
Math. Program., Ser. A (2014) 146:583–615
DOI 10.1007/s10107-013-0705-5

FULL LENGTH PAPER

Thresholded covering algorithms for robust
and max–min optimization

Anupam Gupta · Viswanath Nagarajan · R. Ravi

Received: 27 June 2012 / Accepted: 8 August 2013 / Published online: 21 August 2013
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013

Abstract In a two-stage robust covering problem, one of several possible scenarios
will appear tomorrow and require to be covered, but costs are higher tomorrow than
today. What should you anticipatorily buy today, so that the worst-case cost (summed
over both days) is minimized? We consider the k-robust model where the possible
scenarios tomorrow are given by all demand-subsets of size k. In this paper, we give the
following simple and intuitive template for k-robust covering problems: having built
some anticipatory solution, if there exists a single demand whose augmentation cost
is larger than some threshold, augment the anticipatory solution to cover this demand
as well, and repeat. We show that this template gives good approximation algorithms
for k-robust versions of many standard covering problems: set cover, Steiner tree,
Steiner forest, minimum-cut and multicut. Our k-robust approximation ratios nearly
match the best bounds known for their deterministic counterparts. The main technical
contribution lies in proving certain net-type properties for these covering problems,
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584 A. Gupta et al.

which are based on dual-rounding and primal–dual ideas; these properties might be of
some independent interest. As a by-product of our techniques, we also get algorithms
for max–min problems of the form: “given a covering problem instance, which k of
the elements are costliest to cover?” For the problems mentioned above, we show
that their k-max–min versions have performance guarantees similar to those for the
k-robust problems.

Mathematics Subject Classification 05C85 · 68W25 · 90C27

1 Introduction

This paper studies k-robust covering problems: given a covering problem instance
with potential demands U , some set of k demands S ⊆ U will want to be covered
tomorrow; however, today we do not know what this set will be. One strategy is to wait
until tomorrow and then cover the realized set S. However, sets are cheaper today: they
will cost λ times as much tomorrow as they cost today. Hence, it may make sense to
buy some anticipatory partial solution today (i.e. in the first-stage), and then complete
it tomorrow (i.e. second-stage) once we know the actual members of the set S. When
there is no further information about the demand S (or we are risk-averse), we want
to plan for the worst-case, and minimize:

(cost of anticipatory solution)+ λ · max
S:|S|≤k

(additional cost to cover S).

This k-robust model was introduced by Feige et al. [18]. Earlier approximation
results for robust covering problems [15,24] had assumed that the collection of possible
demands S (i.e. the “uncertainty set”) is explicitly given. Listing the uncertainty set
explicitly seems somewhat restrictive, and so [18] proposed the k-robust model as
an implicit representation of uncertainty: any of the

(n
k

)
subsets S of size k could

appear as demand. Thus this model tries to bridge the gap between explicit-scenario
robust optimization and the setting of stochastic optimization, where exponential-sized
uncertainty sets can be modeled more easily, but since the goal there is to minimize
the expected cost (instead of the worse-case cost), one has to obtain good estimates
of the underlying probability distributions. And indeed, when such knowledge of the
demand distribution is unknown to the algorithm, one can fall back on the k-robust
model to obtain worst-case guarantees, since the only required information is an upper
bound k on the size of the demand set. We emphasize that although the size of the
k-robust uncertainty set is exponential in k, the goal is to obtain approximation ratios
that do not depend polynomially on k.

The k-robust model can be viewed as a discrete analogue of the study of robust opti-
mization for continuous problems [6,9]. The main results in that area involve studying
robust counterparts of continuous optimization problems, where the constraint matrix
is drawn from an uncertainty set (such as an ellipsoid) and the problem is to find a
solution that is optimal over the worst-case choice of constraints from the uncertainty
set. The key results above show that the computational tractability of the underlying
problems carry over to their robust counterparts for several interesting uncertainty
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sets. The k-robust model is a specification of discrete uncertainty requirements, and
the goal in our study is to preserve the approximation complexity of the underlying
NP-hard discrete optimization problems, when augmented with such uncertainty sets.

Closely related to the k-robust model are k-max–min problems, where given a cov-
ering problem instance, the goal is to determine the k-set of demands that are costliest
to cover. The k-max–min objective is also useful as a measure of fault tolerance: it cor-
responds to the worst-case recovery cost in a fault model where any set of k demands
may lose coverage. If the underlying covering problem defines a submodular objective
then the k-max–min problem can be solved via constrained submodular optimization,
e.g. [11,34]. However, most natural covering problems do not yield submodular func-
tions, and so these results cannot be applied directly.

The k-robust and k-max–min set cover problems were studied in [18]. The authors
used an online set cover algorithm to obtain an O(log m log n)-approximation algo-
rithm for k-max–min set cover. Then they used the k-max–min algorithm within an
LP-rounding-based algorithm (à la [39]) to obtain the same approximation ratio for

k-robust set cover. They also showed k-robust set cover to be �
(

log m
log log m + log n

)

hard—which left a logarithmic gap between the upper and lower bounds. However, an
online algorithm based approach is unlikely to close this gap, since the online algorithm
for set cover is necessarily a log-factor worse that its offline counterparts [5].

Apart from improving these results in context of set cover, one may want to develop
algorithms for other k-robust and k-max–min problems. E.g., for the k-robust min-
cut problem, some set S of k sources will want to be separated from the sink vertex
tomorrow, and we want to find the best way to cut edges to minimize the total cost
incurred (over the two days) for the worst-case k-set S. Similarly, in the k-max–min
Steiner forest, we are given a metric space with a collection of source–sink pairs,
and seek k source–sink pairs that incur the maximum (Steiner forest) connection
cost. Although the online-based-framework [18] can be extended to give algorithms
for other k-max–min problems, it does not yield approximation guarantees better
than the (deterministic) online competitive ratios. Moreover, for k-robust problems
other than set cover, the LP-rounding framework in [18] does not extend directly;
this obstacle was also observed by Khandekar et al. [32] who gave combinator-
ial constant-factor approximation algorithms for k-robust Steiner tree and facility
location.

1.1 Main results and techniques

In this paper, we present a general template to design algorithms for k-robust and
k-max–min problems. We go beyond the online-based approach and obtain tighter
approximation ratios that nearly match the respective offline guarantees; see the table
below. We improve on previous results, by obtaining an O(log m + log n) factor for
k-robust set cover, and improving the constant in the approximation factor for Steiner
tree. We also give the first algorithms for some other standard covering problems, get-
ting constant-factor approximation algorithms for both k-robust Steiner forest—which

was left open by [32]—and for k-robust min-cut, and an O
(

log2 n
log log n

)
-approximation
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algorithm for k-robust multicut. Our algorithms do not use a max–min subroutine
directly: however, our approach ends up giving us approximation algorithms for
k-max–min versions of set cover, Steiner forest, min-cut and multicut; all but the
one for multicut are best possible under standard assumptions.

An important contribution of our work is the simplicity of the algorithms, and the
ideas in their analysis. The following is our actual algorithm for k-robust set cover.

Suppose we “guess” that the maximum second-stage cost in the optimal solution
is T . Let A ⊆ U be the set of all elements e for which the cheapest set covering
e costs more than β · T/k, where β = O(log m + log n). We build a set cover
on A as our first stage. (Say this cover costs CT .)

To remove the guessing, we try all values of T and choose the solution that incurs
the least total cost CT + λβT . Clearly, by design, no matter which k elements arrive
tomorrow, it will not cost us more than λ · k · βT/k = λβT to cover them, which
is within β of what the optimal solution pays. This guess-and-verify framework is
formalized in Sects. 2.1 and 2.2.

The key step of our analysis is to argue why CT is close to optimum. We briefly
describe the intuition; details appear in Sect. 4. Suppose for a contradiction that CT �
βOpt: then the fractional solution to the LP for set cover for A would cost� β

ln n Opt ≥
Opt, and so would its dual. Our key technical contribution is to show how to “round”
this dual LP to find a “witness” A′ ⊆ A with only k elements, and also a correspond-
ing feasible dual of value� Opt—i.e., the dual value does not decrease much in the
rounding. This step uses the fact that each element in A is expensive to cover individu-
ally. Using duality again, this proves that the optimal LP value, and hence the optimal
set cover for these k elements A′, would cost much more than Opt—a contradiction!

