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Abstract

This paper presents an algorithm for finding parallel
elimination orders for Gaussian elimination. Viewing
a system of equations as a graph, the algorithm can be
applied directly to interval graphs and chordal graphs.
For general graphs, the algorithm can be used to paral-
lelize the order produced by some other heuristic such
as minimum degree. In this case, the algorithm is ap-
plied to the chordal completion that the heuristic gen-
erates from the input graph. In general, the wnput to
the algorithm is a chordal graph G with n nodes and
m edges. The algorithm produces an order with height

at most O(log3 n) times optimal, fill at most O(m),
and work at most O(W*((G)), where W*(() is the
minimum possible work over all elimination orders for
G. Bzperimental results show that when applied after
some other heuristic, the increase in work and fill s
usually small. In some instances the algorithm obtains
an order that is actually better, in terms of work and
fill, than the original one. We also present an algo-
rithm that produces an order with a factor of logn less

height, but with a factor of O(\/logn) more fill.

1 Introduction

One of the most popular methods for solving a sys-
tem of linear equations is Gaussian elimination. The
crux of this method is to pivot on the variables of the
system one-at-a-time according to some order. For ex-
ample, suppose that the variables x4, ..., z, are to be
eliminated according to an order w. Then in the ith
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pivoting step, variable x,(;) is eliminated from equa-
tions (7 + 1), 7(i + 2),...,7(n).

The system of equations is typically represented as
a matrix, and as the pivots are performed some entries
in the matrix that were originally zero may become
non-zero. The number of new non-zeros produced in
solving the system is called the fill. Among the many
different orders of the variables, one is typically chosen
so as to minimize the fill. Minimizing the fill is desir-
able because it limits the amount of storage needed to
solve the problem, and also because the fill is strongly
correlated with the total number of operations (work)
performed.

Gaussian elimination can also be viewed as an algo-
rithm that is performed on the graph whose adjacency
matrix is the matrix representing the system of equa-
tions [32, 34]. Pivoting on a variable corresponds to
removing a vertex from the graph and forming a clique
of its neighbors. The number of new edges added to
the graph in this process constitutes the fill.

Throughout this paper we assume that our matrices
are symmetric positive definite, so that our graphs are
undirected, our pivots are always non-zero, and we can
ignore the issue of numerical stability.

1.1 Heuristics for sparse Gaussian elimi-
nation

A number of heuristics for minimizing fill for sparse
matrices are available, the most popular being nested
dissection and minimum-degree.

Nested dissection, as the name suggests, is a recur-
sive elimination procedure. It identifies a balanced
separator in the graph and sets the nodes in the sepa-
rator apart for elimination at the very end. The com-
ponents resulting from removing the separator are re-
cursively ordered, one after the other, and placed be-
fore the separator in the elimination order. George
[13] first proposed this method for eliminating nodes
in a mesh, and later generalized it in a paper with Liu
[14] for eliminating the nodes in an arbitrary graph.
Bounds on the fill induced by nested dissection orders
are known for planar graphs and arbitrary graphs with
bounded degree [1, 15, 23].

The mintmum-degree heuristic repeatedly finds a
vertex of minimum degree and eliminates it. This
heuristic originated with the work of Markowitz in the



late 50’s and has undergone several enhancements in
the years since [25]. Tts popularity is attested to by its
inclusion in various publicly available codes such as
MA28, YALESMP, and SPARSPAK. In contrast to
nested dissection, no performance guarantee is known
for the fill induced by this heuristic. In fact, there ex-
ist graphs for which the fill induced by the minimum-
degree order can be very high [4].

Recently, some hybrid algorithms have been ex-
perimentally shown to produce orders that compare
favorably with those produced by either minimum-
degree or nested dissection alone. Hendrickson and
Rothberg [16], and independently Liu and Ashcraft
[2], proposed algorithms that first find a separa-
tor that partitions the graph into small components.
The minimum-degree heuristic is then used to order
the vertices within each component, and also within
the separators. In practice, both algorithms pro-
duce orders that compare favorably with state-of-the-
art minimum-degree and nested-dissection algorithms,
but no bounds on the amount of fill that they intro-
duce are known.

1.2 Our results

In this paper we focus on parallel elimination or-
ders for chordal graphs. Chordal graphs are a natural
choice, because they are rich in structure and because
they are intimately related to Gaussian elimination or-
ders; in fact, chordal graphs are exactly the class of
graphs that have zero-fill elimination orders. More-
over, since any elimination order constructs a chordal
completion of a graph, that is, adds edges to the graph
so as to make it chordal, we can apply our algorithm to
the chordal completion induced by any good ordering
algorithm.

Chordal graphs already have zero-fill elimination
orders, so how can we possibly improve on that? We
propose that some extra fill might be tolerable if paral-
lelism can be exposed. Although we have thus far de-
scribed Gaussian elimination as if vertices were elim-
inated one-at-a-time, in fact a set of vertices can be
eliminated in parallel if they are independent, i.e., no
two vertices in the set are neighbors. Thus, in a par-
allel elimination order, we allow independent sets to
be eliminated in one step, and we define the height to
be the total number of steps. A lower bound on the
height of any elimination order is the size of the maxi-
mum clique in the graph, since the vertices in a clique
cannot be eliminated in parallel.

