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Abstract This paper studies vehicle routing problems on asymmetric metrics. Our
starting point is the directed k-TSP problem: given an asymmetric metric (V , d),
a root r ∈ V and a target k ≤ |V |, compute the minimum length tour that contains

r and at least k other vertices. We present a polynomial time O(
log2 n

log logn
· logk)-

approximation algorithm for this problem. We use this algorithm for directed k-TSP

to obtain an O(
log2 n

log logn
)-approximation algorithm for the directed orienteering prob-

lem. This answers positively, the question of poly-logarithmic approximability of di-
rected orienteering, an open problem from Blum et al. (SIAM J. Comput. 37(2):653–
670, 2007). The previously best known results were quasi-polynomial time algo-
rithms with approximation guarantees of O(log2 k) for directed k-TSP, and O(logn)

for directed orienteering (Chekuri and Pal in IEEE Symposium on Foundations in
Computer Science, pp. 245–253, 2005). Using the algorithm for directed orienteer-
ing within the framework of Blum et al. (SIAM J. Comput. 37(2):653–670, 2007)
and Bansal et al. (ACM Symposium on Theory of Computing, pp. 166–174, 2004),
we also obtain poly-logarithmic approximation algorithms for the directed versions
of discounted-reward TSP and vehicle routing problem with time-windows.

A preliminary version of this paper appeared as [21].
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1 Introduction

Vehicle routing problems (VRPs) form a large set of variants of the basic Traveling
Salesman Problem, that are also encountered in practice. Some of the problems in
this class are the capacitated VRP [13], the distance constrained VRP [19], the Dial-
a-Ride problem [24], and the orienteering problem [12]. Many different objectives
are encountered in VRPs: for example, minimizing cost of a tour (capacitated VRP
and the Dial-a-Ride problem), minimizing number of vehicles (distance constrained
VRP), and maximizing profit (the orienteering problem).

The Operations Research literature contains several papers dealing with exact or
heuristic approaches for VRPs [8, 16, 18, 23]. The techniques used in these papers in-
clude dynamic programming, local search, simulated annealing, genetic algorithms,
branch and bound, and cutting plane algorithms. There has also been some interesting
work in approximation algorithms for VRPs [2, 5, 13]. The problem most relevant to
this paper is orienteering, which involves finding a bounded length path starting at a
fixed vertex that covers the maximum number of vertices; Blum et al. [4] obtained
the first constant factor approximation algorithm for this problem (on symmetric met-
rics), which was improved to a factor of 3 in Bansal et al. [2]. Bansal et al. [2] then
used orienteering as a subroutine to also obtain poly-logarithmic approximation al-
gorithms for some generalizations of orienteering, namely deadline TSP and vehicle
routing problem with time windows.

Most of the work on VRPs focuses on symmetric metric spaces. In asymmetric
metrics, the best known approximation guarantee for even the basic traveling sales-
man problem until recently was O(logn) [10]; in a breakthrough result, Asadpour et
al. [1] improved this bound to O(logn/ log logn). Chekuri and Pal [7] obtained a gen-
eral approximation algorithm for a class of VRPs on asymmetric metrics, that runs in
quasi-polynomial time. In particular, their result implies an O(logn)-approximation
algorithm for the orienteering problem on directed graphs (in quasi-polynomial time).
We are not aware of any previously known non-trivial polynomial-time approxima-
tion algorithms for this problem. In this paper, we study polynomial time approxima-
tion algorithms for directed orienteering and related problems on asymmetric metrics.

1.1 Problem Definition

All the problems that we consider are defined over an asymmetric metric space (V , d)

on |V | = n vertices. In the directed k-TSP problem, we are given a root r ∈ V and
a target k ≤ n, and the goal is to compute a minimum length tour that contains r

and at least k other vertices. Directed k-TSP is a generalization of the asymmetric
traveling salesman problem (ATSP). A related problem is the minimum ratio ATSP
problem, which involves finding a tour containing the root r that minimizes the ratio
of the length of the tour to the number of vertices in it. If the requirement that the tour
contain the root is dropped, the ratio problem becomes the minimum mean weight cy-
cle problem, which is solvable in polynomial time [17]. However, the rooted version
which we are interested in is NP-complete.
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In the orienteering problem, we are given a metric space, a specified origin s and a
length bound D, and the goal is to find a path of length at most D, that starts at s and
visits the maximum number of vertices. We actually consider a more general version
of this problem, which is the directed version of point-to-point orienteering [2]. In
the directed orienteering problem, we are given specified origin s and destination t

vertices, and a length bound D, and the goal is to compute a path from s to t of length
at most D, that visits the maximum number of vertices. The orienteering problem can
also be extended to the setting where there is some profit at each vertex, and the goal
is to maximize total profit.

