
Available online at www.sciencedirect.com
European Journal of Operational Research 186 (2008) 77–90

www.elsevier.com/locate/ejor
Discrete Optimization

Approximating k-cuts using network strength
as a Lagrangean relaxation

R. Ravi a, Amitabh Sinha b,*

a Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA
b Ross School of Business, University of Michigan, Ann Arbor, MI 48109, USA

Received 16 December 2005; accepted 15 January 2007
Available online 25 February 2007
Abstract

Given an undirected, edge-weighted connected graph, the k-cut problem is to partition the vertex set into k non-empty
connected components so as to minimize the total weight of edges whose end points are in different components.

We present a combinatorial polynomial-time 2-approximation algorithm for the k-cut problem. We use a Lagrangean
relaxation (also suggested by Barahona [F. Barahona, On the k-cut problem, Operations Research Letters 26 (2000) 99–
105]) to reduce the problem to the attack problem, for which a polynomial time algorithm was provided by Cunningham
[W. Cunningham, Optimal attack and reinforcement of a network, Journal of the ACM 32(3) (1985) 549–561]. We prove
several structural results of the relaxation, and use these results to develop an approximation algorithm.

We provide analytical comparisons of our algorithm and lower bound with two others: Saran and Vazirani [H. Saran,
V. Vazirani, Finding k-cuts within twice the optimal, SIAM Journal of Computing 24(1) (1995) 101–108] and Naor and
Rabani [J. Naor, Y. Rabani, Tree packing and approximating k-cuts. In: Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2001, pp. 26–27]. We also provide computational results comparing the performance
of our algorithm on random graphs with respect to the lower bound provided by the attack problem as well as an alternate
2-approximation algorithm provided by Saran and Vazirani [Cited above].
� 2007 Elsevier B.V. All rights reserved.

Keywords: Combinatorial optimization; Graph theory; Approximation algorithm; Lagrangean relaxation
1. Introduction

Among the most fundamental optimization problems in graph theory are cut problems, where the objective
is usually a minimum-weight set of edges which cuts the graph into two or more pieces under certain con-
straints. In its simplest form, the minimum cut problem considers an undirected, edge-weighted graph, and
searches for the minimum-weight set of edges whose removal partitions the graph into at least two compo-
nents. This problem was among the first graph optimization problems for which polynomial time algorithms
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.01.040

* Corresponding author. Tel.: +1 734 615 4182.
E-mail addresses: ravi@cmu.edu (R. Ravi), amitabh@umich.edu (A. Sinha).

mailto:ravi@cmu.edu
mailto:amitabh@umich.edu

78 R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90
were obtained, and various associated theoretical developments such as the famous Max-flow min-cut theorem

have contributed significantly to the theory and practice of graph optimization problems.
Consequently, several generalizations of the basic minimum cut problem have also been considered.

Among the simplest generalizations one can think of is to make the number of connected components required
a part of the input. Specifically, given a graph and a positive integer k, one asks for the minimum-weight set of
edges whose deletion creates at least k connected components. This is known as the k-cut problem, and is the
object of study in this paper.

1.1. Problem definition

Given an undirected, connected graph G ¼ ðV ;EÞ with non-negative edge weights s, and a positive integer
k < jV j, a k-cut is a set of edges A � E whose removal partitions G into k or more connected components. The
k-cut problem is to find a minimum-weight k-cut in G, where the weight of a k-cut is the sum of the weights of
the edges in the cut.

1.2. Related work

While the k-cut problem generalizes the minimum cut problem, it was shown to be NP-hard by Goldsch-
midt and Hochbaum [6]. For fixed k, they also gave an exact algorithm with running time OðjV jk

2

Þ.
Saran and Vazirani [10] gave a polynomial time ð2� 2

kÞ approximation algorithm which finds minimum cuts
until the graph has been partitioned into k connected components. Naor and Rabani [8] also provided a 2-
approximation algorithm, by rounding an integer linear program formulation of the problem. We compare
our work with both of these works in Sections 5 and 6. Recently, Chekuri et al. [3] extended the algorithm
in [8] to handle Steiner k-cuts, where each component must contain at least one of a specified set of terminal
vertices. Karger and Stein [7] gave a randomized algorithm which runs in expected time OðjV j2ðk�1ÞÞ and finds
an exact solution.

The Lagrangean approach of this paper was also suggested by Barahona [2], though this work is indepen-
dent of his. Barahona considered the value of the optimal k-cut as a function of k, and proved that the Lagran-
gean relaxation provides a lower bound as well as the convex envelope of the k-cut function. However, he was
unable to bound the difference between the solution cost and the lower bound. Our work was done indepen-
dently of [2], and one of the contributions of this paper is a tight bound on the ratio of the solution cost to the
lower bound, thus answering an implicit open question in [2]. In doing so, we also develop various structural
properties of the Lagrangean relaxation which were not considered in [2].

1.3. This paper: results and organization

Our primary contribution is an alternate 2-approximation to the k-cut problem. We use a Lagrangean
relaxation of the k-cut problem to reduce it to the attack problem (defined shortly). Cunningham [4] gave a
polynomial time algorithm to solve the attack problem optimally, which we use to solve the Lagrangean relax-
ation. We study the relaxation in detail and derive its structural properties in Section 3, after some preliminar-
ies in Section 2.

Our approximation algorithm is developed and described in Section 4. The structure of the solution of the
attack problem leads to a fast algorithm for solving the Lagrangean relaxation, which we use in our algorithm
for the k-cut problem. We then derive our approximation ratio.