Although a strictly sequential order has height n,
it is often possible to expose some parallelism in a
sequential order. The idea is to view a sequential or-
der as a partial order that constrains each vertex to
be eliminated before any of its neighbors that appear
later in the sequential order. Thus, we can define the
height of a sequential order to be the minimum-height
parallel order that is consistent with the partial or-
der. Nested dissection is known to produce low-height
orders, in particular, within a polylogarithmic factor
of the minimum possible [1, 31]. On the other hand,
minimum-degree orders can have a polynomial factor
more height than the minimum possible (e.g., a path).

Trying to achieve fast parallel solutions while keep-

ing the space overhead minimal corresponds to find-
ing an order that has simultaneously low height and
low fill. Gilbert conjectured the existence of a par-
allel elimination order that has the minimum possible
height among all orders and fill that is only a constant
factor more than the number of edges in a minimum-
fill order (see [3]). The hope was that a small increase
in fill could be traded for faster parallel solutions. Asp-
vall [3] disproved this conjecture, however, by exhibit-
ing a graph for which any order that has the minimum
possible height requires a polynomial factor more fill
than the minimum possible.

Given an interval graph (a subclass of chordal
graphs) with n vertices and m edges, can we find an
order with O(m) fill and height close to the minimum
possible? In particular, does a nested dissection order
accomplish this? We show that the classical nested
dissection procedure applied to interval graphs pro-
duces an order with O(y/log n - m) fill and with height
at most O(logn) times the optimum for that graph. In
fact, the bound on fill is tight if the nested dissection
algorithm is forced to choose a (1/2)-balanced separa-
tor, thus providing a negative answer to our question.
Even in this very restricted class of graphs, nested dis-
section may generate undesirable fill.

On the positive side, we show that an extension
of nested dissection provides good orders. We ex-
hibit an interval graph algorithm that produces orders

with O(m) fill and height within a factor of O(log” n)
times the optimum. This same algorithm can then
be generalized to chordal graphs, and produces orders
that also have O(m) fill, while having height within

an O(log® n) factor of the minimum possible. While
this guarantee is worse in terms of height than the
one nested dissection provides, it is significantly bet-
ter than that given by either a perfect elimination or-
der or by the minimum-degree heuristic. In addition
to the balanced separators used in nested dissection,
we utilize another kind of separator that we call sen-
tinels. Sentinels help localize the fill induced by our
orders without increasing the height by much. In ad-
dition to the bound on the fill, we also show that the
total work as well as the front size! of our orders are
within a constant factor of the minimum possible.

Preliminary experiments show that the overheads
in fill and height are much better than predicted by
our theoretical analysis. For instance, we observed
the following interesting behavior in two-dimensional
grids. Minimum-degree performs better than nested
dissection in terms of fill and work on grids with high
aspect ratio [2]. In this case, however, the orders
produced by minimum-degree are very sequential in
nature and exhibit large height. Our algorithm, ap-
plied to the chordal completion obtained from the
minimum-degree order generates an order that has
good height and low fill and work. In fact, when com-
pared to a nested dissection order of the original grid,
our order exhibits worse height, but slightly better fill
and work (See Table 2).

IThe front size correspondsroughly to the size of a maximum
clique in the filled graph.



The proofs of the lemmas contained here have been
omitted, and can be found in [6].

1.3 Related work: Fill

The problem of finding an elimination order that
minimizes the fill for arbitrary graphs is known to be
NP-hard [35].

The first analysis for a variant of nested dissection
for graphs with small separators (of size O(y/n) in an
n-node graph) was given by Lipton, Rose and Tarjan
[23]. The fill introduced by this variant is O(nlogn)
on an n-node graph. Subsequently, Gilbert and Tar-
jan [15] analyzed the original nested dissection algo-
rithm of George and Liu for planar graphs, and showed
that using small separators in the recursive procedure
yields a fill of O(nlogn) [24]. They also point out
that this method does not work in general for graphs
with small separators by constructing a counterexam-
ple. Both of these papers [15, 23] also show a bound

of O(n?) on the work of the orders. It is interesting
to note that there are n-node planar graphs (square
grids in particular) for which any elimination order
introduces fill Q2(nlogn) [8, 17].

Agrawal, Klein and Ravi [1] gave the first approxi-
mation algorithms for finding elimination orders that
simultaneously minimize the fill, height and the work,
all to within a polylogarithmic factor of optimal when
the degree of the input graph is bounded. Their al-
gorithm is essentially the nested dissection algorithm
using approximately minimum-size balanced node sep-
arators [20] to construct the recursive decomposition.
They also analyze the fill and the height of their order
when the degree of the graph is not bounded. The key
difference between our work and these results is that
we start with a chordal completion of a graph, and
focus our efforts on finding parallel elimination orders
with linear fill.

1.4 Related work: Height

Ignoring fill, computing an elimination order for a
given graph with minimum height is NP-hard [33], and
remains so even if an additive error in the estimate of
the height is allowed [5]. Pan and Reif give one of the
first analyses of the parallel height of nested dissection
orders and show how nested dissection can be used for
solving the shortest path problem in graphs [31, 30].
Bodlaender et al. [5] uses an approach similar to [1] to
find elimination orders with bounds on the height and
several related parameters. Both these papers [1, 5]

give elimination orders with height at most O(log” n)
times the minimum possible, for any n-node graph.
Numerous heuristics without performance guarantees
are also known for this problem [11, 21, 22, 26, 27].

1.5 Outline

The remainder of this paper is organized as follows.
In the next section, we introduce some definitions. In
Section 3 we present two algorithms for finding par-
allel elimination orders for interval graphs. The first
algorithm, which is based on nested dissection, is de-
scribed in Section 3.1. The second, which has lin-
ear fill, is presented in Section 3.2. We then show in
Section 4 how these algorithms can be used to find

elimination orders for chordal graphs. Some experi-
mental results obtained for an implementation of the
algorithm in Section 4 can be found in Section 5. We
conclude with some remarks in Section 6.