In fact, our algorithms for the other k-robust problems are almost identical to this
one; indeed, the only slightly involved algorithm is that for k-robust Steiner forest.
Of course, the proofs to bound the cost CT need different ideas in each case. These
involve establishing certain net-type properties for the respective covering problems
(which imply the existence of such a witness A′ ⊆ A of size k), and represent our
main technical contribution. The proofs for set cover, min-cut and multicut are based
on dual-rounding.

For the cut-problems, one has to deal with additional issues because Opt con-
sists of two stages that have to be charged to separately, and we handle this using a
careful Gomory-Hu-tree-based argument. Moreover, we have to show the following
property: if the cut for a set of sources A is large (costs � Opt) and each source
in A has a high individual cut (�Opt/k) then there is a witness A′ ⊆ A of at
most k sources for which the cut is also large (�Opt). To this end, we prove new
flow-aggregation lemmas for single-sink flows using Steiner-tree-packing results, and
for multiflows using oblivious routing [35]; both proofs are possibly of independent
interest.

In the case of k-robust Steiner forest, directly rounding the dual to obtain the net-
type property does not work, and instead we give a primal–dual argument.

The table below summarizes the best-known approximation ratios for various cov-
ering problems in the offline, k-robust and online models (results denoted ∗ are in the
present paper).
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Problem Offline k-robust Deterministic online

Set cover ln n O(log m · log n) [18] O(log m · log n) [5]

O(log m + log n) (∗)
(1− o(1)) ln n [17] �

(
log n + log m

log log m

)
[18] �

(
log m·log n

log log m+log log n

)
[5]

Steiner tree 1.39 [10] 5.33 [32], 4.35 (∗) �(log n) [30]

Steiner forest 2 [2,23] 10 (∗) �(log n) [7]

Minimum cut 1 17 (∗) O(log3 n · log log n) [4,29]

Multicut O(log n) [22] O

(
log2 n

log log n

)
(∗) O(log3 n · log log n) [4,29]

Paper outline In Sect. 2 we present the formal framework for k-robust and k-max–
min problems, and abstract out the properties that we would like from our algorithms.
Based on these definitions, the results for the various covering problems can be read
independently of each other. Sect. 3 contains the algorithm for k-robust Steiner tree:
while this result is simple and does not require rounding the dual, it is a nice example
of our framework in action. Then Sect. 4 contains the algorithm for k-robust set cover,
which introduces the dual-rounding analysis. The algorithms for k-robust Min-cut,
multicut and Steiner forest appear in Sects. 5, 6 and 8, respectively.

1.2 Related work

Robust optimization is well-studied in the operations research literature, see e.g. the
surveys [1,8]. Approximation algorithms for robust optimization was initiated by
Dhamdhere et al. [15]: they studied the case when the scenarios were explicitly listed,
and gave constant-factor approximation algorithms for Steiner tree and facility loca-
tion, and logarithmic approximation algorithms for mincut and multicut. The algo-
rithms in [15] were based on linear programming. Golovin et al. [24] improved the
mincut result to a constant approximation ratio, and also gave an O(1)-approximation
algorithm for robust shortest-paths. The algorithms in [24] were also “thresholded
algorithms” and the algorithms in this paper can be seen as extensions of that idea to
more complex uncertainty sets (the uncertainty set in [24] only contained singleton
demands) and to a larger class of problems. The algorithms in these papers [15,24]
handled inflation parameters that were scenario-dependent (but uniform across ele-
ments in each scenario). However, since the k-robust model has an exponential number
of scenarios, we assume uniform inflation λ across scenarios.

The k-robust model was introduced in Feige et al. [18], where they gave an
O(log m log n)-approximation algorithm for k-robust set cover; here m and n are
the number of sets and elements in the set system. To get such an algorithm [18] first
gave an O(log m log n)-approximation algorithm for k-max–min set-cover problem
using the online algorithm for set cover [5]. They then used the k-max–min problem
as a separation oracle in an LP-rounding-based algorithm (à la [39]) to get the same

approximation guarantee for the k-robust problem. They also showed an �
(

log m
log log m

)

hardness of approximation for k-max–min and k-robust set cover. Khandekar et al. [32]
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noted that the LP-based techniques of [18] did not give good results for Steiner
tree, and developed new combinatorial constant-factor approximation algorithms for
k-robust versions of Steiner tree, Steiner forest on trees and facility location. Using
our framework, the algorithm we get for Steiner tree can be viewed as a rephrasing of
their algorithm—our proof is arguably more transparent and results in a better bound.
Our approach can also be used to get a slightly better ratio than [32] for the Steiner
forest problem on trees.

Constrained submodular maximization problems [11,19,34,41] appear very rele-
vant at first sight: e.g., the k-max–min version of min-cut (“find the k sources whose
separation from the sink costs the most”) is precisely submodular maximization under
a cardinality constraint, and hence is approximable to within a factor (1 − 1/e). But
apart from min-cut, the other problems do not give us submodular functions to max-
imize, and massaging the functions to make them submodular seems to lose at least
a logarithmic factor. E.g., one can use tree embeddings [16] to reduce Steiner tree to
a problem on trees and make it submodular. In other cases, one can use online algo-
rithms to get submodular-like properties and obtain approximation algorithms for the
k-max–min problems (as in [18]). Though the LP-based framework [18] for k-robust
problems does not seem to extend to problems other than set cover, in the companion
paper [27] we give a general algorithm for robust covering using offline and online
algorithms. However, since our goal in this paper is to obtain approximation factors
better than the online competitive ratios, it is unclear how to use any of these results.

Considering the average instead of the worst-case performance gives rise to the
well-studied model of two-stage stochastic optimization [31,37]. Here the algorithm
assumes access to a probability distribution of the demand, and seeks to minimize the
expected covering cost. There are two general techniques known for approximating
covering problems in the two-stage stochastic model: LP-based algorithms [39], and
combinatorial algorithms using certain cost-sharing properties [28]. Recently, some
common generalizations of the robust and stochastic models have also been consid-
ered: see, e.g., Swamy [42] and Agrawal et al. [3].

To the best of our knowledge, none of the k-max–min problems other than min-
cut and set cover [18] have been studied earlier. The k-min–min versions of covering
problems (i.e. “which k demands are the cheapest to cover?”) have been extensively
studied for set cover [20,40], Steiner tree [21], Steiner forest [26], min-cut and mul-
ticut [25,35]. However these problems seem to be related to the k-max–min versions
only in spirit.

2 Notation and definitions

Throughout, for any integer �, we denote by [�] the set {1, 2, . . . , �}.

Deterministic covering problems A covering problem � has a ground-set E of ele-
ments with costs c : E → R+, and n covering requirements (often called demands or
clients), where the solutions to the i-th requirement is specified—possibly implicitly—
by a family Ri ⊆ 2E which is upwards closed (since this is a covering problem).
Requirement i is satisfied by solution S ⊆ E iff S ∈ Ri . The covering problem
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Thresholded covering algorithms 589

� = 〈E, c, {Ri }ni=1〉 involves computing a solution S ⊆ E satisfying all n require-
ments and having minimum cost

∑
e∈S ce. E.g., in set cover, “requirements” are items

to be covered, and “elements” are sets to cover them with. In Steiner tree, require-
ments are terminals to connect to the root and elements are the edges. In multicut,
requirements are terminal pairs to be separated, and elements are edges to be cut.