We discuss the merits and demerits of our algorithm in Section 5. We first show examples demonstrating
that our algorithm is theoretically incomparable with that of Saran and Vazirani, since there exist examples
where each algorithm achieves its worst-case bound while the other finds the optimal solution. We then show
that our lower bound always has weight at least as much as the lower bound provided by Naor and Rabani [8].
We also show the limitations of our approach using an example which bounds from below the approximation
ratio achievable by algorithms using the Lagrangean relaxation as a subroutine.

Finally, we provide computational results in Section 6 by studying the performance of our algorithm on
random graphs (of both the Bernoulli and preferential attachment types). We compare the cost of the solution

R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90 79
provided by our algorithm to the lower bound as well as to the cost of the solution provided by the algorithm
of Saran and Vazirani [10]. Briefly, our results indicate that: (i) the lower bound is usually fairly good, (ii) the
lower bound worsens with graph density, (iii) the two algorithms often produce the same cuts, and (iv) the
two algorithms are incomparable in that there is no empirical evidence to claim that one outperforms the
other.
2. Preliminaries

2.1. Notation

The input consists of an undirected, connected graph G ¼ ðV ;EÞ, a positive integer k, and a weight function
on the edges given by s : E! Rþ. Let A � E be a subset of the edges of G. If G0 ¼ ðV ;E n AÞ has l connected
components, we say that A is an l-cut, and denote it as jðAÞ ¼ l. The weight of A is defined as sðAÞ ¼

P
e2Ase.

Therefore, the k-cut problem can be written as the following:
min
A�E:jðAÞPk

sðAÞ:
If G is a connected graph with all edge weights strictly positive, then a minimum-weight k-cut will never have
more than k components. However, if G is initially disconnected, or has some zero-length edges, then it is pos-
sible that an optimal solution to the k-cut problem has more than k components. For the purpose of our algo-
rithm, zero-length edges are allowed. Moreover, if the G is initially disconnected, it can be transformed into a
connected graph by adding zero-length edges. For this reason, we continue to define the k-cut problem as
requiring a minimum-weight set of edges which results in at least k components, as opposed to exactly k

components.
Note that the definition of j does not require G to be connected. Indeed, even if G is a graph with several

distinct components not connected to each other, we may define j(A) for any edge-set A to be the total number
of connected components in G after the removal of the edges in A.

2.2. Strength and attack of a graph

Define the strength of an edge set A to be rðAÞ ¼ sðAÞ
jðAÞ�1

, with rðAÞ ¼ 1 if jðAÞ ¼ 1. The strength of G is
rðGÞ ¼ minA�ErðAÞ. By definition, 0 6 rðGÞ 6 sðEÞ

jV j�1
. Cunningham [4] provided a polynomial time algorithm

to compute the strength of a graph by reducing it to the attack problem, described next.
As a function of a positive real parameter b, the attack value of an edge set A � E is given by

gAðbÞ ¼ sðAÞ � bðjðAÞ � 1Þ. The attack value of the graph is given by gðbÞ ¼ minA�EgAðbÞ. The attack problem
is to compute g(b), and Cunningham showed that we need no more than jV j computations of g(b) to compute
r(G). We define a new function g0ðbÞ ¼ gðbÞ þ bðk � 1Þ which we use in our algorithm and analysis.
3. Lagrangean relaxation

The algorithm is motivated by the following Lagrangean relaxation of the k-cut problem, which was also
suggested by Barahona [2]:
min
A�E:jðAÞPk

sðAÞP max
bP0

min
A�E

sðAÞ þ bðk � jðAÞÞ ð1Þ

¼ max
bP0

min
A�E

gAðbÞ þ bðk � 1Þ ð2Þ

¼ max
bP0

g0ðbÞ: ð3Þ
Note that while there is no way to express jðAÞP k in terms of linear constraints, the bound provided above
by the Lagrangean relaxation continues to hold. Our broad strategy for an approximation algorithm is to
solve the Lagrangean relaxation optimally, and use the solution of the Lagrangean relaxation to develop a
2-approximate solution.

80 R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90
3.1. Structural properties of the relaxation

In this section, we study the combinatorial structure of solutions to the attack problem, which is the sub-
problem resulting from the Lagrangean relaxation of the k-cut problem. The results derived here are then used
to obtain a fast algorithm to solve the Lagrangean relaxation, and to obtain the approximate solution to k-cut.

The next two lemmas are implicit in Cunningham’s work [4], but we derive them here for completeness.

Lemma 3.1 (implicit in Cunningham [4]). If b < b0, and A and A0 are edge sets minimizing g(b) at b and b0,
respectively (that is, gðbÞ ¼ gAðbÞ and gðb0Þ ¼ gA0 ðb0Þ), then jðAÞ 6 jðA0Þ.

Proof. We prove the lemma by contradiction; suppose jðAÞ > jðA0Þ. Therefore, we have ðb0 � bÞjðA0Þ <
ðb0 � bÞjðAÞ, and since A0 is an optimal solution for gðb0Þ, we have:
sðA0Þ � b0ðjðA0Þ � 1Þ 6 sðAÞ � b0ðjðAÞ � 1Þ) sðA0Þ � b0ðjðA0Þ � 1Þ þ ðb0 � bÞjðA0Þ
< sðAÞ � b0ðjðAÞ � 1Þ þ ðb0 � bÞjðAÞ) sðA0Þ � bðjðA0Þ � 1Þ < sðAÞ � bðjðAÞ � 1Þ
which contradicts the optimality of A for g(b). h

A breakpoint of a piecewise linear function is a point at which the function is non-linear. At a breakpoint b0,
we have the following: there are two edge sets A and B such that for b < b0, we have gAðbÞ < gBðbÞ, while for
b > b0 we have gAðbÞ > gBðbÞ. Also, gAðb0Þ ¼ gBðb0Þ. In this case, we say the breakpoint b0 is induced by the

edge sets A and B.