2 Definitions

In order to proceed, we need to establish some no-
tation concerning matrices and graphs.

Each step of Gaussian elimination on a symmetric
matrix M corresponds to choosing a vertex v in G,
adding edges to G if necessary to make v’s neighbor-
hood a clique and then removing v from G. v is said
to have been eliminated from G. Any new edges in-
troduced by the elimination of a vertex are called fill
edges, or simply fill. A vertex v is simplicial in G if
its neighborhood N (v) is a clique of G. Simplicial ver-
tices are of special interest, since the elimination of a
simplicial vertex does not introduce any fill edges.

Alternatively, we can think of Gaussian elimination
as simply inserting the fill edges in a graph without
ever really removing any vertices. In this case, the
elimination of a vertex corresponds to the introduc-
tion of edges between any pair of its neighbors that
are not connected, and are later in the elimination
order than the vertex being considered. The graph
augmented with all the fill edges is referred to as the
updated graph. Given two non-adjacent vertices v and
w in a graph G, there exists a fill edge (v, w) in the
updated graph iff there exists a path from v to w that
only goes through vertices that are eliminated before
both v and w.

An order v1,vs, ..., v, of the vertices of G is a per-
fect elimination order if it does not introduce any fill
edges, i.e., if each v; is simplicial in G—{vy,...,v;_1}.
A graph 1 is said to be chordal if it has a perfect elim-
ination order. Equivalently, a graph is chordal if ev-
ery simple cycle with more than three vertices has a
chord [10, 34], i.e., no subset of vertices of G induces a
subgraph 1somorph1c to a cycle with more than three
vertices.

The ntersection graph of a family F of sets S; is
the graph obtained by associating a vertex v; with
each set S;, and edges (v;,v;) whenever S; intersects
S;. One characterization ochhordal graphs that has
proven particularly useful is as the intersection graphs
of subtrees, that is, connected subgraphs, of a tree.
We call the tree in question a skeleton of the chordal
graph G. Along with the subtrees it forms a tree rep-
resentation of G. A tree representation of a graph G
1s said to be munimal if the associated skeleton has the
minimum number of nodes possible. Gavril [12] and
Buneman [7] showed that in a minimal representation
there is a one-to-one correspondence between vertices
of T and maximal cliques of G. Alternatively, we can
consider the nodes of T' to be formed by sets of ver-
tices of (¢ so that for each vertex v of GG a subtree T,
induced in T by the nodes that contain v can be used
to represent v. Ty is said to be the representative sub-
tree of v. A minimal tree representation of GG is called
a clique tree of G.

Throughout this paper, we refer to vertices in a
graph, but we reserve the term node to refer to vertices
in the skeleton of a chordal graph and to vertices in



separator trees, that is, trees whose nodes correspond
to separators in the original graph. In both cases,
nodes typically correspond to sets of one or more ver-
tices. Similarly, we reserve the term link to refer to
edges between nodes in a skeleton of a chordal graph.
A subtree T, is said to cover a node/link of the skele-
ton if that node/link is in T,,. A terminal branch of T
i1s a maximal path from a leaf v to a node w in T that,
except for v and w, contains only degree-2 nodes.

An important subclass of chordal graphs are the
wnterval graphs, which are chordal graphs that have a
skeleton that is a path. A tree representation with
a path for a skeleton is also called an interval repre-
sentation, for the representative subtrees are also just
paths, and can be interpreted as intervals.

3 Parallel elimination orders for inter-
val graphs
3.1 Nested dissection

In this section we analyze a simple nested dissec-
tion algorithm that chooses a balanced separator at
each step, thus producing a logarithmic depth separa-
tor tree. We show an upper bound of O(m - y/logn)
on the amount of fill for the orders produced.

Given a graph G, an a-balanced separator of G =
(V, E) is a set of nodes S C V such that no connected
component of V' — S has more than « - |V| vertices, for
some o < 1. An «-balanced separator tree is one whose
nodes are a-balanced separators of the subgraphs of
G. The root of the tree is an a-balanced separator of
G, and we build a tree recursively for each component
and attach them as subtrees of the root. From now on,
whenever we use the term balanced separator we sim-
ply mean an a-balanced separator, for some constant
a.

Nested dissection on an interval graph 7 builds a
balanced separator tree whose nodes are minimal sep-
arators of subgraphs of I. For interval graphs, every
minimal separator corresponds to the set of vertices
that cover some link of its skeleton P. We order this
tree so that an in-order traversal of the separator tree
corresponds to a left-to-right traversal of the links of
P. When necessary we will refer to an ordered sepa-
rator tree to make it clear that we are considering a
separator tree whose children are ordered as described
here.

As long as the algorithm chooses a-balanced sep-
arators, the depth of the separator tree is O(logn),
since both the left and right subtrees of each node
have no more than an a-fraction of the vertices in the
subtree rooted at that node.

3.1.1 Analysis

Given a separator tree, we obtain a corresponding
elimination order by recursively eliminating the root
separator’s subtrees in parallel and then eliminating
the root separator itself. Even though a nested dis-
section separator tree has depth O(logn), the corre-
sponding elimination order potentially can be fairly
unbalanced, since the separators will probably have

different sizes. Every separator is a clique in the cor-
responding graph and hence its size is a lower bound
on the height of any elimination order. If the depth
of the separator tree is d, we get the following lemma,
which assures that this unbalance can be at most a
logarithmic factor for our nested dissection algorithm.