Robust covering problems This problem, denoted Robust(�), is a two-stage opti-
mization problem, where elements are bought in either the first stage (at the given
cost) or the second stage (at cost λ times higher). In the second stage, some subset
ω ⊆ [n] of requirements (also called a scenario) materializes, and the elements bought
in both stages combined must satisfy each requirement in ω. Formally, the input to
problem Robust(�) consists of (a) the covering problem � = 〈E, c, {Ri }ni=1〉 as
above, (b) a set � ⊆ 2[n] of scenarios (possibly implicitly given), and (c) an inflation
parameter λ ≥ 1. A feasible solution to Robust(�) is a set of first stage elements
E0 ⊆ E (bought without knowledge of the scenario), along with an augmentation
algorithm that given any ω ∈ � outputs Eω ⊆ E such that E0 ∪ Eω satisfies all
requirements in ω. The objective function is to minimize: c(E0)+ λ ·maxω∈� c(Eω).
Given such a solution, c(E0) is called the first-stage cost and maxω∈� c(Eω) is the
second-stage cost.

k-robust problems In this paper, we deal with robust covering problems under k-robust
uncertainty sets: i.e., � := ([n]

k

) = {S ⊆ [n] | |S| = k}. We denote this problem by
Robustk(�).

Max–min problems Given a covering problem � and a set � of scenarios, the max–
min problem involves finding a scenario ω ∈ � for which the minimum cost of a
solution covering ω is maximized. Note that by setting λ = 1 in any robust covering
problem, the optimal value of the robust problem equals that of its corresponding
max–min problem. In a k-max–min problem we have � = ([n]

k

)
.

For all problems considered in this paper, we assume that the costs are polynomially
bounded integers: this can be ensured by standard scaling arguments, while only
increasing the approximation ratio by o(1).

2.1 Desirable properties for k-robust approximation algorithms

Our algorithms for robust and max–min versions of covering problems are based on
the following guarantee.

Definition 2.1 An algorithm is (α1, α2, β)-discriminating if given as input any
instance of Robustk(�) and a threshold T , the algorithm outputs in polynomial time,
(i) a set 
T ⊆ E , and (ii) the description of an algorithm that for any input D ∈ ([n]

k

)

produces Aug(D | 
T ) ⊆ E , such that:

A. For every scenario D ∈
( [n]

k

)
,

(i) the elements in 
T ∪ Aug(D | 
T ) satisfy all requirements in D, and
(ii) the resulting augmentation cost c (Aug(D | 
T )) ≤ β · T .
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B. Let F∗ and T ∗ (respectively) denote the first-stage and second-stage cost of an
optimal solution to the Robustk(�) instance. If the threshold T ≥ T ∗ then the
first stage cost c(
T ) ≤ α1 · F∗ + α2 · T ∗.

It is clear that a solution to Robustk(�) need only specify the first stage solu-
tion 
 ⊆ E : the natural augmentation algorithm will simply run an approximation
algorithm for the deterministic covering problem on the residual instance. However,
since we use a “guess and verify” approach, we will need to compare the objective
values under different first-stage solutions (in order to verify our algorithm’s guess T
of the optimal second-stage cost). For an arbitrary first-stage solution 
, computing
its objective value is just as hard as solving a k-max–min instance. To get around
this issue, Definition 2.1 requires solutions 
T that also come with an upper bound
(namely β ·T ) of their second-stage cost. Thus, we can easily compute an upper bound
c(
T )+βT on the objective value, which can be used to compare different solutions
in the following analysis.

The next lemma shows why having a discriminating algorithm is sufficient to solve
the robust problem. The issue to address is that having guessed T for the optimal
second stage cost, we have no direct way of verifying the correctness of that guess—
hence we choose the best among all possible values of T . For T ≈ T ∗ the guarantees
in Definition 2.1 ensure that we pay ≈ F∗ + T ∗ in the first stage and ≈ λT ∗ in the
second stage; for guesses T � T ∗, the first-stage cost in guarantee (B) is likely to be
large compared to Opt.

Lemma 2.2 If there is an (α1, α2, β)-discriminating algorithm for a robust covering
problem Robustk(�), then there is a max

{
α1, β + α2

λ

}
-approximation algorithm for

Robustk(�).

Proof Let A denote an algorithm for Robustk(�) such that it is (α1, α2, β)-
discriminating. Let ground-set E = [m], cmax := maxe∈[m] ce and N := m · cmax .
Since all costs are polynomially bounded integers, so is N .

The approximation algorithm for Robustk(�) runs the (α1, α2, β)-discriminating
algorithm A for every choice of T ∈ {0, 1, . . . , N }, and returns the solution corre-
sponding to:

T̃ := arg min
{
c(
T )+ λ · β T | 0 ≤ T ≤ N

}
.

Recall that T ∗ denotes the optimal second-stage cost, clearly T ∗ ≤ m · cmax = N .
The objective value of the solution from A for threshold T̃ can be bounded as follows.

c
(

T̃

)+ λ ·max
ω∈� c

(
Aug(ω | 
T̃ )

) ≤ c(
T̃ )+ λ · β T̃

≤ c(
T ∗)+ λ · β T ∗

≤ (
α1 · F∗ + α2 · T ∗

) + βλ · T ∗
= α1 · F∗ +

(
β + α2

λ

)
· λT ∗.

The first inequality follows from Property A(ii) in Definition 2.1; the second by the
choice of T̃ ; the third by Property B (applied with threshold T ∗) in Definition 2.1.
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Thus this algorithm for Robustk(�) outputs a solution that is a max
{
α1, β + α2

λ

}
-

approximation. ��
In the rest of the paper, we focus on providing discriminating algorithms for suitable

values of α1, α2, β.

2.2 Additional property for k-max–min approximation algorithms

As we noted above, a k-max–min problem is a k-robust problem where the inflation
λ = 1, which implies that in an optimal solution F∗ = 0, and T ∗ is the k-max–min
value. Hence a discriminating algorithm immediately gives an approximation to the
value: for any D ∈ ([n]

k

)
,
T ∪ Aug(D | 
T ) satisfies all demands in D, and for the

right guess of T ≈ T ∗, the cost maxD:|D|=k c (
T ∪ Aug(D | 
T )) ≤ c(
T )+β·T ≤
(α2 + β)T ∗. It remains to output a high-cost k-set as well, and hence the following
definition is useful.

Definition 2.3 An algorithm for Robustk(�) is (α1, α2, β)-strongly discriminating
if it satisfies the properties in Definition 2.1, and when the inflation parameter is
λ = 1 (and hence F∗ = 0), the algorithm also outputs a set QT ∈

([n]
k

)
such that if

c(
T ) > α2T then the cost of optimally covering the set QT is greater than T .

Recall that for a covering problem �, the cost of optimally covering the set of
requirements Q ∈ ([n]

k

)
is Opt(Q) := min{c(EQ) | EQ ⊆ E and EQ ∈ Ri ∀i ∈ Q}.

Lemma 2.4 If there is an (α1, α2, β)-strongly-discriminating algorithm for a robust
covering problem Robustk(�), then there is an algorithm that outputs a (α2 + β)-
approximate solution to k-max–min(�).

Proof The approximation algorithm for MaxMin(�) is similar to that in Lemma 2.2.
Let A denote an algorithm for the robust problem that is (α1, α2, β) strongly discrim-
inating. Recall that the k-max–min instance corresponds to the Robustk(�) instance
with λ = 1, and hence we will run algorithm A on this robust instance. Also from Def-
inition 2.1, T ∗ denotes the optimal second-stage cost of Robustk(�), and its optimal
first-stage cost F∗ = 0 (since λ = 1). Note that the optimal value of the k-max–min
instance also equals T ∗.

As in Lemma 2.2, let ground-set E = [m], cmax := maxe∈[m] ce and N := m ·cmax .
Since all costs are polynomially bounded integers, so is N .