Lemma 3.2 (implicit in Cunningham [4]). The functions g(b) and g0ðbÞ are continuous, concave, piecewise linear,

and have no more than jV j � 1 breakpoints. Moreover, g(b) is non-increasing in b.

Proof. Since g(b) is a lower envelope of a finite set of linear functions gAðbÞ, it is continuous, concave and
piecewise linear. Moreover, since each gAðbÞ is a non-increasing function of b, so is g(b).

Suppose b0 is a breakpoint of g(b), induced by two edge sets A and B, such that for b < b0 we have
gAðbÞ < gBðbÞ. Hence for b > b0, we must have gAðbÞ > gBðbÞ. But this can only happen if jðBÞ > jðAÞ. Using
Lemma 3.1 and the fact that jðAÞ has to be an integer between 1 and jV j � 1 for every edge set A, we can have
at most jV j � 1 breakpoints in g(b).

Since g0ðbÞ ¼ gðbÞ þ bðk � 1Þ, all of the above continue to hold except for the fact that g0ðbÞ need not be
non-increasing in b. h

We now make a technical assumption which will help in the analysis.
A graph G is called non-degenerate if the following holds:

• If b is not a breakpoint of g(b), then there is a unique edge set A such that gAðbÞ ¼ gðbÞ.
• If b is a breakpoint of g(b), then there are exactly two edge sets A and B such that gAðbÞ ¼ gBðbÞ ¼ gðbÞ.

Suppose we perturb each edge weight by a small random number, so that for any two distinct edge sets A

and B, the functions gA(b) and gB(b) are different. Such a perturbation will also achieve the second condition in
our definition of non-degeneracy, and will not change the problem or the objective function significantly.
Hence non-degeneracy is a valid assumption, and for the rest of this paper, we work under the assumption
that our graph is non-degenerate.

An alternate way to achieve non-degeneracy is as is done for the simplex method for linear programming.
Pick a small � > 0, and list all edges in an (arbitrary) lexicographic ordering. To the ith edge in this ordering,
add �i to its weight. Since edges can be compared according to the lexicographic ordering, we avoid the com-
putational overhead needed to actually maintain high-precision edge weights. Clearly, this forces the graph to
be non-degenerate without changing the structure of the graph if � is small enough. Therefore, this is a prac-
tical way to enforce non-degeneracy without causing any loss in the quality of the solution or the run-time of
the algorithm.

R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90 81
A function h : 2E ! R is called supermodular if for every A;B � E we have hðA \ BÞ þ hðA [BÞP
hðAÞ þ hðBÞ. Conversely, h is called submodular if for every A;B � E we have hðA \ BÞ þ hðA [BÞ 6
hðAÞ þ hðBÞ. A well known submodular function is the graphic matroid rank function f, where f(A) is defined
to be the maximum cardinality of a forest in A.

Lemma 3.3. The function j : 2E ! ½n� is supermodular.

Proof. By definition of j, we have jðAÞ þ f ðAÞ ¼ jV j, where A ¼ E n A. (Note that G is connected.) Supermod-
ularity of j now follows immediately from submodularity of f, and can also be verified as follows:
f ðA \ BÞ þ f ðA [BÞ 6 f ðAÞ þ f ðBÞ) f ðA [BÞ þ f ðA \ BÞ 6 f ðAÞ þ f ðBÞ
) jV j � f ðA [BÞ þ jV j � f ðA \ BÞP jV j � f ðAÞ þ jV j � f ðBÞ
) jðA [BÞ þ jðA \ BÞP jðAÞ þ jðBÞ: �
Let sðA; kÞ be the weight of a minimum-weight k-cut on A, where k is now provided as part of the input.
Similarly, let g0ðb; kÞ be defined by extending the definition of g 0(b) to incorporate k as an argument. It follows
from (1)–(3) that sðA; kÞP g0ðb; kÞ for all k. Barahona [2] proved that maxbP0g0ðb; kÞ is the convex envelope of
sðA; kÞ, using an analysis similar to using Lemmas 3.1–3.3. He concluded with a few computational results,
leaving open the question of developing an algorithm which actually utilizes the lower bound. He also did
not provide any theoretical guarantees on the quality of the lower bound. We provide both of these, using
further structural results which are developed below.

Theorem 3.4. If b0 is a breakpoint of g0ðbÞ induced by edge sets A and B where jðAÞ > jðBÞ, then B � A.