Lemma 1 [1] Let G be a graph. A depth d mini-
mal balanced separator tree for G produces an order of
depth within a factor of d of the optimal.

We now proceed to bound the total number of fill
edges introduced by the nested dissection algorithm.
In the lemmas that follow, we only consider non-trivial
interval graphs, that is, we assume that the graphs in
question have at least two distinct maximal cliques.
We also assume that any pre-existing simplicial ver-
tices have been eliminated from the graph, so that af-
ter this pre-processing step no representative subtree
consists of a single node.

Figure 1: Fill among vertices in a separator tree of an
interval graph.

Figure 1 shows part of a separator tree of an in-
terval graph. Each node in the tree corresponds to a
minimal separator of the graph. The elimination or-
der specified by the separator tree might introduce fill
edges between a vertex v in A and vertices in B’s right
subtree, as depicted by the dotted edges. In this case
v must be adjacent to some vertex in B’s right subtree
as depicted by the edge in the figure.

We define an inner path of a node A in an ordered
binary tree as the path that starts with the edge to
the left or right child of A, and goes all the way to the
in-order predecessor or successor of A, respectively.
The next lemma states that amounts of fill in excess
of O(m) must be between a node and its inner paths.

Lemma 2 Let I be a connected interval graph. The
total amount of fill between vertices in separator nodes
of an ordered balanced separator tree of I and vertices
not in the corresponding inner paths is O(m).



Lemma 2 allows us to concentrate on fill involving
vertices in inner paths. Consider one such inner path.

Lemma 3 Let [ be a connected interval graph, and
let Vi be a node in an ordered balanced separator tree
of I. Let V1, Va, ..., Vi be the nodes in Vi ’s right inner
path. The total amount of fill between Vi and vertices

in its right inner path is at most O(\/k - Zf:o [Vil?).

A separator 1s 1n at most 4 inner paths, two starting
at itself, one starting at its parent, and one starting at
some other ancestor. Since a balanced separator tree
has O(log n) depth, Lemmas 2 and 3 give the following
corollary:

Corollary 1 Let I be a connected interval graph, with
a balanced separator tree. The total amount of fill in-

duced by the order specified by the tree is O(m-/logn).

It is not hard to find examples of interval graphs on
which a nested dissection algorithm that is forced to
choose (1/2)-balanced separators produces an order-
ing with fill Q(m -+/logn) [6], showing that the bound
derived in the previous section is tight.

3.2 A linear-fill O(log® n)-depth algorithm

In this section we present a recursive algorithm

that, given an interval graph, finds an O(log2 n)-depth
separator tree that represents the elimination order for
the vertices in the graph. Unlike traditional separator
trees, vertices can appear multiple times in the tree,
and should be eliminated at the top level separator it
appears in.

The algorithm is composed of three steps, which
operate on a skeleton path of an interval graph. The
analysis of the algorithm uses a potential function
whose value is O(m) initially and is used to account
for the fill edges. The last of the three steps is carried
out to ensure that we do not charge to the same part
of the potential function multiple times. This is done
by keeping track of which edges are “depleted” of their
contribution to the potential, and dividing the graph
into subgraphs on which to recurse, each of which has
no depleted edges.

The first step, Homogenize, finds a sequence of up
to k = O(logn) separators that divide the graph into
k 4+ 1 components. The sizes of these separators are
geometrically decreasing, a property that is useful in
accounting for fill induced to any of these separator
vertices. The next step, which we call Halving, 1s anal-
ogous to a regular nested dissection iteration: we sim-
ply select a separator that divides the skeleton of the
interval graph we are currently working with in half.
As in nested dissection, this ensures that the algo-
rithm finishes within O(logn) iterations of the steps,
thus producing an order with good height. Finally,
the algorithm performs the Kill step. As mentioned
earlier, the purpose of this step is to ensure that the
potential function is used correctly to account for the
fill. The Kill step accomplishes this by choosing spe-
cial kinds of separators called sentinels that localize
subsequent fill to subgraphs that contain only non-
depleted edges (whose potential contribution is as yet

unused). In choosing sentinels, we incur an extra logn
factor in the height of our order, since we select up to
log n sentinels per Kill step.

We also analyze a chordal graph version of our in-
terval graph algorithm, which is described in more de-
tail in Section 4. The algorithms are essentially the
same, except that when dealing with chordal graphs
we have a skeleton that is a tree, not a path. We can
apply the interval graph algorithms to eliminate each
of the branches (paths) of the skeleton that lead to
leaves of the tree. We repeat this step until the whole
tree has been processed.

3.2.1 Definitions used in the algorithm

An edge is said to be an extremity of a tree if it 1s an
edge to some leaf of the tree. To insert a link e of the
skeleton into the separator tree consists of adding to
the tree the separator formed by those vertices of the
chordal graph whose representative subtrees cover e.
A link of the skeleton is said to be a root if it has been
inserted into the separator tree. A rooted skeleton is
a skeleton whose extremities are roots.

A vertex v and its representative subtree T, are said
to be pinned at a link r if » is a root and either T,
covers r or T, 18 a singleton covering one of the nodes
of r. The term “depleted” is used to help us keep track
of which edges in the input graph have been used to
pay for fill and can no longer be used. Some subset of
the roots may be said to be depleted in G. A vertex
is said to be depleted if it is pinned at a depleted
link. Whenever we refer to a pinned vertex, it is not
depleted, unless explicitly stated. Edges between pairs
of depleted vertices are also said to be depleted. Edges
between pinned vertices are said to be pinned edges.
Unless otherwise stated, the term pinned edges only
refers to non-depleted pinned edges. A vertex is said
to be internal to a graph if it is not pinned. Edges to
internal vertices are also said to be internal, regardless
of whether the other endpoint of the edge is internal.