The approximation algorithm for MaxMin(�) runs the strongly discriminating
algorithm A for every choice of T ∈ {0, 1, . . . , N }, and let T̃ ∈ {1, · · · , N } be the
smallest index such that c(
T̃ ) ≤ α2 · T̃ . Observe that there must exist such an index
since for all T ≥ T ∗, we have c(
T ) ≤ α2 T ∗ ≤ α2 T (property B in Definition 2.1,
using F∗ = 0), and clearly T ∗ ≤ m · cmax = N . The algorithm then outputs QT̃−1 as
the max–min scenario. Below we prove that it achieves the claimed approximation.
We have for all T ≥ 0 that:

T ∗ = max

{
Opt(D) : D ∈

( [n]
k

)}
≤ max

{
c(
T )+ c(Aug(D | 
T )) : D ∈

( [n]
k

)}

≤ c(
T )+ β T .
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Above, the inequalities are by conditions A(i) and A(ii) of Definition 2.1. Setting
T = T̃ here, and by choice of T̃ ,

T ∗ ≤ c(
T̃ )+ β T̃ ≤ (α2 + β) · T̃ .

Hence T̃ is an (α2 + β)-approximation to the max–min value T ∗. Now applying the
condition of Definition 2.3 with T = T̃ −1, where c(
T̃−1) > α2 · (T̃ −1) by choice
of index T̃ , we obtain that the minimum cost to cover requirements QT̃−1 is greater
than T̃ − 1, i.e. at least T̃ . This implies the desired approximation guarantee. ��

3 k-robust Steiner tree

In the k-robust Steiner tree problem, we are given an undirected graph G = (V, E)

with edge costs c : E → R+, a set U ⊆ V of potential terminals, and a root vertex
r ∈ U . Any set of k terminals from U—i.e., any set in

(U
k

)
—is a valid scenario in

the second stage. There is also an inflation factor λ ≥ 1, where each edge costs λ

times more in the second stage. The goal is to select edges in the first stage (without
knowledge of the scenario) and second stage (knowing the realized scenario) so that
the realized terminals are connected to r , and the worst case cost is minimized. Let
d : V ×V → R+ denote the shortest-path distances according to the edge costs c. For
any vertex v ∈ V and subset S ⊆ V , define the distance d(v, S) := minw∈S d(v,w)

to be the minimum distance between v and some vertex in S.
By the results in Sect. 2.1, a discriminating algorithm immediately gives us an

algorithm for k-robust Steiner tree, and this is how we shall proceed. The algorithm
picks a “net” S ⊆ U at distance separation of βT/k, and builds a minimum spanning
tree (MST) on S as the first stage solution.

To show that the algorithm is discriminating, we need to show the two properties
in Definition 2.1. The first property is almost immediate from the construction: since
every point in U\S is close to some point in the net S, this automatically ensures that
the second stage recourse cost is small. Formally,

Algorithm 1 Algorithm for k-robust Steiner tree
1: input: instance of k-robust Steiner tree and threshold T .
2: let β ← �(1), S← {r}.
3: while there exists a terminal v ∈ U with d(v, S) > β · T

k do
4: S← S ∪ {v}
5: end while
6: output first-stage solution 
T to be a minimum spanning tree on S.
7: for each i ∈ U , define Aug({i} | 
T ) to be the edges in G on a shortest-path from i to S.
8: output the second-stage solution where Aug(D | 
T ) :=⋃

i∈D Aug({i} | 
T ) for all D ⊆ U .

Claim 3.1 (Property A for Steiner tree) For all T ≥ 0 and D ∈ (U
k

)
, the edges


T ∪Aug(D | 
T ) connect the terminals in D to the root r , and have cost c(Aug(D |

T )) ≤ β T .

Proof From the definition of the second-stage solution, Aug(D | 
T ) contains the
edges on shortest paths from each D-vertex to the set S. Moreover, 
T is a minimum
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spanning tree on S, which in turn contains the root r . Hence 
T ∪ Aug(D | 
T )

connects D to the root r . To bound the cost, note that by the termination condition in
the while loop, every terminal i ∈ U satisfies d(i, S) ≤ β T

k . Thus,

c(Aug(D | 
T )) ≤
∑

i∈D

c(Aug({i} | 
T )) =
∑

i∈D

d(i, S) ≤ |D|
k
· β T = β T .

This completes the proof that the algorithm above satisfies Property A. ��
It now remains to show that the algorithm satisfies Property B as well. The proof

is dual-based and shows that if the cost of the MST on S were large, then the optimal
first stage solution cost F∗ must have been large as well.

Theorem 3.2 (Property B for Steiner tree) Let F∗ and T ∗ denote the optimal first and
second stage costs. If β ≥ 2 and T > T ∗ then c(
T ) ≤ 2β

β−2 · F∗ + 2 · T ∗.
Proof First suppose |S| ≤ k: then it is clear that there is a Steiner tree on {r} ∪ S of
cost at most F∗ + T ∗. The algorithm finds one of cost at most twice that, since the
length of an MST is at most two times that of an optimal Steiner tree. In the following
assume that |S| > k.

Let L P(S) denote the minimum length of a fractional Steiner tree on terminals
{r} ∪ S, i.e. the optimal value of the natural cut-based LP relaxation for Steiner tree.
Since vertices of S are at least distance β · T

k ≥ β · T ∗
k from each other, we get

L P(S) ≥ β
2k · |S| · T ∗. We now construct a fractional Steiner tree x : E → R+ of

small length. Number the terminals in S from {0, 1, . . . , |S|−1} arbitrarily, and for each
0 ≤ j ≤ |S|− 1 let A j = { j, j + 1, . . . , j + k− 1} (modulo |S|). Let 
∗ ⊆ E denote
the edges of the optimal first stage solution, and � j ⊆ E be the second-stage edges in
the optimal solution under scenario A j . So for all 0 ≤ j ≤ |S|−1,
∗∪� j is a Steiner

tree on terminals {r}∪ A j , and c(� j ) ≤ T ∗. Define x := χ(
∗)+ 1
k ·

∑|S|−1
j=0 χ(� j ),

where χ(P) ∈ {0, 1}E denotes the characteristic vector for any P ⊆ E . We claim that
x supports unit flow from r to any i ∈ S. Note that there are k sets Ai−k+1, . . . , Ai

(indices are modulo |S|) that contain i , and for each i − k + 1 ≤ j ≤ i , it is clear that
1
k ·

(
χ(
∗)+ χ(� j )

)
supports 1

k flow from r to i . So χ(
∗)+ 1
k ·

∑i
j=i−k+1 χ(� j ),

which is dominated by x , supports unit flow from r to i . Thus x is a feasible fractional
Steiner tree on {r} ∪ S, of cost at most F∗ + |S|k · T ∗. Combined with the lower bound
on L P(S),

|S| · β
2 · T ∗

k ≤ L P(S) ≤ F∗ + |S|k · T ∗. (3.1)

Thus we have L P(S) ≤ β
β−2 · F∗, which implies the theorem since the minimum

spanning tree on {r} ∪ S costs at most twice L P(S). ��
From Claim 3.1 and Theorem 3.2, we now get that the algorithm is (

2β
β−2 , 2, β)-

discriminating. Thus, setting β = 2 − 1
λ
+√

4+ 1/λ2 and applying Lemma 2.2, we
get the following approximation ratio.
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max

{
2β

β − 2
,

2

λ
+ β

}
= 2+ 1

λ
+

√

4+ 1

λ2 .

On the other hand, the trivial algorithm which does nothing in the first stage yields
a 1.39 · λ approximation, using the 1.39-approximation algorithm for deterministic
Steiner tree [10]. Hence the better of these two ratios gives an approximation bound
better than 4.35.

The k-max–min Steiner tree problem We show that the above algorithm can be extended

to be
(

2β
β−2 , 2, β

)
strongly discriminating. As shown above, it is indeed discriminating.

To show that Definition 2.3 holds, consider the proof of Theorem 3.2 when λ = 1 (so
F∗ = 0) and suppose that c(
T ) > 2 T . The algorithm to output the k-set Q proceeds
via two cases.

1. If |S| ≤ k then Q := S. The minimum Steiner tree on Q is at least half its MST,
i.e. at least 1

2 c(
T ) > T .
2. If |S| > k then Q ⊆ S is any k-set; by the construction of S, we can feasibly pack

dual balls of radius β T
2k around each Q-vertex, and so L P(Q) >

β
2 T ≥ T . Thus

the minimum Steiner tree on Q is more than T .