Proof. Observe the following set of inequalities:
gAðb0Þ þ gBðb0Þ 6 gA[Bðb0Þ þ gA\Bðb0Þ ¼ sðA [BÞ � b0ðjðA [BÞ � 1Þ þ sðA \ BÞ � b0ðjðA \ BÞ � 1Þ
6 sðAÞ þ sðBÞ � b0ðjðAÞ � 1Þ � b0ðjðBÞ � 1Þ ¼ gAðb0Þ þ gBðb0Þ:
The first inequality follows from the optimality of A and B for the breakpoint b0, while the second inequal-
ity follows from supermodularity of j. Therefore, equality holds through the chain of inequalities above, and
we have
gAðb0Þ þ gBðb0Þ ¼ gA[Bðb0Þ þ gA\Bðb0Þ:

But optimality of A and B at b0 and the definition of non-degeneracy imply that the unique minimizers of

g(b) at b ¼ b0 are A and B. Therefore, the pair ðA [B;A \ BÞ is identical to the pair ðA;BÞ. Since jðAÞ > jðBÞ,
we must have A [B ¼ A and A \ B ¼ B. That is, B � A. h

Corollary 3.5. If b0 is a breakpoint of g 0(b) induced by edge sets A and B such that jðAÞ > jðBÞ, then A n B is

contained in some connected component of G0 ¼ ðV ;E n BÞ.

Proof. Suppose no one connected component of G 0 contains A n B. Then A n B is contained in at least two
components. Pick any one such component, and let X be the set of edges of A n B contained in that component.
Let Y ¼ ðA n BÞ n X , so that we have B � B [X � A as well as B � B [Y � A.

Using the optimality of A and B, we have the following:
gAðb0Þ þ gBðb0Þ 6 gB[X ðb0Þ þ gB[Y ðb0Þ ¼ sðB [X Þ � b0ðjðB [X Þ � 1Þ þ sðB [Y Þ � b0ðjðB [Y Þ � 1Þ
¼ sðAÞ þ sðBÞ � b0ðjðAÞ � 1Þ � b0ðjðBÞ � 1Þ ¼ gAðb0Þ þ gBðb0Þ:
The penultimate equality above (jðB [X Þ þ jðB [Y Þ ¼ jðAÞ þ jðBÞ) follows from the fact that all the
edges in X are in a single connected component of G 0, while none of the edges in Y are in this component.
Hence the set of new components created in G 0 by the deletion of the edges in X is distinct from the set of
new components created by the deletion of the edges in Y. In other words, the total number of new compo-
nents created by the deletion of the edges in A n B ð¼ X [Y Þ is precisely the number of new components cre-
ated by X added to the number of new components created by Y.

82 R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90
Therefore, equality holds in the above chain of inequalities. If X and Y are both non-empty, then this
violates non-degeneracy, which is a contradiction. Therefore, either X or Y must be empty, so that all edges of
A n B are contained in a single connected component of G 0. h
Theorem 3.6. Let b0 be a breakpoint of g 0(b), induced by edge set A. The next breakpoint is induced by the edge

set which is the solution to the strength problem on the smallest strength component of G0 ¼ ðV ;E n AÞ.

Proof. We prove the theorem by contradiction. Let X be the edge set of the next breakpoint (by Corollary 3.5,
this is contained in some connected component GX of G 0), and Y be the edge set which is the solution to the
strength problem on the smallest strength component GY of G 0. For contradiction, we assume that X 6¼ Y . Let
jX ðX Þ be the number of components created by the deletion of the edges in X in the subgraph GX, and jY(Y)
be similarly defined.

First, since b0 is a breakpoint, we have gAðb0Þ ¼ gA[X ðb0Þ. This implies that sðAÞ � b0ðjðAÞ � 1Þ ¼
sðA [X Þ � b0ðjðA [X Þ � 1Þ. Since sðA [X Þ ¼ sðAÞ þ sðX Þ and jðA [X Þ ¼ jðAÞ þ jX ðX Þ � 1, we have
sðX Þ � b0ðjX ðX Þ � 1Þ ¼ 0. That is, b0 ¼ sðX Þ

jX ðX Þ�1 is the strength of GX.

By non-degeneracy, we must have the following at the breakpoint b0:
gAðb0Þ ¼ gA[X ðb0Þ < gA[Y ðb0Þ) sðA [X Þ � b0ðjðA [X Þ � 1Þ < sðA [Y Þ � b0ðjðA [Y Þ � 1Þ
) sðAÞ þ sðX Þ � b0ðjðAÞ � 1þ jX ðX Þ � 1Þ < sðAÞ þ sðY Þ � b0ðjðAÞ � 1þ jY ðY Þ � 1Þ
) sðX Þ � b0ðjX ðX Þ � 1Þ < sðY Þ � b0ðjY ðY Þ � 1Þ: ð4Þ
Also observe that since Y is the component with minimum strength, we have:
a ¼ sðY Þ
jY ðY Þ � 1

6
sðX Þ

jX ðX Þ � 1
¼ b0;
where we observed above that the strength of GX is exactly b0. Since 0 < a 6 b0, this gives
sðY Þ � b0ðjY ðY Þ � 1Þ 6 sðX Þ � b0ðjX ðX Þ � 1Þ. This contradicts Eq. (4). Therefore, the sets X and Y cannot
be distinct, and the lemma stands proved. h
4. Algorithm

The results in the preceding section enable us to solve the Lagrangean relaxation easily. Using Lemma 3.2,
all we need to do is identify the breakpoints of g 0(b), which we know are no more than jV j � 1 in number.
Theorem 3.6 implies that the next breakpoint can be identified by solving the strength problem on each
remaining connected component, and selecting the minimum-strength component among these. Since we
already have Cunningham’s polynomial time algorithm for computing the strength of a graph, it follows that
the Lagrangean relaxation can be solved exactly in polynomial time; in fact, we can compute the function g 0(b)
exactly in polynomial time.