Let G be an interval graph, with skeleton T'. P,
denotes the path between and including the two links
[ and r in T. P(l,r) denotes the interval graph ob-
tained by restricting &' to P, and eliminating any
single vertex representative subtrees. Given a repre-
sentative subtree 7T, associated with a vertex v of G,
let T} be the path induced in T;, by F,. P(l,r) is
the interval graph that has those T with two or more
nodes in their representative subtrees on the skeleton
P .

The ply p. of a link e of T"is the number of subtrees
T, that cover that link.

3.2.2 The algorithm

Given an interval graph I, and an interval representa-
tion of I, with skeleton P, whose extremities are [ and
r, we remove any simplicial vertices of I, insert both
[ and r into the separator tree, and apply the step
Homogenize to it. Eliminating simplicial vertices does
not change the skeleton of the graph, but rather elim-
inates any single node representative subtrees. Since



none of the steps of the algorithm creates these single-
node sub-paths, later steps do not have to deal with
them.

Each step of the algorithm inserts one or more links
of the skeleton into the separator tree, resulting in
a number of subgraphs. Let Kj(e;, e;41) denote the
interval graph obtained from P(e;, ¢;41) by removing
all vertices pinned at [ as well as those that cover both
e; and e;y1.

The algorithm consists of three major steps that
call each other recursively. Each step inserts some ver-
tices into the separator tree, thus creating subgraphs
to which the next step is applied provided there ex-
ists at least one vertex internal to the subgraph. Each
step operates on an interval graph I, a skeleton path P
of I, and P’s two extremities, [ and r. The first step,
Homogenize, divides the interval graph in a number of
subgraphs and then applies the Halving step to each
one of them. The ply of the links for each subgraph is
relatively homogeneous in the sense that internal links
have ply at least equal to half of the ply of the roots
of that subgraph.

Homogenize(I, P,1,7)

Select [, and traverse P towards r, selecting
the first link whose ply 1s at most half the
ply of the last selected link. Repeat until »
is reached. Apply the same algorithm from »
to . Let e, 0 < ¢ < k+ 1, be the links
that were selected ordered from [ to r, includ-
ing ! = ey and r = exy1. Insert all the se-
lected links except [ and r into the separator tree,
and do Halving(P(e;, €i41), Pe; e;q1 €, €it1), for
each i between 0 and k for which some vertex in
P(e;, e;41) is not in the separator tree yet.

The Halving step simply does what 1ts name suggests,
that is, divides the problem in two subproblems that
are no more than half the size of the original one.

Halving(7, P, 1, r)

Choose a link m in P such that when m is in-
serted into the separator tree, both F;,, and
Pp,» have no more than half as many skeleton
links as P did. Then do Kill(P({, m), P m,{, m)
(and Kill(P(m,r), Py, m,7)), provided that
P(l,m) (P(m,r)) has some vertex that has not
been inserted in the separator tree.

Finally, the Kill step divides an interval graph into a
number of subgraphs, and from each one it removes
vertices that have either been depleted or cover the
entire piece of the skeleton corresponding to that sub-
graph. This reestablishes the preconditions of the Ho-
mogenize step (as described in Lemma 6), which is
applied to each of the resulting subgraphs.

Kill(Z, P, 1, r)

Assume the ply at [ is at least the ply at r, 1.e.,
pr > pr. Otherwise, swap the roles of [ and r
in this algorithm. From r to ! in P, select the
first link that covers a node that is pinned at
l. Keep scanning P towards [, and selecting the
first link that covers at least twice as many ver-
tices pinned at [ as did the last selected link. Call
these milestone links. Also select the links adja-
cent to the milestones, which are closer to r than
the corresponding milestone, and call those sen-
tinels. Insert the links that were selected into the
separator tree in order, from { to r. Call those
links e;, including I = eg and r = egq1. Ap-
ply Homogenize(K;(e;, €i11), Pe, ey €is €ig1),
for all ¢ such that Kj(e;,e;41) has at least one
vertex that hasn’t been inserted into the sepa-
rator tree. Note that when e; and e;y1 are a
milestone and its corresponding sentinel all ver-

tices in F%, ¢,,, have already been ordered.

3.2.3 Fill Analysis

We now define a potential function that will be used to
bound the amount of fill introduced by the algorithms.
Let G be a chordal graph and let T" be a skeleton of ¢
at some stage in the algorithm. Let s be the number
of links of T" that are not roots. Let z be the number
of internal edges of (G, and y the number of pinned,
non-depleted edges. The potential ¢(G) is given by

$(G)=3-z+y+s.

Given an initial connected graph, we take the skeleton
T to be a clique tree of the graph. Since the graph
is chordal, 7" can only have as many vertices as the
original graph, and thus the potential of a graph is
O(m +n). This potential is used to pay for all the fill
introduced by our algorithm. To do this, at each step
in the recursion, we ensure that some fixed constant
times the difference in potential between the initial
graph and the subgraphs into which that step divides
the graph is enough to pay for any fill edges that are
introduced because of that step (see condition (ii7)
later in this section).

By examining the different kinds of edges in the
interval graph, we can determine the following change
in the potential function when a new node is inserted
in the separator tree.