Many problems we deal with in this paper have the following form, where S is a
feasible set, C : S → R

+ is a cost function, N : S → N is a coverage function, and k

is the target:

min{C(x) : x ∈ S,N(x) ≥ k}
For example, in the k-TSP problem, S is the set of all tours containing r , and for
any x ∈ S , C(x) is the length of tour x and N(x) is the number of vertices (other
than r) covered in the tour. For any problem of the above form, a polynomial time
algorithm A is said to be an (α,β) bi-criteria approximation if on each problem
instance, A obtains a solution y ∈ S satisfying C(y) ≤ α ·OPT and N(y) ≥ k

β
, where

OPT = min{C(x) : x ∈ S,N(x) ≥ k} is the optimal value of this instance.

1.2 Results and Paper Outline

We present a polynomial time O(
log2 n

log logn
· logk)-approximation algorithm for the

directed k-TSP problem. This is based on an O(
log2 n

log logn
)-approximation algorithm

for the minimum ratio ATSP problem. To the best of our knowledge, this prob-
lem has not been studied earlier. An important ingredient in this algorithm is a
splitting-off theorem on directed Eulerian graphs due to Frank [9] and Jackson [15].
This algorithm is described in Sect. 2. In the preliminary version [21] we gave
an O(log2 n)-approximation algorithm for minimum ratio ATSP. Using the recent
O(logn/ log logn)-approximation algorithm for ATSP due to Asadpour et al. [1],

our approximation factor for minimum ratio ATSP also improves to O(
log2 n

log logn
). In

this paper we give a self-contained proof of the O(log2 n) guarantee, and note that

the algorithm of [1] can be used to obtain the O(
log2 n

log logn
) approximation.

We then use the approximation algorithm for minimum ratio ATSP, to obtain a
bi-criteria approximation algorithm for the directed k-path problem (Sect. 3). We
also observe that the reductions in Blum et al. [4] and Bansal et al. [2] (in undirected
metrics) from the k-path problem to the orienteering problem, can be easily adapted to
the directed case. Together with the approximation algorithm for the directed k-path

problem, we obtain an O(
log2 n

log logn
)-approximation guarantee for directed orienteering.

This answers in the affirmative, the question of poly-logarithmic approximability of
directed orienteering [4].

Finally, we note that the techniques used for discounted-reward TSP [4], and ve-
hicle routing with time-windows [2], also work in the directed setting (see Sect. 3.1
for definitions of these problems). Since these algorithms use the orienteering (or
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the related minimum excess) problem in a black-box fashion, our results imply ap-

proximation algorithms with guarantees O(
log2 n

log logn
) for discounted-reward TSP, and

O(
log4 n

log logn
) for VRP with time-windows.

Other Related Results In independent work, Chekuri et al. [6] also obtained many
of the results reported in this paper, although via different techniques. They ob-
tain an O(log3 k)-approximation algorithm for the directed k-TSP problem, and an
O(log2 OPT)-approximation algorithm for directed orienteering (where OPT ≤ n is
the optimal value of the orienteering instance). Recently Bateni and Chuzhoy [3]

gave an improved O(
log2 n

log logn
)-approximation algorithm for directed k-TSP, by show-

ing that our approach for minimum ratio ATSP (Theorem 5) can be directly applied to
directed k-TSP (instead of the set-cover based reduction we use in Theorem 6). More

interestingly, they also gave an O(
log2 n

log logn
logk)-approximation algorithm for the “di-

rected k-path” problem (studied in Sect. 3), which is the first true approximation ratio
for this problem.