3.1 Unrooted Steiner tree

Here we show that our algorithm extends to the setting of k-robust unrooted Steiner
tree, which was previously studied in [32]. In the unrooted version, any subset of k
terminals appear in the second stage, and the goal is to connect them amongst each
other. We will show that setting r ∈ U to an arbitrary terminal in Algorithm 1 achieves
the same approximation ratio for the unrooted case as well. This algorithm is essentially
same as the one used by [32], but with different parameters: hence our framework can
be viewed as generalizing their algorithm. Our proof is shorter and gives a slightly
better approximation ratio.

It is clear that Claim 3.1 continues to hold in this unrooted case as well: hence
Property A of Definition 2.1 is satisfied. We next bound the first stage cost of the
algorithm (i.e. Property B of Definition 2.1).

Theorem 3.3 (Property B for unrooted Steiner tree) Let F∗ and T ∗ denote the optimal
first and second stage costs. If β ≥ 2 and T ≥ T ∗ then c(
T ) ≤ 2β

β−2 · F∗ + 2T ∗.

Proof Firstly suppose |S| ≤ k: then it is clear that there is a Steiner tree on S of cost at
most F∗ + T ∗, and the algorithm finds one of cost at most twice that. In the following
assume that |S| > k.

Let L P(S) denote the minimum length of a fractional Steiner tree on terminals S
(recall, no root here). As in Theorem 3.2, we have L P(S) ≥ β

2k · |S| · T ∗. Again, we
will construct a fractional Steiner tree x : E → R+ of small length. Recall the notation
from Theorem 3.2: terminals in S are numbered arbitrarily from {0, 1, . . . , |S| − 1};
for each 0 ≤ j ≤ |S| − 1, A j := { j, j + 1, . . . , j + k − 1}; 
∗ ⊆ E are the edges
of the optimal first stage solution; and � j ⊆ E are the optimal second-stage edges
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under scenario A j . Note that for all 0 ≤ j ≤ |S| − 1,
∗ ∪ � j is a Steiner tree on

terminals A j , and c(� j ) ≤ T ∗. Define x := χ(
∗)+ 1
k ·

∑|S|−1
j=0 χ(� j ).

Claim 3.4 For any i ∈ S, x supports a unit flow from terminal i to i+1 (modulo |S|).
Proof Note that there are k− 1 sets Ai−k+2, . . . , Ai that contain both i and i + 1. Let
J := {i − k + 2, . . . , i}. So for each j ∈ J, 1

k ·
(
χ(
∗)+ χ(� j )

)
supports 1

k flow
from i to i + 1. Furthermore,

(∪l∈S\J �l
) ∪ F∗ is a Steiner tree connecting terminals

∪l∈S\J Al ⊇ {i, i + 1}; i.e. 1
k ·

(
χ(F∗)+∑

l∈S\J χ(�l)
)

also supports 1
k flow from i

to i + 1. This proves the claim. ��
So x is a feasible fractional Steiner tree on terminals S, of cost at most F∗+ |S|k ·T ∗.

Combined with the lower bound on L P(S),

|S| · β
2 · T ∗

k ≤ L P(S) ≤ F∗ + |S|k · T ∗. (3.2)

Thus we have L P(S) ≤ β
β−2 · F∗, which implies the theorem since the minimum

spanning tree on S costs at most twice L P(S).
Thus by the same calculation as in the rooted case, we obtain a result that improves

on the constant obtained by [32] for the same problem.

Theorem 3.5 There is a 4.35-approximation algorithm for (unrooted) k-robust
Steiner tree.

4 k-robust set cover

In this section we consider the k-robust set cover problem. There is a set system (U,F)

with a universe U of n elements, and m sets in F with each set R ∈ F having cost cR

in the first stage and λ · cR in the second stage (where λ ≥ 1 is the inflation factor).
Any subset of k elements is a possible scenario in the second stage. The goal is to
select sets from F in both stages so that all realized elements are covered, and the
worst-case cost is minimized. Given Lemma 2.2, it suffices to show a discriminating
algorithm as defined in Definition 2.1 for this problem. The algorithm given below
simply picks all elements which can only be covered by expensive sets, and covers
them in the first stage using the greedy algorithm for set cover.

Algorithm 2 Algorithm for k-robust set cover
1: input: k-robust set-cover instance and threshold T .

2: let β ← 36 ln m, and S←
{
v ∈ U | min cost set in F covering v has cost at least β · T

k

}
.

3: output first stage solution 
T as the Greedy-Set-Cover(S).
4: define Aug({i} | 
T ) as the min-cost set covering i , for i ∈ U \ S; and Aug({i} | 
T ) = ∅ for i ∈ S.
5: output second stage solution where Aug(D | 
T ) :=⋃

i∈D Aug({i} | 
T ) for all D ⊆ U .

Claim 4.1 (Property A for set cover) For all T ≥ 0 and scenario D ∈ (U
k

)
, the sets


T
⋃

Aug(D | 
T ) cover elements in D, and have cost c(Aug(D | 
T )) ≤ β T .
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Proof The elements in D∩ S are covered by 
T . Each element i ∈ D\S is covered by
set Aug({i} | 
T ). So by the definition of Aug(D | 
T ) we have the first part of the
claim. For the second part, note that by definition of S, the cost of set Aug({i} | 
T )

is at most β T/k for all i ∈ U . ��
Below Hn := ∑n

i=1
1
i ≈ ln n; recall that the greedy algorithm for set cover has

an Hn approximation ratio, where n is the number of elements in the given instance.
Moreover, this guarantee holds with respect to the natural linear programming relax-
ation.

Theorem 4.2 (Property B for set cover) Let 
∗ denote the optimal first stage solution,
and T ∗ the optimal second stage cost. Let β = 36 ln m. If T ≥ T ∗ then c(
T ) ≤
Hn · (c(
∗)+ 12 · T ∗).
Proof We claim that there is a fractional solution x for the set covering instance (S,F)

with cost at most c(
∗)+12 ·T ∗, whence rounding this to an integer solution implies
the theorem. For a contradiction, we will assume that the minimum cost fractional set
cover is at least c(
∗)+ 12 · T ∗. So there must be a dual LP solution of at least this
value. We then round this dual solution to get another dual solution to a sub-instance
with only k elements, that costs more than c(
∗)+ T ∗, which would contradict with
the definition of the optimal cost.

To this end, let S′ ⊆ S denote the elements that are not covered by the optimal first
stage solution 
∗, and let F ′ ⊆ F denote the sets that contain at least one element
from S′. By the choice of S, each set in F ′ costs at least β · T

k ≥ β · T ∗
k . Define the

“coarse” cost for each set R ∈ F ′ to be ĉR = � cR
6T ∗/k �. For each set R ∈ F ′, since

cR ≥ βT ∗
k ≥ 6T ∗

k , it follows that ĉR · 6T ∗
k ∈ [cR, 2 · cR), and also that ĉR ≥ β/6.

Now consider the following primal–dual pair of LPs for the set cover instance with
elements S′ and sets F ′ having the coarse costs ĉ.

min
∑

R∈F ′
ĉR · xR max

∑

e∈S′
ye

∑

R�e

xR ≥ 1, ∀e ∈ S′,
∑

e∈R

ye ≤ ĉR, ∀R ∈ F ′,

xR ≥ 0, ∀R ∈ F ′. ye ≥ 0, ∀e ∈ S′.

Let {xR}R∈F ′ be an optimal primal and {ye}e∈S′ an optimal dual solution. The following
claim bounds the (coarse) cost of these fractional solutions.

Claim 4.3 If β = 36 ln m, then the optimal LP cost is
∑

R∈F ′ ĉR · xR =∑
e∈S′ ye ≤

2 · k.

