whose updatedgraph is identical to the chordal completion being con-sidered. Given a chordal completion, such a minimumheight order and its height can be easily computed(see [18, 27]).Table 3 shows the amount of work, that is, 
oating-2code from ftp://ftp.cise.u
.edu/pub/umfpack/AMD/3code from ftp://ftp.cs.umn.edu/dept/users/kumar/metis/
point operations, involved in performing Gaussianelimination according to each of the orders.Our results indicate that our algorithm usually pro-duces an order that has a small amount of extra �llwhen compared to the chordal completion it startswith. In some cases, our post-processing actually pro-duces small improvements on the number of non-zeros.Contrary to what we expected, for most graphs, theAMD orders were very parallel, thus making it harderfor us to obtain signi�cant improvements in height. Itis interesting to notice that for grids with large aspectratio the AMD orders cannot be directly parallelized.In those test cases, our orders induce a slightly lowernumber of non-zero entries than the nested dissectionorders, and a small constant factor higher than thenumber of non-zeros induced by the AMD orders. Inthese cases, the orders our algorithm produced are sig-ni�cantly more parallel then the original AMD orders,and only slightly worse than the nested dissection or-ders. The hybrid algorithm produces orders that areusually good in terms of both �ll and height.6 Concluding remarksA number of interesting questions remain open:Can we prove any bounds on the performance of
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