2 Directed k-TSP

The directed k-TSP problem is a generalization of the asymmetric traveling sales-
man problem (ATSP), for which the best known approximation guarantee is

O(
logn

log logn
) [1]. In this section, we obtain an O(

log2 n
log logn

· logk)-approximation al-

gorithm for directed k-TSP. We first obtain an O(
logn

log logn
)-approximation algorithm

for minimum ratio ATSP (Theorem 5), and then show how this implies the result for
directed k-TSP (Theorem 6). Our algorithm for minimum ratio ATSP is based on a
bound on the integrality gap (Theorem 2) of a suitable LP relaxation for ATSP, which
we study next.

2.1 A Linear Relaxation for ATSP

In this section, we consider the following LP relaxation for ATSP, where (V , d) is the
input metric. Let δ+(S) denote the edges leaving the set S. Similarly, δ−(S) is the set
of edges entering S. We use z(δ+(S)) to denote the sum of the z-values of the edges
in δ+(S).

min
∑

e

de · ze

s.t.

z(δ+(v)) = z(δ−(v)) ∀v ∈ V

z(δ+(S)) ≥ 1 ∀∅ �= S �= V

ze ≥ 0 ∀ arc e

(ALP)

This relaxation was also studied in Vempala and Yannakakis [25], where the au-
thors proved a structural property about basic solutions to (ALP). We are not aware
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of any previous result bounding the integrality gap of (ALP). However, the follow-
ing stronger LP relaxation (ALP′), with additional degree equals 1 constraints, was
shown to have an integrality gap of at most 
logn� by Williamson [26]. It was also
shown [26] that (ALP′) is equivalent to the Held-Karp bound [14].

min
∑

e

de · ze

s.t.

z(δ+(v)) = 1 ∀v ∈ V

z(δ−(v)) = 1 ∀v ∈ V

z(δ+(S)) ≥ 1 ∀∅ �= S �= V

ze ≥ 0 ∀ arc e

(ALP′)

We first give a proof of a 
logn� upper bound on the integrality gap of the weaker
(ALP) relaxation (Theorem 2), and then show that for any asymmetric metric (V , d),
the optimal values of (ALP) and (ALP′) coincide (Theorem 3). This gives an inde-
pendent proof of the same upper bound for the stronger (ALP′) relaxation. Our proof
makes use of the following directed splitting-off theorem due to Mader [20].

Theorem 1 (Mader [20]) Let D = (U +x,A) be a directed graph such that indegree
equal to outdegree at x, and the directed connectivity between any pair of vertices in
U is at least k. Then for every arc (x, v) ∈ A there exists an arc (u, x) ∈ A so that af-
ter replacing the two arcs (u, x) and (x, v) by an arc (u, v), the directed connectivity
between every pair of vertices in U remains at least k.

This operation of replacing two arcs (u, x) and (x, v) by the single arc (u, v) is
called splitting-off.

Theorem 2 The integrality gap of (ALP) is at most 
logn�.

Proof This proof has the same outline as the proof for the stronger LP relaxation
(ALP′) in Williamson [26]. We use the 
logn� approximation algorithm for ATSP
due to Frieze et al. [10], which works by computing minimum-length cycle covers1

repeatedly (in at most 
logn� iterations). Briefly, the algorithm is as follows: initially
set R of representatives is V ; in each iteration compute a minimum cycle cover on R,
and retain one (arbitrary) representative from each cycle into the set R for the next
iteration. In this algorithm, if U ⊆ V is the set of representative vertices in some
iteration, the cost incurred in this iteration equals the minimum cycle cover on U .
Let ALP(U) denote the LP relaxation ALP restricted to a subset U of the original
vertices (and arcs induced on U ), and opt(ALP(U)) its optimal value. Then we have:

Claim 1 For any subset U ⊆ V , the minimum cycle cover on U has cost at most
opt(ALP(U)).

1A cycle cover is a subgraph in which every vertex has in-degree and out-degree exactly one, and hence is
a cover of the vertices by directed cycles.
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Proof Consider the following linear relaxation for cycle cover.

min
∑

e

de · xe

s.t.

x(δ+(v)) − x(δ−(v)) = 0 ∀v ∈ U

x(δ+(v)) ≥ 1 ∀v ∈ U

xe ≥ 0 ∀ arc e

(CLP)

These constraints are equivalent to a circulation problem on network N which con-
tains two vertices vin and vout for each vertex v ∈ U . The arcs in N are: {(uout , vin) :
∀u,v ∈ U, u �= v}, and {(vin, vout ) : ∀v ∈ U}. The cost of each (uout , vin) arc is
d(u, v), and each (vin, vout ) arc costs 0. It is easy to see that the minimum cost circu-
lation on N that places at least one unit of flow on each arc in {(vin, vout ) : ∀v ∈ U}
is exactly the optimal solution to (CLP). But the linear program for minimum cost
circulation is integral (network matrices are totally unimodular, cf. [22]), and so is
(CLP).