Before we prove Claim 4.3, let us assume it and complete the proof of Theorem 4.2.
Given the primal LP solution {xR}R∈F ′ that covers elements in S′, define an LP
solution to cover elements in S as follows: set zR := 1 if R ∈ 
∗, zR := xR if
R ∈ F ′\
∗; and zR = 0 otherwise. Since the solution z contains 
∗ integrally, it
clearly covers elements S\S′ (i.e. the portion of S covered by 
∗). And since zR ≥ xR

for all R, solution z also covers S′ fractionally. Finally, the cost of this solution is
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∑
R cRzR ≤ c(
∗) +∑

R cR · xR ≤ c(
∗) + 6T ∗
k ·

∑
R ĉR · xR . Now Claim 4.3

bounds this by c(
∗)+12 ·T ∗. Since we have an LP solution of value c(
∗)+12T ∗,
and the greedy algorithm is an Hn-approximation relative to the LP value for set cover,
this would complete the proof of Theorem 4.2.

It remains to give the proof for Claim 4.3 above; indeed, that is where the technical
heart of the result lies.

Proof of Claim 4.3 Recall that we want to bound the optimal fractional set cover cost
for the instance (S′,F ′) with the coarse (integer) costs; {xR}R∈F ′ and {ye}e∈S′ are
the optimal primal and dual solutions. For a contradiction, assume that the LP cost∑

R∈F ′ ĉR · xR = ∑
e∈S′ ye lies in the unit interval ((γ − 1)k, γ k] for some integer

γ ≥ 3.
Define integer-valued random variables {Ye}e∈S′ by setting, for each e ∈ S′ inde-

pendently, Ye = �ye� + Ie, where Ie is a Bernoulli(ye − �ye�) random variable.
We claim that the random variables {Ye/3}e∈S′ form a feasible dual solution with
high probability, i.e., they satisfy

∑
e∈R(Ye/3) ≤ ĉR for all R ∈ F ′. Indeed, con-

sider a dual constraint corresponding to R ∈ F ′: since we have
∑

e∈R�ye� ≤ ĉR ,
we get that Pr[∑e∈R Ye > 3 · ĉR] ≤ Pr[∑e∈R Ie > 2 · ĉR]. Note also that∑

e∈R E[Ie] ≤ ∑
e∈R ye ≤ ĉR . Now we use a Chernoff bound [33] to bound the

probability that the sum of independent 0–1 random variables,
∑

e∈R Ie, exceeds twice
its mean. This gives Pr[∑e∈R Ie > 2 · ĉR] ≤ e−ĉR/3 ≤ e−β/18 ≤ m−2, since each
ĉR ≥ β/6 and β = 36 · ln m. Finally, a trivial union bound implies that {Ye/3}e∈S′
satisfies all the m dual contraints with probability at least 1 − 1/m. Moreover, the
expected dual objective is

∑
e∈S′ ye ≥ (γ − 1)k ≥ 1 (since γ ≥ 3 and k ≥ 1). By

another Chernoff Bound, Pr[∑e∈S′ Ye >
γ−1

2 · k] ≥ a, where a > 0 is some fixed
constant. Putting it all together, with probability at least a − 1

m , we have a feasible

dual solution Y ′e := Ye/3 with objective value at least γ−1
6 · k.

Why is this dual Y ′e any better than the original dual ye? It is “near-integral”—
specifically, each Y ′e is either zero or at least 1

3 . So we order the elements of S′ in
decreasing order of their Y ′-value, and let Q be the set of the first k elements in this
order. The total dual value of elements in Q is at least min{ γ−1

6 k, k
3 } ≥ k

3 , since
γ ≥ 3, and each non-zero Y ′ value is at least 1/3. This dual solution {Y ′e}e∈Q shows
a lower bound of k

3 on minimum (fractional) ĉ-cost to cover the k elements in Q.

Using cR > 3T ∗
k · ĉR for each R ∈ F ′, the minimum c-cost to fractionally cover Q

is > 3T ∗
k · k

3 = T ∗. Hence, if Q were the realized scenario, the optimal second stage
cost would exceed T ∗ (recall, no element in Q is covered by F∗). This contradicts the
definition of the optimal solution. Thus we must have γ ≤ 2 and so the LP optimum∑

R∈F ′ ĉR · xR ≤ 2k, which completes the proof of Claim 4.3. ��
This finishes the proof of Theorem 4.2. ��
Claim 4.1 and Theorem 4.2 show our algorithm for set cover to be an

(Hn, 12Hn, 36 ln m)-discriminating algorithm. Applying Lemma 2.2 converts this dis-
criminating algorithm to an algorithm for k-robust set cover, and gives the following
improvement to the result of [18].

Theorem 4.4 There is an O(log m+ log n)-approximation algorithm for k-robust set
cover.
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The k-max–min set cover problem The proof of Claim 4.3 suggests how to get a
(Hn, 12Hn, 36 ln m) strongly discriminating algorithm. When λ = 1 (and so c(
∗) =
0), the proof shows that if c(
T ) > 12Hn · T , there is a randomized algorithm that
outputs k-set Q with optimal covering cost more than T (witnessed by the dual solution
having cost > T ). This step can be derandomized using conditional expectation and
pessimistic estimators [36]. Now using Lemma 2.4, we get the claimed O(log m +
log n)-approximation algorithm for the k-max–min set cover problem. This nearly

matches the hardness of �
(

log m
log log m + log n

)
given by [18].

4.1 Set cover with non-uniform inflation

Here we consider the k-robust set cover problem under set-dependent inflation, and
show that our algorithm extends to this setting as well. Recall that there is a set system
(U, {R j }mj=1) with a universe U of n elements and m sets. Moreover, there are two
different cost-vectors b, c ∈ R

m+ denoting the costs in the first and second stage,
respectively. Again, any subset of k elements is a possible scenario, and the goal is to
minimize the worst-case cost (summed over both stages). The usual k-robust set cover
(studied above) is the special case when c = λ b for some uniform inflation factor
λ ≥ 1.

We may assume, without loss of generality, that the first-stage cost for each set is at
most its second-stage cost, i.e. b ≤ c. (If some set R has cR < bR , then we pretend that
its first-stage cost is cR ; and if R is chosen into the first-stage solution it can always
be bought in the second stage). Under non-uniform inflations, the definition of an
(α1, α2, β)-discriminating algorithm is the same as Definition 2.1 where Condition B
is replaced by:

B’. Let 
∗ denote the optimal first stage solution, and T ∗ the optimal second stage
c-cost (hence the optimal value Opt = b(
∗) + T ∗). If the threshold T ≥ T ∗
then the first stage cost b(
T ) ≤ α1 · b(
∗)+ α2 · T ∗.

It can be shown exactly as in Lemma 2.2, that any such algorithm is a max{α1, α2+
β}-approximation algorithm for k-robust set cover. Note that the factor α2 was scaled
down by λ in the uniform inflation case (Lemma 2.2). The algorithm and analysis here
are very similar to that for k-robust set-cover under uniform inflation.

Algorithm 3 Algorithm for k-robust set cover with non-uniform inflation
1: input: non-uniform k-robust set-cover instance and bound T .

2: let β ← 36 · ln m, and S←
{
v ∈ U | minimum c-cost set in F covering v has cost at least β · T

k

}
.

3: output first stage solution 
T as the Greedy-Set-Cover(S) under b-costs.
4: define Aug({i} | 
T ) as the minimum c-cost set covering i if i ∈ U \ S, and ∅ otherwise.
5: output second stage solution where Aug(ω | 
T ) :=⋃

i∈ω Aug({i} | 
T ) for all ω ⊆ U .

We will show that this algorithm is (Hn, 12Hn, 36 ln m)-discriminating. The fol-
lowing claim is immediate.

Claim 4.5 (Property A) For all T ≥ 0 and ω ⊆ U, the sets 
T
⋃

Aug(ω | 
T )

cover elements ω. Additionally, if |ω| ≤ k then the cost c(Aug(ω | 
T )) ≤ β T .
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Theorem 4.6 (Property B’) Assume β ≥ 36 · ln m. If T ≥ T ∗ then b(
T ) ≤ Hn ·
(b(
∗)+ 12 · T ∗).
Proof We will show that there is a fractional solution x for covering S with small
b-cost, at most b(
∗)+ 12 · T ∗, whence rounding this to an integer solution implies
the theorem.