Lemma 4 Let I be an interval graph and let P be a
rooted skeleton path of I with roots | and r, such that
only | is depleted. Let m be a link in the skeleton,
distinct from | and v. If m and | are roots in P(l,m),
l being depleted in P(l,m), and m and r are roots
in P(m,r), m being depleted in P(m,r) (but not in
P(t,m)) then (1) — (6(P(L,m)) + o(P(im, 1)) > 1 +
m/ (m' — 1) + 2m/ (pn, — m'), where m’ is the number
of internal vertices that cover m in P.



We now present an analysis of the performance of
our algorithms in terms of fill. The next lemma says
that fill is local to the subgraphs defined by the sepa-
rators in the separator tree.

Lemma 5 Let I be an interval graph and let P be a
rooted skeleton path of I with extremity roots | and r.
Then any link m in P distinct from | and v can be in-
serted into the separator tree, thus dividing I into two
subgraphs P(l,m), with roots | and m, and P(m,r),
with roots m and r, so that the vertices internal to each
of the subgraphs can only have fill to other vertices in
that same subgraph.

Let P(l,7) be an interval graph at the beginning of
a step (either Homogenize, Halving or Kill) and let e
be a link of its skeleton path P, distinct from its roots
[ and r. When inserting e into the graph’s separator
tree we require that:

1. fill between vertices rooted at [ and r must have
been accounted for in some previous step, if ei-
ther [ or r is depleted, and otherwise must be
accounted for in the current step.

i1. fill between vertices pinned at e and those pinned
at [ (and r) must be accounted for in the current
step, if at least one of e or ! (respectively r) is
depleted.

1. A constant times the difference in potential be-
tween the original graph and the parts must be
enough to pay in that step for any fill.

Since condition (iii) refers to the difference in po-
tential, the total amount of fill allowed by (iii) is a
constant times the potential of the initial graph and
thus O(m). In the next lemmas, we show that the
above three invariants are maintained as we perform
each of the three steps described in Section 3.2.2.

Given an interval graph 7, the Homogenize step di-
vides the problem of finding an order for the vertices
of I into a number of subproblems, each of which has
the same desirable property, namely except for the ex-
tremities, the ply of every link in the skeleton of the
subgraphs is at least half of that of the extremity of
the skeleton with the largest ply. If this condition is
already met, the Homogenize step does not insert any
links into the separator tree, and we go into the next
step of the algorithm with no depleted links.

Lemma 6 (Homogenize Step) Let I be an interval
graph, with a rooted skeleton path P. Let | and r be
roots of P, neither being depleted, and let p; > p,.
Then Homogenize(I,P,lr) finds k = O(logp;) links of
the skeleton P. If k > 0 then the selected links can be
mserted into the separator tree in any order, defining
subgraphs P(e;,e;11) rooted at e; and e;y1, e; being
depleted. Moreover, except for possibly e; or e;41 the
links of the skeleton Pe, ..., have ply greater than or
equal to half the larger of pe, and pe,,, and conditions

(i), (ii) and (iii) can be satisfied.

Proof. Sketch: The whole selection process selects
no more than k& < logp; + logp, = O(logp;) links of
the skeleton, aside from [ and r. The depletion of
the endpoints can be seen as making [ depleted, and
then applying Lemma 4 repeatedly. Making ! depleted
reduces the potential of the graph by p;(p;—1)/2, while
according to Lemma 4 each insertion produces two
subgraphs, further reducing the potential by at least
1 unit. By considering where fill might be induced, we
can verify the amount of fill introduced can be payed
for by the decrease in potential. [ |

Specific orders for the links selected by the Homog-
enize algorithm can result in smaller constants when
computing fill, and in better or worse orders in terms
of the depth of the separator tree.

As long as the skeleton of a subgraph generated
by the algorithm described in this lemma has internal
vertices, 1t satisfies all the pre-conditions for Lemma
7 regarding the next step in the algorithm.

Lemma 7 (Halving Step) Let I be an interval graph,
and let P be a rooted skeleton path of I with at least 3
links. Letl and r be its roots, | being possibly depleted.
Moreover, let pe > max(p,pr)/2, for all links e in
P. Then, Halving(I,P,l,r) inserts a link m into the
separator tree such that ifl is depleted in P(l,m) and
m is depleted in P(m,r), conditions (i), (ii) and (iii)
are satisfied.

Proof. Sketch: As long as P has more than two links
the Halving step will find such a link m. All that needs
to be shown is that the fill described in conditions (i)
and (ii) can be paid for with a constant times the
difference in potential between [ and the subgraphs
P(l,m) and P(m,r), as prescribed in (iii). ®

For the last step in the algorithm, the depleted
root must be the root with largest ply. The follow-
ing lemma makes sure that is the case, by allowing us
to relabel them if needed.

Lemma 8 Let P be a rooted skeleton of an interval
graph I. Letl and r be the extremities of P, r being
depleted. Then if p; > p, the depleted status of | and
r can be exchanged, without increasing the potential of

1.

Coming into the Halving step, we know that p. was
larger than or equal to maxz(p;, pr). Now, since pp,
could be larger than either of those plies, we don’t
have that condition anymore. However, we can still
use the fact that p. > min{p;, p,}/2, where [ and r are
the extremities of the interval graph being considered.