Any integral solution to (CLP) defines an Eulerian subgraph H with each vertex
in U having degree at least 1. Each connected component C of H is Eulerian and
can be shortcut to get a cycle on the vertices of C. Since triangle inequality holds, the
cost of each such cycle is at most that of the original component. So this gives a cycle
cover of U of cost at most opt(CLP(U)), the optimal value of (CLP). But the linear
program ALP(U) is more constrained than CLP(U); so the minimum cycle cover on
U costs at most opt(ALP(U)). �

We now establish the monotonicity property of ALP, namely:

opt(ALP(U)) ≤ opt(ALP(V )) ∀U ⊆ V

Consider any subset U ⊆ V , vertex v ∈ U , and U ′ = U − v; we will show that
opt(ALP(U ′)) ≤ opt(ALP(U)). Let z be any fractional solution to ALP(U) so that
L · z is integral for some large enough L ∈ N. Define a multigraph H on vertex set U

with L · zw1,w2 arcs going from w1 to w2 (for all w1,w2 ∈ U ). From the feasibility of
z in ALP(U), H is Eulerian and has arc-connectivity at least L. Now applying The-
orem 1 repeatedly on vertex v ∈ U (until its degree is zero), we obtain a multigraph
H ′ on U ′ = U − v such that the arc-connectivity of H ′ is still at least L. Further, due
to the triangle inequality, the total cost of H ′ is at most that of H . Finally, scaling
down H ′ by L we obtain a fractional solution to ALP(U ′) of cost at most d · z. Thus,
opt(ALP(U ′)) ≤ opt(ALP(U)), and using this inductively we have monotonicity for
ALP.

This suffices to prove the theorem, as the cost incurred in each iteration of the
Frieze et al. [10] algorithm can be bounded by opt(ALP(V )), and there are at most

logn� iterations. �

We note that in order to prove the monotonicity property for the linear pro-
gram (ALP′), Williamson [26] used the equivalence of (ALP′) and the Held-Karp
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bound [14], and showed that the Held-Karp lower bound is monotone. Using
splitting-off, we obtained a more direct proof of monotonicity. In fact, we can prove
a stronger statement than Theorem 2, which relates the optimal values of (ALP) and
(ALP′). It was shown in [26] that the optimal value of (ALP′) equals the Held-Karp
lower bound [14]; so the next theorem shows that for any ATSP instance, the values
of the Held-Karp bound, (ALP′) and (ALP) are all equal. A similar result for the
symmetric case was proved in Goemans and Bertsimas [11], which was also based
on splitting-off (for undirected graphs).

Theorem 3 The optimal values of (ALP) and (ALP′) are equal.

Proof Clearly the optimal value of (ALP′) is at most that of (ALP). We will show
that any fractional solution z to (ALP) can be modified to a fractional solution z′ to
(ALP′), such that

∑
e de · z′

e ≤ ∑
e de · ze , which would prove the theorem. As in the

proof of Theorem 2, let L ∈ N be large enough so that L · z is integral, and let H

denote a multi di-graph with L · zu,v arcs from u to v, for all u,v ∈ V . From the
feasibility of z in (ALP), we know that H is Eulerian and has arc-connectivity at
least L.

If some v ∈ V has degree strictly greater than L, we reduce its degree by one as
follows. Let v′ be any vertex in V \ v, and Pv,v′ denote a minimal set of arcs that
constitutes exactly L arc-disjoint paths from v to v′. Due to minimality, the number
of arcs in Pv,v′ incident to v is exactly L and they are all arcs leaving v. Since the
degree of v is at least L+1, there is an arc (v,w) ∈ H \ Pv,v′ . Applying Theorem 1 to
arc (v,w), we obtain arc (u, v) ∈ H \ Pv,v′ such that the arc-connectivity of vertices
V \v in H ′ = (H \{(u, v), (v,w)})∪ (u,w) remains at least L. Further, by the choice
of (v,w), Pv,v′ ⊆ H ′; so the arc-connectivity from v to v′ in H ′ is at least L. Since
H ′ is Eulerian, it now follows that the arc-connectivity of vertices V in H ′ is also
at least L. Thus we obtain a multigraph H ′ from H which maintains connectivity
and decreases the degree of vertex v by 1. Repeating this procedure for all vertices
in V having degree greater than L, we obtain (an Eulerian) multigraph G having
arc-connectivity L such that the degree of each vertex equals L.