Let S′ ⊆ S denote the elements that are not covered by the optimal first stage
solution 
∗, and let F ′ ⊆ F denote the sets that contain at least one element from
S′. By the choice of S, each set in F ′ has c-cost at least β · T

k ≥ β · T ∗
k . Define

the “coarse” cost for a set R ∈ F ′ to be ĉR = � cR
6T ∗/k �. For each set R ∈ F ′,

since cR ≥ βT ∗
k ≥ 6T ∗

k , it follows that ĉR · 6T ∗
k ∈ [cR, 2 · cR), and also that ĉR ≥

β/6.
Now consider the LP for the set cover instance with elements S′ and sets F ′ having

the coarse costs ĉ. Let {xR}R∈F ′ be an optimal fractional solution; then Claim 4.3
applies directly to yield:

∑

R∈F ′
ĉR · xR ≤ 2 · k (4.1)

Given the primal LP solution {xR}R∈F ′ covering elements in S′, define a fractional
solution z covering elements S as follows: define zR = 1 if R ∈ 
∗, zR = xR if
R ∈ F ′\
∗, and zR = 0 otherwise. Since the solution z contains F∗ integrally, it
covers elements S\S′ (i.e. the portion of S covered by F∗); since zR ≥ xR for all
R ∈ F ′, it follows that z fractionally covers S′. Finally, the b-cost of this solution
is:

∑

R∈F
bR · zR, = b(
∗)+ b · x ≤ b(
∗)+ c · x ≤ b(
∗)+ 6T ∗

k
· (̂c · x)

≤ b(
∗)+ 12 · T ∗,

where the second inequality uses b ≤ c, the next one is by definition of ĉ and the last
inequality is from (4.1). Thus we have an LP solution of b-cost at most b(
∗)+12T ∗,
and since the greedy algorithm has an Hn-approximation ratio relative to the LP value,
this completes the proof. ��

Thus we obtain:

Theorem 4.7 There is an O(log m+ log n)-approximation algorithm for k-robust set
cover with set-dependent inflation factors.

Remark For the other covering problems, our algorithms do not extend to the case
of non-uniform inflation: this is usually inherent, and not just a shortcoming of our
analysis. E.g., [32] gave an �(log1/2−ε n)-hardness of approximation for k-robust
Steiner forest under just two distinct inflation-factors, whereas we give an O(1)-
approximation algorithm under uniform inflations (in Sect. 8).
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5 k-robust minimum cut

We now consider the k-robust minimum cut problem, where we are given an undirected
graph G = (V, E) with edge costs c : E → R+, a root r ∈ V , terminals U ⊆ V , and
an inflation factor λ ≥ 1. Again, any subset in

(U
k

)
is a possible second-stage scenario.

The goal is to select edges in both stages so that all terminals in the realized scenario
are separated from the root r , and the worst-case cost is minimized. As before, it
suffices to give a a discriminating algorithm (Definition 2.1). This algorithm is similar
to the one for set cover: we just pick all the “expensive” terminals and separate them
from the root in the first stage.

Algorithm 4 Algorithm for k-robust min-cut
1: input: k-robust minimum-cut instance and threshold T .
2: let β ← �(1), and S← {v ∈ U | min cut separating v from root r has cost at least β · T

k }.
3: output first stage solution 
T as the minimum cut in G separating S from r .
4: define Aug({i} | 
T ) as the min r–i cut in G \
T , for i ∈ U \ S; and Aug({i} | 
T ) = ∅ for i ∈ S.
5: output second stage solution where Aug(D | 
T ) :=⋃

i∈D Aug({i} | 
T ) for all D ⊆ U .

Claim 5.1 (Property A for min-cut) For all T ≥ 0 and D ∈ (U
k

)
, the edges


T
⋃

Aug(D | 
T ) separate the terminals D from r; moreover, the cost c(Aug(D |

T )) ≤ β T .

Theorem 5.2 (Property B for min-cut) Let 
∗ denote the optimal first stage solution
and T ∗ the optimal second stage cost. If β ≥ 10e

e−1 and T ≥ T ∗ then c(
T ) ≤
3 · c(
∗)+ β

2 · T ∗.
Before the formal proof, we provide some intuition for this theorem. As in the set

cover proof, we claim that if the optimal cost of separating S from the root r is high,
then there must be a dual solution (which prescribes flows from vertices in S to r )
of large value. We will “round” this dual solution by aggregating these flows to get
a set of k terminals that have a large combined flow (of value > c(
∗) + T ∗) to the
root—but this is impossible, since the optimal solution promises us a cut of at most
c(
∗)+ T ∗ for any set of k terminals. However, more work is required in formalizing
this. For set-cover, each element was covered entirely in either the first-stage or the
second-stage; whereas for cut problems, both stages may partially help in separating
a terminal from the root. So we divide the set S into two different parts. The first part
contains those terminals (called “low” nodes) whose min-cut in graph G\
∗ is smaller
than that in G by some constant factor; we use a Gomory–Hu tree based analysis to
show that all low nodes can be completely separated from r at cost O(1) · c(
∗) (this
is shown in Claim 5.3). The second part consists of the remaining terminals (called
“high” nodes) that continue to have a large min-cut in G\
∗, and for these we use the
dual rounding idea sketched above to show a min-cut of cost O(T ∗) (this is proved in
Claim 5.4). Together, these claims imply Theorem 5.2.

To begin the proof of Theorem 5.2, let H := G\
∗, and let Sh ⊆ S denote the
“high” nodes whose min-cut from the root in H is at least M := β

2 · T ∗
k . For any

undirected graph J = (V, F) and subset U ⊆ V of vertices, we use the standard
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notation ∂J (U ) := {(u, v) ∈ F : u ∈ U, v �∈ U } for edges having exactly one
end-point in the set U . The following claim is essentially from Golovin et al. [24].

Claim 5.3 (Cutting low nodes) If T ≥ T ∗, the minimum cut in H separating S\Sh

from r costs at most 2 · c(
∗).
Proof Let S′ := S\Sh , and t := β · T ∗

k . For every v ∈ S′, the minimum r − v cut is

at least β · T
k ≥ β · T ∗

k = 2M in G, and at most M in H . Consider the Gomory-Hu
(cut-equivalent) tree [38, Chap. 15] T (H) of graph H . For each u ∈ S′ let Du ⊆ V
denote the minimum r–u cut in T (H) where u ∈ Du and r �∈ Du : note that Du

corresponds to the cheapest edge on the r–u path in T (H), with vertices Du on one
side of this edge and V \Du on the other side. Pick a subset S′′ ⊆ S′ of terminals
such that the union of their respective min-cuts in T (H) separate all of S′ from the
root r and their corresponding sets {Du : u ∈ S′′} are disjoint: the set of min r–u
cuts (for u ∈ S′) in tree T (H) that are closest to r gives such a collection. It follows
that (a) {Du | u ∈ S′′} are disjoint, and (b) F := ∪u∈S′′∂H (Du) is a feasible cut
in H separating S′ from r . Note that for all u ∈ S′′, we have c(∂H (Du)) ≤ M
since it is a minimum r–u cut in H , and c(∂G(Du)) ≥ 2M since it is a feasible
r–u cut in G. Thus c(∂H (Du)) ≤ c(∂G(Du)) − c(∂H (Du)) = c(∂
∗(Du)). Now,
c(F) ≤ ∑

u∈S′′ c(∂H (Du)) ≤ ∑
u∈S′′ c(∂F∗(Du)) ≤ 2 · c(
∗). The last inequality

uses disjointness of {Du}u∈S′′ . Thus the minimum r − S′ cut in H costs at most
2 · c(
∗). ��
Claim 5.4 (Cutting high nodes) If T ≥ T ∗ and β ≥ 10·e

e−1 , the minimum cut in H

separating Sh from r costs at most β
2 · T ∗.