If the solution to the Lagrangean relaxation yields a k-cut, then we have found an optimal solution and are
done. If not, we look at the last set of edges selected for deletion, and select a subset of them which yields a k-
cut. The details of this selection, as well as the complete algorithm, are described in Fig. 1. Here, Ai�1 is the set
of edges found by the algorithm such that jðAi�1Þ < k, and Ci is the minimum-strength component of
GðV ;E n Ai�1Þ. The strength minimizer of Ci creates more components than needed, and hence we select
enough edges from the strength minimizer of Ci so that adding them to Ai�1 results in a k-cut.

4.1. Analysis

Let A* be an optimal k-cut. We use the solution to the Lagrangean relaxation to derive a simple lower
bound for sðA�Þ. Define sðG; kÞ as follows, where Ai�1 and Ai are as defined in Algorithm LkC and
jðAi�1Þ < k < jðAiÞ.

Fig. 1. Algorithm description.

R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90 83
sðG; kÞ ¼ jðAiÞ � k
jðAiÞ � jðAi�1Þ

� �
sðAi�1Þ þ

k � jðAi�1Þ
jðAiÞ � jðAi�1Þ

� �
sðAiÞ: ð5Þ
Lemma 4.1. Let Ai�1 and Ai be as defined in Algorithm LkC, where jðAi�1Þ < k < jðAiÞ. Then sðA�ÞP sðG; kÞ.

Proof. Let b ¼ bi be the point at which g 0(b) is maximized. Since the breakpoints of the function g 0(b) are
found by successively finding minimum-strength components of the current graph (Theorem 3.6), each edge
set Biþ1 in Algorithm LkC is exactly the set of edges of the corresponding minimum-strength solution. There-
fore, this breakpoint is induced by two edge sets Ai�1 and Ai as defined in Algorithm LkC. We now have
sðAiÞ � biðjðAiÞ � 1Þ þ biðk � 1Þ ¼ sðAi�1Þ � biðjðAiÞ � 1Þ þ biðk � 1Þ. This yields the following expression:
bi ¼
sðAiÞ � sðAi�1Þ
jðAiÞ � jðAi�1Þ

:

This expression can then be substituted in the inequality sðA�ÞP sðAiÞ þ biðk � jðAiÞÞ to yield the lower bound
stated in the lemma. h

Theorem 4.2. Algorithm LkC returns a solution which costs no more than 2sðA�Þ.

Proof. If jðAiÞ ¼ k, then Ai is an optimal solution for the k-cut problem instance, since otherwise we would
have gA� ðbiÞ < gAi

ðbiÞ, contradicting the optimality of Ai for g 0(b). We now bound the cost of the solution if
jðAi�1Þ < k < jðAiÞ.

Let Si be the set of connected components in Ci n Bi. Then since each edge in Bi belongs to exactly two
shores, we have:
X

Sj2Si

sðshoreðSjÞÞ ¼ 2sðBiÞ:
There are exactly jðAiÞ � jðAi�1Þ connected components in Si. Hence the cost of the solution output by the
algorithm is no more than:
sðAi�1Þ þ 2
k � jðAi�1Þ

jðAiÞ � jðAi�1Þ

� �
sðBiÞ ¼ 1� 2ðk � jðAi�1ÞÞ

jðAiÞ � jðAi�1Þ

� �
sðAi�1Þ þ 2

k � jðAi�1Þ
jðAiÞ � jðAi�1Þ

� �
sðAiÞ

6 2
jðAiÞ � k

jðAiÞ � jðAi�1Þ

� �
sðAi�1Þ þ 2

k � jðAi�1Þ
jðAiÞ � jðAi�1Þ

� �
sðAiÞ 6 2sðG; kÞ

6 2sðA�Þ;
where the last inequality follows from Lemma 4.1. h

84 R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90
5. Discussion and comparison with other algorithms

5.1. Comparison with the SV algorithm

Saran and Vazirani [10] proposed a ð2� 2
kÞ-approximation algorithm for the k-cut problem, which proceeds

by finding minimum cuts (of the traditional s� t type) recursively until the graph is partitioned into k parts.
We use SV to refer to their algorithm for this and the subsequent section, where we provide comparisons
between our algorithm and SV. We show here that for each algorithm, there exists a family of instances where
the performance ratio of the algorithm approaches its worst-case bound while the other algorithm finds an
optimal solution, whose value matches the lower bound.

The family is generated by the graph G1ðr; cÞ displayed in Fig. 2. The graphs are parametrized by r and c,
and consist of a clique of r vertices of unit weight each, with a single edge of weight c connecting each vertex in
the clique to a distinct vertex outside the clique. Therefore, the graphs have 2r vertices.

Proposition 5.1. Consider the k-cut problem on the family of graphs G1ðr; r � 1� �Þ as �! 0 and r!1, with

k ¼ r. Then, the cost of the solution obtained by the SV algorithm is twice as much as the cost of the solution

obtained by the LkC algorithm. Furthermore, the LkC solution cost is equal to the Lagrangean lower bound.
Proof. In G1ðr; r � 1� �Þ, the minimum cuts are obtained by deleting the ‘‘arms’’ of weight r � 1� �. There-
fore, when k = r, the SV algorithm finds the cut obtained by deleting r � 1 of the arms, with a total cost of
sSV ¼ ðr � 1Þðr � 1� �Þ.

On the other hand, the strength is minimized by deleting all the unit-cost edges in the clique, with strength
r/2. This can be observed by the fact that deleting any of the r-length edges increases the cost by r but the
number of components by only 1, so will only worsen the strength. Hence the LkC algorithm deletes all the
clique edges and returns the r arms as the connected components, resulting in a total cost of sLkC ¼ rðr�1Þ

2 . This
is identical to the Lagrangean lower bound.