Note that in the degree reducing procedure above, the only operation we used was
splitting-off. Since d satisfies triangle inequality, the total cost of arcs in G (under
length d) is at most that of H . Finally, scaling down G by L, we obtain the claimed
fractional solution z′ to (ALP′). �

Using this correspondence, we obtain the following improvement:

Corollary 1 ([1]) The integrality gap of (ALP) is O(logn/ log logn).

Proof Asadpour et al. [1] gave an O(logn/ log logn)-approximation algorithm for
ATSP relative to the LP relaxation (ALP′). Using Theorem 3 we obtain the corol-
lary. �

2.2 Minimum Ratio ATSP

We now describe the approximation algorithm for minimum ratio ATSP, which uses
Theorem 2. We call any tour containing the root r an r-tour. In addition, we require
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the following strengthening of Mader’s splitting-off Theorem, in the case of Eulerian
digraphs.

Theorem 4 (Frank [9] (Theorem 4.3) and Jackson [15]) Let D = (U + x,A) be a
directed Eulerian graph. For each arc f = (x, v) ∈ A there exists an arc e = (u, x) ∈
A so that after replacing arcs eandf by arc (u, v), the directed connectivity between
every pair of vertices in U is preserved.

Theorem 5 There is an O(log2 n)-approximation algorithm for the minimum ratio
ATSP problem.

Proof The approximation algorithm for minimum ratio ATSP is based on the follow-
ing LP relaxation for this problem.

min
∑

e

de · xe

s.t.

x(δ+(v)) = x(δ−(v)) ∀v ∈ V

x(δ+(S)) ≥ yv ∀S ⊆ V − {r} ∀v ∈ S
∑

v �=r

yv ≥ 1

xe ≥ 0 ∀ arc e

0 ≤ yv ≤ 1 ∀v ∈ V − {r}

(RLP)

To see that this is indeed a relaxation, consider the optimal integral r-tour C∗ that
covers l vertices (excluding r). We construct a solution to (RLP) by setting yv = 1

l

for all vertices v ∈ C∗, and xe = 1
l

for all arcs e ∈ C∗. It is easy to see that this

solution is feasible and has cost d(C∗)
l

which is the optimal ratio. The linear program
(RLP) can be solved in polynomial time using the Ellipsoid algorithm. The algorithm
is as follows:

1. Let (x, y) denote an optimal solution to (RLP).
2. Discard all vertices v ∈ V \ r with yv ≤ 1

2n
; all remaining vertices have y-values

in the interval [ 1
2n

,1].
3. Define g = 
log2 n + 1� groups of vertices where group Gi (for i = 1, . . . , g)

consists of all vertices v having yv ∈ ( 1
2i ,

1
2i−1 ].

4. Run the Frieze et al. [10] algorithm on each of Gi ∪{r} and output the r-tour with
the smallest ratio.

Note that the total y-value of vertices remaining after step 2 is at least 1/2. Con-
sider any group Gi ; let Li ∈ N be large enough so that Li · 2i · x is integral. We
note that Lis are not required to by polynomially bounded- we use them only in the
analysis and not in the algorithm. Define a multigraph Hi with Li · 2i · xu,v arcs
from u to v for all u,v ∈ V . Below, for a directed graph D and vertices u,v ∈ D

the directed arc-connectivity from u to v is denoted λ(u, v;D). From the feasibil-
ity of x in RLP, it is clear that Hi is Eulerian. Further, for all v ∈ Gi , λ(r, v;Hi) =
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λ(v, r;Hi) ≥ Li ·2i ·yv ≥ Li . Now we split-off vertices in V \ (Gi ∪{r}) one by one,
using Theorem 4, which preserves the arc-connectivity of Gi ∪ {r}. This results in
an Eulerian multigraph H ′

i on vertices Gi ∪ r satisfying λ(r, v;H ′
i ), λ(v, r;H ′

i ) ≥ Li

for all v ∈ Gi . Further, due to triangle inequality the total weight of arcs in H ′
i is at

most that in Hi . Now, scaling down H ′
i by Li , we obtain a fractional solution zi to