Lemma 9 (Kill Step) Let I be an interval graph, with
a rooted skeleton path P whose roots are l and r, | be-
ing depleted in I. Let p; > p,, and p. > p, /2, for all
links e in P. Then Kill(LP(lyr) finds k = O(logp;)
links that when wnserted into the separator tree in or-
der, from | to r, satisfy conditions (i) and (iii) while
producing subgraphs Ki(e;, e;41) where e; and e;41
are non-depleted roots, 0 < ¢ < k, and also paying
for fill between vertices in P(e;,e;41) and those in
Ples,eiv1) — Ki(es,eip1) (which includes but is not
restricted to the fill described in (ii).)



Proof. Sketch: The proof involves examining all pos-
sible sources of fill and verifying that they can be paid
for with a constant times the decrease in potential
caused by this step. [ |

A chordal graph, and in particular an interval graph
I has at most n maximal cliques, and thus at most n
nodes in its clique tree. Just before the first recur-
sive invocation of Homogenize, the three steps have
partitioned I into subgraphs that have skeletons with
no more than half the number of links in the skeleton
of I. Since the three steps add O(logn) nodes to the
separator tree, and log n iterations of those three steps
might be necessary, the depth of the tree generated by

this algorithm is O(log”n). Since every separator is
a clique of I, the order produced has height at most

O(C -log®n), where C' is the size of the maximum
clique of I.

We can obtain similar bounds on the amount of
work that is induced by the orders produced by our
algorithm. Our results are summarized in the next
lemma. The work analysis can be found in [6].

Lemma 10 Let I be an interval graph with n vertices
and m edges. When applied to I, the algorithm pre-
sented wn Section 3.2.2 produces an order with height
O(C -log® n), fill O(m), and work O(W*(I)), where C
is the size of the largest clique in I and W*(I) is the
minimum amount of work required to perform Gaus-
stan elimination on I according to any order.

4 Chordal graphs

In this section we show how to find an elimina-
tion order for a chordal graph G by repeatedly ap-
plying one of the interval graph algorithms we’ve al-
ready described to branches of (G’s skeleton. This
tree-contraction like approach was also used by Naor,
Naor and Schaffer [28] when developing algorithms for
chordal graphs.

Using either the algorithm in Section 3.1 or Sec-
tion 3.2, we can derive an algorithm for chordal
graphs. Consider a chordal graph (, and its skele-
ton tree 7. The chordal graph algorithm consists of
finding terminal branches of the skeleton T, and apply-
ing an interval graph algorithm to the branches. All
terminal branches can be processed in parallel. By re-
iterating this process we order the tree with O(logn)
calls to an interval graph algorithm.

The actual algorithm that is to be applied to the
path P(l,r) is essentially the Kill step. The only dif-
ferences are that » is not a root, and we do not have
any sort of bounds on the plies of the links in the
skeleton path. This algorithm will divide P({,r) in a
number of subgraphs, that will then be used as input
to an ordering algorithm for interval graphs.

We add an imaginary link »’ to the skeleton of
P(l,r), so that ' 1s now the last link of the skele-
ton, as opposed to r. Call ' a root. Since p, = 0,
the ply conditions in Lemma 9 are trivially satisfied,
and we can apply the Kill step to partition P(l,r) in
rooted subgraphs, with no depleted roots. P(l,r) does
not include any single-vertex subtrees that might be

present in the chordal graph. These should be elimi-
nated before any of the other vertices of P(l,r), thus
not introducing any fill.

The lemmas that follow allow us to extend the anal-
ysis we have for each of the interval graph algorithms
to the chordal case.

Lemma 11 Let G be a chordal graph with a skeleton
tree T'. Let r be a link to a leaf of T', and [ be the other
extremity of the terminal branch of T that includes
r. Let |l be a depleted root in P(l,r) and let G’ be
the graph obtained from G by remouving all vertices
of G that are internal to P(l,r). Then the potential

¢(G) = o(G) +o(P(L,r) + 1.
Let G, G’ and P(l,r) be as described in Lemma 11.

Lemma 12 If is the only root in P(l,r), then any
order for the remaining vertices of P(l,r) does not
induce any fill in G to vertices of G — P(l,r).

Given a graph G, with n vertices and m edges, and
whose largest clique has size C'; we can show the fol-
lowing results.

e The chordal version of the nested dissection al-
gorithm (Section 3.1) produces an order with

O(C -log” n) height and O(m+/Togn) fill.

e The chordal version of our linear fill algorithm
(Section 3.2) produces an order with O(C'-log® n)
height, O(m) fill, and O(W*(G)) work, where
W*(G) is the minimum amount of work, over all
possible orders for G'.

5 Experimental results

We implemented the chordal version of the algo-
rithm presented in Section 4, and performed some ex-
periments.

Matrix Vertices Edges
besstk30 28924 1007284
besstk31 35588 572914
besstk32 44609 985046
bcsstk35 30237 709963
bcsstk36 23052 560044
besstk37 25503 557737
nasasrb 54870 | 1311227
sf10 7294 44922
st5 30169 190377
G256x256 65536 130560
G64x1024 65536 129984
G16x4096 65536 126960

Table 1: Number of vertices and edges of the input
graphs.