As �! 0 and r!1, the ratio sSV

sLkC ! 2. h

Proposition 5.2. Consider the k-cut problem on the family of graphs G1ðr; r
2
þ �Þ as �! 0 and r!1, with k = 2.

Then, the cost of the solution obtained by the LkC algorithm is twice as much as the cost of the solution obtained

by the SV algorithm. Furthermore, the SV solution cost is equal to the Lagrangean lower bound.

Proof. In G1ðr; r
2
þ �Þ, the minimum cuts are unchanged from Proposition 5.1. They are obtained by deleting

the arms. Since k = 2, the optimal solution is a minimum cut, which is found by the SV algorithm and has cost
sSV ¼ r

2
þ �.
Fig. 2. G1ðr; cÞ: Graph demonstrating incomparability of LkC and SV algorithms in Propositions 5.1 and 5.2.

R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90 85
The minimum-strength component is also unchanged, and remains the clique. The optimal strength is r
2,

which is close to sSV. On the other hand, the LkC algorithm must pick one ‘‘shore’’ from the clique, and hence
obtains a solution of cost sLkC ¼ r � 1.

As �! 0 and r!1, we have sLkC

sSV ! 2. We also find that the ratio of the cost of the LkC solution to the
lower bound approaches 2. h

Propositions 5.1 and 5.2 indicate that neither are the two algorithms identical nor can one dominate the
other in any deterministic sense. This does not indicate any conclusion about their empirical performance.
We explore that question in our computational experiments, provided in Section 6.

5.2. Comparison with the integer programming formulation

Naor and Rabani [8] introduced the following integer programming formulation for the k-cut problem.
Assume that the input graph G is connected, by adding zero-weight edges if necessary. Let T be the set of
all spanning trees of G. The formulation is based on the fact that a set of edges A forms a k-cut of G if
and only if A includes at least k � 1 edges of every spanning tree in T. In the formulation below, the binary
variables de are indicators, taking the value 1 to indicate the presence of the corresponding edges in A.
min
X
e2E

sede ð6Þ
X
e2T

de P k � 1 8T 2T; ð7Þ

de 2 f0; 1g 8e 2 E: ð8Þ
We state the main result of Naor and Rabani without proof; the reader is referred to [8] for details. The
linear relaxation of (6)–(8) is obtained by replacing (8) with the non-negativity constraint de P 0 8e 2 E,
and the integrality gap of the IP formulation is defined as the worst-case ratio between the optimal solution
of the IP to the optimal solution of its linear relaxation.

Theorem 5.3 (Naor and Rabani [8]). The integrality gap of the formulation (6)–(8) is bounded above by 2.

Furthermore, an integral solution can be obtained from the optimal fractional solution in polynomial time, thus

providing a 2-approximation algorithm.

The optimal fractional solution provides an alternative lower bound to the k-cut problem. We now com-
pare this lower bound with our Lagrangean lower bound. A lower bound with a higher value would be more
desirable, since the k-cut problem is a minimization problem.

Theorem 5.4. Given a graph G and given k, let z* denote the optimal solution to the linear relaxation of (6)–(8),
and let sðG; kÞ be our Lagrangean lower bound defined in (5). Then z� 6 sðG; kÞ.
Proof. Consider the behavior of Algorithm LkC on the given instance. If for some i we have jðAiÞ ¼ k, then by
Theorem 4.2 our algorithm has found the optimal integral solution, and this theorem is trivially proved.

Now suppose Ai and Aiþ1 are the edge sets at breakpoints bi and biþ1 respectively, where
jðAiÞ < k < jðAiþ1Þ. Define ki ¼ jðAiÞ and kiþ1 ¼ jðAiþ1Þ. For every edge e and every i, define di

e ¼ 1 if
and only if e 2 Ai, and 0 otherwise. Define de ¼ ð kiþ1�k

kiþ1�ki
Þdi

e þ ð k�ki
kiþ1�ki

Þdiþ1
e . We show that fdege2E satisfies the

constraints (7).

Consider any spanning tree T of G. Since Ai is a ki-cut, we have
P

e2T di
e P ki � 1. Similarly, we haveP

e2T diþ1
e P kiþ1 � 1. Hence:
X
e2T

de ¼
X

e2T

kiþ1 � k
kiþ1 � ki

� �
di

e þ
k � ki

kiþ1 � ki

� �
diþ1

e

� �
¼ kiþ1 � k

kiþ1 � ki

X
e2T

di
e þ

k � ki

kiþ1 � ki

X
e2T

diþ1
e

P
kiþ1 � k
kiþ1 � ki

ðki � 1Þ þ k � ki

kiþ1 � ki
ðkiþ1 � 1Þ ¼ k � 1:

86 R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90
Hence fdege2E is a feasible solution to the linear relaxation of (6)–(8), of cost sðG; kÞ ¼
P

e2Esede. The optimal
fractional solution must have cost no greater than this feasible solution. Therefore, z� 6 sðG; kÞ. h

Consequently, for every instance of the k-cut problem, our Lagrangean relaxation is at least as good as the
LP lower bound (which is the only other lower bound known in the literature).
5.3. Comparison of computational complexity

Cunningham’s algorithm to compute the optimal attack of a network has running time OðjV j3jEjÞ. Algo-
rithm LkC calls this subroutine at most k 6 jV j times, so the overall running time of our algorithm is
OðjV j4jEjÞ.