ALP(Gi ∪ {r}) of cost d · zi ≤ 2i (d · x). Now Theorem 2 implies that there exists an
r-tour on Gi of cost at most β = 
logn� times d · zi . In fact, the Frieze et al. [10] al-
gorithm applied on Gi + r produces such a tour. We now claim that one of the r-tours
found in step 4 (over all i = 1, . . . , g) has a small ratio:

g

min
i=1

β(d · zi)

|Gi | ≤
g

min
i=1

2iβ(d · x)

|Gi | ≤ β
∑g

i=1 d · x
∑g

i=1 |Gi |/2i
≤ 4gβ · (d · x)

The last inequality follows from the fact that after step 2,

1

2
≤

∑

v �=r

yv ≤
g∑

i=1

1

2i−1
|Gi | = 2

g∑

i=1

|Gi |
2i

,

since there is a total y-weight of at least 1/2 even after step 2. Thus we have a 4gβ =
O(log2 n) approximation algorithm for minimum ratio ATSP. �

We note that for this proof of Theorem 5 to work, just a bound on the integrality
gap of (ALP′) [26] is insufficient. The Eulerian multigraph H ′

i that gives rise to the
fractional ATSP solution zi on Gi ∪ {r} may not have degree Li at all vertices; so zi

may be infeasible for ALP ′(Gi ∪ {r}). This is the reason we need to consider the LP
relaxation (ALP).

Corollary 2 There is an O(
log2 n

log logn
)-approximation algorithm for minimum ratio

ATSP.

Proof This is identical to the algorithm in Theorem 6, except that we use the Asad-
pour et al. [1] algorithm in Step 4, and use Corollary 1 instead of Theorem 2 in the
analysis. �

2.3 Application to Directed k-TSP

We now describe how minimum ratio ATSP can be used to obtain an approximation
algorithm for the directed k-TSP problem.

Theorem 6 There is a polynomial time O(log2 n · logk) approximation algorithm
for the directed k-TSP problem.

Proof We use the α = O(log2 n)-approximation algorithm for the related minimum
ratio ATSP problem. Let OPT denote the optimal value of the directed k-TSP in-
stance. By performing binary search, we may assume that we know the value of OPT
within a factor 2. We only consider vertices v ∈ V satisfying d(r, v), d(v, r) ≤ OPT ;
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this does not affect the optimal solution. Then we invoke the minimum ratio ATSP
algorithm repeatedly (each time restricted to the currently uncovered vertices) until
the total number of covered vertices t ≥ k

2 . Note that for every instance of the ratio
problem that we solve, there is a feasible solution of ratio ≤ 2·OPT

k
(namely, the opti-

mal k-TSP tour covering at least k/2 residual vertices). Thus we obtain an r-tour on
t ≥ k

2 vertices having ratio ≤ 2α·OPT
k

; so the length of this r-tour is at most 2αt ·OPT
k

.
Note that t may be much larger than k. Therefore, we split this r-tour into l = 
 2t

k
�

di-paths, each containing at least t
l
≥ k

4 vertices (this can be done in a greedy fash-
ion). By averaging, the minimum length di-path in this collection has length at most
2αtOPT/k

l
≤ α · OPT . Joining the first and last vertices in this di-path to r , we obtain

an r-tour containing at least k
4 vertices, of length at most (α + 2) · OPT . So we get

an (O(α),4) bi-criteria approximation for directed k-TSP. This algorithm can now
be used as follows. Until k vertices are covered, repeat: if k′ denotes the number of
vertices covered so far, run the bi-criteria approximation algorithm with a target of
k − k′, restricted to currently uncovered vertices. A standard set cover based analysis
implies that this is an O(α · logk)-approximation algorithm for directed k-TSP. �

3 Directed Orienteering

In this section, we consider the orienteering problem in asymmetric metrics. As men-
tioned before, this is in fact the directed counterpart of the point-to-point orienteering
problem [2]. In what follows, we adapt the framework of Blum et al. [4] (for undi-
rected orienteering) to the directed case.