The besstk matrices used in our experiments come
from structural engineering problems, and were ob-
tained from the Harwell-Boeing collection, and from
Timothy Davis’s “University of Florida Sparse Matrix
Collection” (the matrices were provided to Davis by



Non-zeros Non-zeros / AMD Non-zeros Height Height / AMD Height
Matrix AMD Post METIS Post Hybrid Post AMD Post METIS Post Hybrid Post

AMD METIS hybrid AMD METIS Hybrid
besstk30 3853728 1.1037 1.2850 1.2664 1.0098 1.0307 2764 0.77 0.47 0.47 0.65 0.60
besstk31 5557200 1.0637 0.9328 0.9223 0.7527 0.7638 2285 1.02 0.62 0.62 0.72 0.72
besstk32 4986503 1.0313 1.3673 1.3541 1.0162 1.0339 2457 0.86 0.68 0.68 0.72 0.68
bcsstk35 2732030 1.0359 1.4467 1.4279 1.0160 1.0268 1262 0.95 0.94 0.94 0.86 0.85
bcsstk36 2732511 1.0123 1.3458 1.3349 0.9350 0.9527 1540 0.93 0.88 0.88 0.81 0.85
besstk37 2799200 1.0325 1.3145 1.3029 0.9620 0.9785 1333 1.07 0.94 0.94 0.87 0.89
nasasrb 11953582 1.1559 0.9885 0.9832 0.8169 0.8529 4829 0.75 0.39 0.39 0.70 0.58
sf10 675708 1.0223 0.8766 0.8748 0.7858 0.7916 793 1.00 0.71 0.69 0.89 0.87
st5 5244006 1.0203 0.8045 0.8039 0.7385 0.8001 2341 1.00 0.61 0.60 0.78 0.81
G256x256 1971395 1.0125 1.1353 1.1333 0.8495 0.8549 1617 0.98 0.50 0.50 0.62 0.61
G64x1024 1425433 1.1949 1.2283 1.2263 0.9476 0.9641 2791 0.42 0.17 0.17 0.35 0.28
G16x4096 656963 1.4748 1.5018 1.4991 1.3240 1.3624 8464 0.04 0.02 0.02 0.09 0.04

Table 2: Results obtained by post-processing good existing orders relative to an AMD order.

AMD Work Work / AMD Work
Matrix AMD Post METIS Post Hybrid Post

AMD METIS Hybrid
besstk30 9.416e+408 1.3828 1.5803 1.5569 0.9944 1.0631
besstk31 2.898e+409 1.2143 0.5635 0.5597 0.3999 0.4179
besstk32 9.479e408 1.0929 2.1996 2.1796 1.0116 1.0708
besstk3b 3.832e4-08 1.1391 2.5535 2.5097 1.0287 1.0558
besstk36 6.201e+408 1.0452 1.9545 1.9448 0.7792 0.8429
besstk37 5.322e+408 1.1313 1.9560 1.9429 0.8968 0.9605
nasasrb 4.771e409 1.6860 1.0067 1.0034 0.5911 0.6866
sf10 1.366e408 1.0681 0.6400 0.6395 0.5178 0.5279
sfh 2.781e409 1.0550 0.5358 0.5358 0.4585 0.6228
G256x256 2.607e408 1.0591 1.1998 1.1991 0.7280 0.7484
G64x1024 8.470e407 1.9492 1.5643 1.5679 0.9843 1.0581
G16x4096 8.507e406 3.1186 2.9023 2.9035 2.4168 2.6284

Table 3: Work results obtained by post-processing good existing orders relative to an AMD order.

Roger Grimes, at Boeing.) The nasasrb matrix mod-
els the structure of the NASA Langley shuttle rocket
booster, while the sf matrices are used in the simula-
tion of an earthquake in the San Fernando Valley [29].
The G matrices are h x w grids. The number of ver-
tices and edges in each graph can be found in Table 1.

We applied our algorithm as a post processing step
to the orders produced by a version of the approximate
minimum-degree heuristic (AMD) 2 [9], to the nested
dissection orders produced by METIS 2 [19] and to the
orders produced by a hybrid of min-degree and nested
dissection obtained from Rothberg [16].

Table 2 shows the results we obtained as a func-
tion of the numbers obtained for an AMD order. The
number of non-zeros includes entries that are in the
original graph as well as any fill entries, above and in-
cluding the diagonal. The height entries correspond to
the height of a minimum height order whose updated
graph is identical to the chordal completion being con-
sidered. Given a chordal completion, such a minimum
height order and its height can be easily computed
(see [18, 27]).

Table 3 shows the amount of work, that 1s, floating-

2code from ftp:/ /ftp.cise.ufl.edu/pub/umfpack /AMD/
3code from ftp:/ /ftp.cs.umn.edu/dept/users/kumar/metis/

point operations, involved in performing Gaussian
elimination according to each of the orders.

Our results indicate that our algorithm usually pro-
duces an order that has a small amount of extra fill
when compared to the chordal completion it starts
with. In some cases, our post-processing actually pro-
duces small improvements on the number of non-zeros.
Contrary to what we expected, for most graphs, the
AMD orders were very parallel, thus making it harder
for us to obtain significant improvements in height. It
is interesting to notice that for grids with large aspect
ratio the AMD orders cannot be directly parallelized.
In those test cases, our orders induce a slightly lower
number of non-zero entries than the nested dissection
orders, and a small constant factor higher than the
number of non-zeros induced by the AMD orders. In
these cases, the orders our algorithm produced are sig-
nificantly more parallel then the original AMD orders,
and only slightly worse than the nested dissection or-
ders. The hybrid algorithm produces orders that are
usually good in terms of both fill and height.

6 Concluding remarks
A number of interesting questions remain open:

Can we prove any bounds on the performance of



the minimum-degree heuristic on chordal or even in-
terval graphs?

Are there algorithms that obtain parallel orders
with fill within a constant factor of optimal, for gen-
eral graphs?

Can we incorporate the idea of sentinels into other
heuristics, such as minimum-degree and nested dissec-
tion? If so, what fill and work bounds can be proved?
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