In contrast, the algorithm of Saran and Vazirani has running time OðjV j2jEjÞ. Naor and Rabani do not
provide implementation or running time details. A naı̈ve implementation must use the ellipsoid method to
solve the linear programming relaxation, with a minimum spanning tree constituting the separation oracle
at each iteration of the ellipsoid method. This leads to a prohibitively high running time in practice for the
Naor–Rabani algorithm.
5.4. Limitations of our approach

One limitation of our algorithm is that it only uses edges which minimize the attack values of the graph for
different values of the parameter b. In particular, we have proved that the edge sets of successive breakpoints
in Algorithm LkC are supersets of the preceding edge sets. If ki < k < kiþ1 and A is the edge set of an optimal k-
cut, one might ask the following question: Is it true that Ai � A � Aiþ1? An affirmative answer would offer
hope that there might be a better way to select the edges from those generated by our algorithm. However,
we answer this question in the negative.

Proposition 5.5. Any algorithm for k-cut which only uses edges belonging to minimum attack components cannot

achieve an approximation factor better than 3/2.

Proof. Consider an instance of the k-cut problem with k ¼ 3, on the graph G2(r) displayed in Fig. 3. The graph
consists of a cycle Cr of r vertices and unit-weight edges, along with three other edges ea, eb and ec with weights
1þ �, 1þ 2

r þ �, and 1þ 2
r þ � respectively, where �! 0 and r!1.

The optimal solution is found by deleting edges eb and ec and has cost 2ð1þ 2
r þ �Þ.

Now consider the behavior of Algorithm LkC. The first breakpoint occurs at b1 ¼ 1þ �, with A1 ¼ feag and
k1 ¼ 2. The second breakpoint occurs at b2 ¼ 1þ 1þ�

r , with A2 ¼ feag [Cr and k2 ¼ r þ 1. Hence our
algorithm ends up selecting the edge ea along with two edges from the cycle Cr, at a total cost of 3þ �. As
�! 0 and r!1, the ratio of the cost of the solution obtained by Algorithm LkC and the optimal solution
approaches 3/2.

We also observe that the edges of the optimal solution, feb; ecg, do not belong to A1 or A2, completing the
proposition. h
Fig. 3. G2ðrÞ: Graph demonstrating limitations of using edges which minimize the attack values, as in Proposition 5.5.

R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90 87
6. Computational results

The algorithm was implemented in preliminary and experimental form using the Java programming lan-
guage. In addition to our algorithm, we also implemented the Efficient algorithm of Saran and Vazirani
[10], referred to in the sequel as SV, in order to provide a comparison of the two algorithms.1 The implemen-
tation is available on the web [11] for replication, experimentation and further extensions.

Our experiments were conducted on random graphs generated by two distinct models:

1. Bernoulli random graphs: These graphs are characterized by the number of nodes n, and an edge probability
p. Each of the n

2

� �
pairs of vertices in the graph are connected by an edge with probability p, independently

of all other vertex-pairs. If an edge exists, its weight is an integer chosen uniformly at random between 1
and 100, again independently of all other edges. The study of these graphs was spurred by Erdös and Renyi
[5], and they have been the most popular model of random graphs.

2. Preferential attachment (PA) random graphs: These graphs are characterized by the number of nodes n, and
an average degree 2d. They are created by the following evolutionary process: nodes are added one at a
time, and each time a node is added, it is linked to d of the pre-existing nodes chosen at random. (If d is
greater than the number of pre-existing nodes, then the new node is connected by a single edge to each
of the pre-existing nodes.) As in the Bernoulli graphs, we assign each edge a weight which is a uniformly
chosen integer between 1 and 100, independently of all other edges. Barabasi and Albert [1] proposed this
graph model to explain various structural properties of real-world graphs like the web, social networks, for-
eign trade networks, etc.

A representative output of our algorithm is shown in Fig. 4. This particular instance was a 30-node graph
with average degree 12 (that is, during creation of the graph, each node connected to 6 preceding nodes). As
can be seen, both algorithms perform extremely well for small values of k, often finding the optimal solution.
For larger values of k, both algorithms find near-optimal solutions, though not necessarily the same ones. In
all our experiments, there seemed to be no obvious pattern of either algorithm dominating the other. The
worst-case examples for the algorithms shown in Section 5, while indicating that in theory the performance
of the two algorithms could widely diverge, seem unlikely to occur in random instances.

The observation that the algorithms perform better for lower values of k was also found in all our trials,
though the quality of the approximation worsened as the graphs became denser. All our trials resulted in
graphs which look similar to Fig. 4, and there seemed to be no distinction between the two types of graphs
either in terms of one algorithm out-performing the other.

Further computational results are provided in Fig. 5. Once again, we ran our experiments for pre-selected
values of the graph parameters and k, and report the results. While it may seem that the LkC algorithm finds a
better solution more often than the Saran–Vazirani algorithm in the figure, this seems to be an accident of the
results we chose to report rather than any observable dominance in our complete set of experiments.

One might also observe that for low values of k in PA random graphs which are not dense, both algorithms
find the optimal solution. Indeed, this should not be a surprise since by the nature of these graphs, they have
several vertices with low degree which are obvious candidates for participating in the k-cuts as singleton
components.