As in Blum et al. [4], we define the excess of an s-t di-path as the difference of
the path length and the shortest path distance from s to t . The directed min-excess
problem is defined as follows: given an asymmetric metric (V , d), origin (s) and
destination (t) vertices, and a target k, find an s-t di-path of minimum excess that
visits at least k other vertices.

The directed k-path problem is the following: given an asymmetric metric (V , d),
origin (s) and destination (t) vertices, and a target k, find an s-t di-path of minimum
length that visits at least k other vertices.

The algorithm of [4] for directed orienteering is based on the following sequence
of reductions: directed k-path to minimum ratio ATSP (Theorem 7), directed min-
imum excess to directed k-path (Theorem 8), and directed orienteering to directed
minimum excess (Theorem 9). The last two reductions are identical to the corre-
sponding reductions for undirected orienteering in Blum et al. [4] and Bansal et
al. [2].

We prove the following bi-criteria approximation guarantee for the directed k-path
problem.

Theorem 7 A ρ-approximation algorithm for minimum ratio ATSP implies a (3,4ρ)

bi-criteria approximation algorithm for the directed k-path problem.

Proof We assume (by performing a binary search) that we know the optimal value
OPT of the directed k-path instance within a constant factor, and let G denote the
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directed graph corresponding to metric (V , d) (which has an arc of length d(u, v)

from u to v for every pair of vertices u,v ∈ V ). We modify graph G to obtain graph
H as follows: (a) discard all vertices v such that d(s, v) > OPT or d(v, t) > OPT ;
and (b) add an extra arc from t to s of length OPT . In the rest of this proof, we refer
to the shortest path metric induced by H as (V , l). Note that each tour in metric l

corresponds to a tour in graph H (using shortest paths in H for each metric arc);
below, any tour in metric l will refer to the corresponding tour in graph H . Since
there is an s-t path of length OPT (in metric d) covering k vertices, appending the
(t, s) arc, we have an s-tour σ ∗ of length at most 2 · OPT (in metric l) covering k + 1
vertices.

Now, we run the minimum ratio ATSP algorithm with root s in metric l repeatedly
until either (1) k

2 vertices are covered and the extra (t, s) arc is never used in the
current tour (in graph H ); or (2) the extra (t, s) arc is used for the first time in the
current tour (in H ). Let σ be the s-tour obtained (in graph H ) at the end of this
iteration, and h the number of vertices covered. Note that each s-tour added in a
single call to minimum ratio ATSP, may use the extra (t, s) arc at most once (by an
averaging argument). So in case (1), the (t, s) arc is absent in σ , and in case (2), the
(t, s) arc is used exactly once and it is the last arc in σ . Note also that during each call
of minimum ratio ATSP, there is a feasible solution of ratio 2OPT

k
(σ ∗ restricted to the

remaining vertices); so the ratio of the s-tour σ , l(σ )
h

≤ ρ · 2OPT
k

. From σ we now
obtain a feasible s-t path τ in metric d as follows. In case (1), add a direct (s, t) arc:
τ = σ · (s, t); in case (2), remove the only copy of the extra (t, s) arc (occurring at the
end of σ ): τ = σ \{(t, s)}. In either case, s-t path τ contains h vertices and has length
d(τ) ≤ 2ρh

k
OPT + OPT . Note that in case (1), h ≥ k

2 ; and in case (2), since the extra

(t, s) arc is used, OPT
h

≤ l(σ )
h

≤ 2ρ OPT
k

, so h ≥ k
2ρ

. Hence in either case, τ contains

h ≥ k
2ρ

vertices and d(τ) ≤ 4ρh
k

OPT . We now greedily split τ into maximal paths,
each of which has length at most OPT ; the number of subpaths obtained is at most
d(τ)
OPT ≤ 4ρh

k
. So one of these paths contains at least h/(

4ρh
k

) = k
4ρ

vertices. Adding
direct arcs from s to the first vertex on this path and from the last vertex on this path
to t , we obtain an s-t path of length at most 3 ·OPT containing at least k

4ρ
vertices. �

The next two theorems together reduce the directed orienteering problem to the
directed k-path problem, for which we just obtained an approximation algorithm.