Finally, we observe that for graphs with low density, the quality of the lower bound seems to be pretty
good, since both algorithms find solutions which are usually not very far from optimal. The performance
degrades as the graphs get denser. This empirical observation, combined with the discussion in Section 5 which
shows examples where both algorithms achieve their worst case, seems to indicate that the Lagrangean lower
bound performs poorly in dense graphs.

The running times corresponding to the graphs tested in Fig. 5 are shown in Fig. 6. The times shown are in
seconds, averaged over 5 runs of each type of graph. Recall that once the function g 0(b) has been computed,
1 At the time of writing this paper, there is no known implementation of the algorithm of Naor and Rabani [8]; hence the computational
experiments do not compare with their algorithm.

 0

1000

2000

3000

4000

5000

6000

7000

8000

 0 5 10 15 20 25 30 35 40

LkC
SV
LB

Fig. 4. Output for a PA random graph with n ¼ 30 vertices and average degree 2d ¼ 12. LB refers to the lower bound, LkC to the solution
found by Algorithm LkC, and SV to the solution found by the Saran–Vazirani algorithm. The value of k is measured on the x-axis, while
the value of the solutions and lower bound are on the y-axis.

Fig. 5. Typical computational results. LB indicates the value of the lower bound, LkC the ratio between the LkC solution and the lower
bound, and SV the ratio between the Saran–Vazirani algorithm and the lower bound. An asterisk indicates that one algorithm was strictly
better than the other for that input.

88 R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90
the LkC algorithm is able to find k-cut solutions for any value of k. Therefore, the results shown here corre-
spond to finding k-cut solutions for every value of k between 2 and n� 1, as also shown in the instance in
Fig. 4. We also note that the running times shown here are only for the purpose of comparison between
the two algorithms. The implementation was coded in Java, and the experiments were run on an Intel Pentium
II machine running Linux. A more efficient implementation, in a programming language such as C/C++, is
likely to result in running times which are one or more orders of magnitude better than the running times
shown here. The only visible trend in the running times seem to be that for sparse graphs the Saran–Vazirani

Fig. 6. Comparison of running times on test instances. The running times displayed are an average of 5 runs of the same types of graphs
shown in Fig. 5.

R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90 89
efficient algorithm is much faster than our algorithm, but for denser graphs the running times are closer to
each other.
7. Conclusion

The Lagrangean relaxation of the k-cut problem yields a good lower bound, and also leads to a 2-approx-
imation algorithm. We also provide comparisons with other algorithms and lower bounds in the literature,
demonstrating the competitiveness of our approach. The efficacy of the algorithm is further validated using
tests on random graphs.

The gap between the best known approximation ratio (2� 2
k) and the best hardness result (NP-complete-

ness) remains open. In particular, it is unknown whether or not the k-cut problem admits a polynomial time
approximation scheme.
Acknowledgments

This work was done while Amitabh Sinha was a graduate student at the Tepper School of Business at Car-
negie Mellon University. R. Ravi was supported by NSF Grant CCR-1120168 and Amitabh Sinha was sup-
ported by a William Larimer Mellon Fellowship.

A preliminary version [9] of this paper appeared in the proceedings of the 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms. We thank the reviewers of the conference and several other readers and
reviewers for their comments. We also thank an anonymous reader for pointing out the work of Barahona
[2]. Finally, we thank an anonymous referee for pointing out a simpler proof for Theorem 3.4, which appears
in this paper.
References

[1] A. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509–512.
[2] F. Barahona, On the k-cut problem, Operations Research Letters 26 (2000) 99–105.
[3] C. Chekuri, S. Guha, J. Naor, Approximating Steiner k-cuts, in: Proceedings of the 30th International Colloquium on Automata,

Languages and Computation, 2003, pp. 189–199.
[4] W. Cunningham, Optimal attack and reinforcement of a network, Journal of the ACM 32 (3) (1985) 549–561.
[5] P. Erdös, A. Renyi, On random graphs, Publicationes Mathematicae 6 (1959) 290–297.
[6] O. Goldschmidt, D. Hochbaum, Polynomial algorithm for the k-cut problem, in: Proceedings of the 29th Annual IEEE Symposium

on the Foundations of Computer Science, 1988, pp. 444–451.
[7] D. Karger, C. Stein, A new approach to the minimum cut problem, Journal of the ACM 43 (4) (1996) 601–640.

90 R. Ravi, A. Sinha / European Journal of Operational Research 186 (2008) 77–90
[8] J. Naor, Y. Rabani, Tree packing and approximating k-cuts, in: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2001, pp. 26–27.

[9] R. Ravi, A. Sinha, Approximating k-cuts via network strength, in: Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2002, pp. 621–622.

[10] H. Saran, V. Vazirani, Finding k-cuts within twice the optimal, SIAM Journal of Computing 24 (1) (1995) 101–108.
[11] A. Sinha, Approximating k-cuts using network strength as a Lagrangean relaxation: A Java implementation (2004). Available from:

<http://www.umich.edu/~amitabh/kcut>.

http://www.umich.edu/~amitabh/kcut

	Approximating k-cuts using network strength as a Lagrangean relaxation
	Introduction
	Problem definition
	Related work
	This paper: results and organization

	Preliminaries
	Notation
	Strength and attack of a graph

	Lagrangean relaxation
	Structural properties of the relaxation

	Algorithm
	Analysis

	Discussion and comparison with other algorithms
	Comparison with the SV algorithm
	Comparison with the integer programming formulation
	Comparison of computational complexity
	Limitations of our approach

	Computational results
	Conclusion
	Acknowledgments
	References