Theorem 8 (Blum et al. [4]) An (α,β) bi-criteria approximation algorithm for the
directed k-path problem implies a (2α − 1, β) bi-criteria approximation algorithm
for the directed minimum excess problem.

Theorem 9 (Bansal et al. [2]) An (α,β) bi-criteria approximation algorithm for the
directed minimum excess problem implies an 
α� ·β approximation algorithm for the
directed orienteering problem.

The proofs of Theorems 8 and 9 are identical to the corresponding proofs in the
undirected setting, and are not repeated here. The only difference from the undirected
case is that we consider bi-criteria guarantees for the directed k-path and minimum



Algorithmica

excess problems. We now obtain a result that relates the directed orienteering problem
and minimum ratio ATSP.

Corollary 3 A ρ-approximation algorithm for the minimum ratio ATSP problem im-
plies an O(ρ)-approximation algorithm for the directed orienteering problem. Con-
versely, a ρ-approximation algorithm for directed orienteering implies an O(ρ)-
approximation algorithm for minimum ratio ATSP.

Proof The first direction follows directly from Theorems 7, 8 and 9. For the other
direction, we are given a ρ-approximation algorithm for directed orienteering. Let
D denote the length of some minimum ratio tour σ ∗, t the last vertex visited by σ ∗
(before returning to the root r), and h the number of vertices it covers; so the optimal
ratio is D

h
. The algorithm for minimum ratio ATSP first guesses a value D′ such

that D′ ≤ D ≤ 2 · D′, and the last vertex t . Note that we can guess powers of 2 for
the value of D′, which gives O(log2(n · dmax)) possibilities for D′ (where dmax is
the length of the longest arc). Also, the number of possibilities for t is at most n;
so the algorithm only makes a polynomial number of guesses. The algorithm then
runs the directed orienteering algorithm with r and t as the start/end vertices and a
length bound of 2D′ − d(t, r) ≥ D − d(t, r). Note that removing the last (t, r) arc
from σ ∗ gives a feasible solution to this orienteering instance that covers h vertices.
Hence the ρ-approximation algorithm is guaranteed to find an r-t di-path covering
at least h

ρ
vertices, having length at most 2D′ − d(t, r). Now, adding the (t, r) arc to

this path gives an r-tour of ratio at most 2D′/( h
ρ
) ≤ 2ρ D

h
. �

Corollary 3 and Corollary 2 imply an O(log2 n/ log logn)-approximation algo-
rithm for the directed orienteering problem. Further, any improvement in the approx-
imation guarantee of minimum ratio ATSP implies a corresponding improvement for
directed orienteering.

3.1 Some Extensions

Discounted Reward TSP In this problem [4], we are given a metric space with re-
wards on vertices, and a discount factor γ < 1; the goal is to find a path that maxi-
mizes the total discounted reward (where the reward for a vertex visited at distance
t is discounted by a factor γ t ). The approximation algorithm for the undirected ver-
sion of this problem (Blum et al. [4]) uses the minimum excess problem as a sub-
routine within a dynamic program. It can be verified directly that this reduction also
works in the directed case, and so the (O(1),O(log2 n/ log logn)) bi-criteria approx-
imation for directed minimum excess implies an O(log2 n/ log logn)-approximation
algorithm for directed discounted reward TSP.

Vehicle Routing Problem with Time Windows In this VRP, we are given a metric
space with a specified depot vertex and all other vertices having a time window
(that specifies a release time and a deadline), and the goal is to find a path start-
ing at the depot that maximizes the number of vertices visited in their time window.
Note that orienteering is a special case when all vertices have the same time window.
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Bansal et al. [2] use the point-to-point orienteering problem as a subroutine, and
show that an α-approximation algorithm for orienteering implies an O(α · log2 n)-
approximation for vehicle routing with time-windows. In fact, all the steps used in
these reductions can be adapted to the case of directed metrics as well. So there is an
O(log4 n/ log logn)-approximation algorithm for VRP with time-windows on asym-
metric metrics.

A special case of the VRP with time-windows occurs when each vertex has the
same release time, and only the deadline is vertex dependent; this problem is deadline
TSP. The results of Bansal et al. [2] for this problem, along with the directed orien-
teering algorithm imply an O(log3 n/ log logn)-approximation algorithm for directed
deadline TSP.
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