Proof Consider an r–Sh maximum flow in the graph H = G\
∗, and suppose that
it sends αi · M flow to each vertex i ∈ Sh . Note that the k-robust min-cut problem
remains unchanged upon making copies of terminals: so we can assume without loss
of generality that each αi ∈ (0, 1]. Hence if we show that

∑
i∈Sh

αi ≤ k, the total flow

(which by flow-cut duality, equals the min r–Sh cut) would be at most k ·M = β
2 ·T ∗,

which would prove the claim. For a contradiction, we suppose that
∑

i∈Sh
αi > k. We

then show that there exists a subset W ⊆ Sh with |W | ≤ k such that the minimum
r–W cut in graph H costs more than T ∗, contradicting the fact that every k-set in H
can be separated from r by a cut of value at most T ∗. To find this set W , the following
redistribution lemma (proved below) is useful.

Lemma 5.5 (Redistribution lemma) Let N = (V, E) be a capacitated undirected
graph. Let X ⊆ V be a set of terminals such min-cutN (i, j) ≥ 1 for all nodes
i, j ∈ X. For each i ∈ X, we are given a value εi ∈ (0, 1]. Then for any integer
� ≤∑

i∈X εi , there exists a subset W ⊆ X with |W | ≤ � vertices, and a feasible flow

f in N from X to W so that (i) the total flow into vertices of W is at least 1−e−1

4 · �
and (ii) the flow out of each i ∈ X is at most εi/4.

We apply this lemma to the graph H = G\
∗ with terminal set Sh and edge-
capacities equal to the costs c scaled down by M . Since for any cut separating x, y ∈ Sh ,
the root r lies on one side of this cut (say on y’s side), min-cutH (x, y) ≥ M—hence
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the capacities satisfy the conditions of the lemma. Now set � = k, and εi := αi for
each terminal i ∈ Sh . By our assumption,

∑
i∈Sh

εi = ∑
i∈Sh

αi ≥ k = �. Hence
Lemma 5.5 finds a subset W ⊆ Sh with k vertices, and a flow f in graph H (with
capacities c) such that f sends a total of at least 1−1/e

4 · k M units into vertices of
W , and at most αi

4 · M units out of each i ∈ Sh . Moreover, there is a feasible flow
g in H (namely the max-flow from r to Sh) that simultaneously sends αi · M flow
from r to each i ∈ Sh . Hence the flow g+4 f

5 is feasible in H with capacities c, which

sends a total of at least 4
5 · 1−1/e

4 · k M = 1−1/e
5 · k M units from r into W . Finally, if

β > 10·e
e−1 , we obtain that the min-cut in H separating W from r is greater than T ∗.

Since |W | ≤ k, this is a contradiction to the assumption that any set with at most k
vertices can separated from the root in H at cost at most T ∗. This completes the proof
of Claim 5.4. ��

From Claim 5.1 and Theorem 5.2, we obtain a (3,
β
2 , β)-discriminating algorithm

for k-robust minimum cut, when β ≥ 10e
e−1 . We set β = 10e

e−1 and use Lemma 2.2

to infer that the approximation ratio of this algorithm is max{3,
β
2λ
+ β} = β

2λ
+ β.

Since picking edges only in the second-stage gives a trivial λ-approximate solution,
the better of the two gives an approximation ratio of min{ β

2λ
+ β, λ} < 17. Thus we

have,

Theorem 5.6 There is a 17-approximation algorithm for k-robust minimum cut.

It now remains to prove the redistribution lemma. At a high level, the proof shows
that if we add each vertex i ∈ X to a set W independently with probability εi �/(

∑
i εi ),

then this set W will (almost) satisfy the conditions of the lemma with high probability.
A natural approach to prove this would be to invoke Gale/Hoffman-type theorems [38,
Chap. 11] using which it is necessary and sufficient to show for this random choice
W that c(∂V ′) ≥ |demand(V ′) − supply(V ′)| for all V ′ ⊆ V . But we would need
to prove this condition for all subsets, and all we know about the network is that the
min-cut between any pair of nodes in X is at least 1. Furthermore, such an approach
is likely to fail, since the redistribution lemma is false for directed graphs (see remark
at the end of this section) whereas the Gale–Hoffman theorems hold for digraphs as
well. In our proof, we use undirectedness to fractionally pack Steiner trees into the
graph, on which we can do a randomized-rounding-based analysis.

Proof of Lemma 5.5 (Redistribution lemma) To begin, we assume without loss of
generality, that the bounds εi = 1/P for all i ∈ X for some integer P . Indeed, let
P ∈ N be large enough so that ε̂i = εi P is an integer for each i ∈ X . Add, for each
i ∈ X , a star with ε̂i − 1 leaves centered at the original vertex i , set all these new
vertices to also be terminals, and let all new edges have unit capacity. Set the new ε’s
to be 1/P for all terminals. To avoid excess notation, call this graph N as well; note
that the assumptions of the lemma continue to hold, and any solution W on this new
graph can be mapped back to the original graph.

Let ce denote the edge capacities in N . By the assumption that every cut in N
separating X has capacity at least one, it follows that c is a feasible solution to the
natural cut-based LP relaxation for Steiner tree on terminals X . Since this LP relaxation
has an integrality gap of two, there exist Steiner trees {Ta}a∈A on the terminal set X
that fractionally pack into the twice the edge capacities (see e.g. [12] for a formal
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argument). I.e., there exist positive multipliers {λa}a∈A such that
∑

a λa = 1
2 , and∑

a λa ·χ(Ta) ≤ c, where χ(Ta) is the characteristic vector of the edge-set of tree Ta .
Choose W ⊆ X by taking � samples uniformly at random (with replacement) from

X . We will construct the flow f from X to W as a sum of flows on these Steiner trees.
In the following, let q := |X |; note that � ≤ |X |ε = q/P .

Consider any fixed Steiner tree Ta in this collection, where its edges have unit
capacities. We claim that in expectation, �(�) units of flow can be feasibly routed
from X to W in Ta such that each terminal supplies at most �/q. Indeed, let τa denote
an oriented Euler tour corresponding to Ta . Since the tour uses each tree edge twice,
any feasible flow routed in τa (with unit-capacity edges) can be scaled by half to obtain
a feasible flow in Ta . We call a vertex v ∈ X a-close if there is some W -vertex located
at most q/� hops from v on the (oriented) tour τa . Construct a flow fa on τa by sending
�/q flow from each a-close vertex v ∈ X to its nearest W -vertex along τa . By the
definition of a-closeness, the maximum number of flow paths in fa that traverse an
edge of τa is q/�; since each flow path carries �/q flow, the flow on any edge in τa is
at most one, and hence fa is always feasible.

For any vertex v ∈ X and a tour τa , the probability that v is not a-close is at most
(1 − q/�

q )� ≤ e−1 by the random choice of W ; hence v ∈ X sends flow in fa with

probability at least 1 − e−1. Thus the expected amount of flow sent in fa is at least
(1 − e−1)|X | · (�/q) = (1 − e−1) · �. Now define the flow f := 1

2

∑
a λa · fa by

combining the flows from all the Steiner trees. It can be easily checked that this is a
feasible flow in N with probability one. Since

∑
a λa = 1

2 , the expected value of flow

f is at least 1−1/e
4 �. Finally, the amount of flow in f sent out of any terminal is at

most 1
4 · �/q ≤ 1

4P . This completes the proof of the redistribution lemma. ��
The k-max–min min-cut problem When λ = 1 and 
∗ = ∅, the proof of Theorem 5.2
gives a randomized algorithm such that if the minimum r–S cut is greater than β

2 T , it
finds a subset W of at most k terminals such that separating W from the root costs more
than T (witnessed by the dual value). Using this we get a randomized (3,

β
2 , β) strongly

discriminating algorithm, and hence a randomized O(1)-approximation algorithm for
k-max–min min cut from Lemma 2.4. We note that for k-max–min min-cut, a (1−1/e)-
approximation algorithm was already known (even for directed graphs) via submodular
maximization. However the above approach has the advantage that it also extends to
k-robust min-cut.

Bad example for directed graphs We note here that our results for k-robust min-cut
do not hold for directed graphs. Consider the digraph G with a root r , a “center”
vertex u, and m terminals v1, v2, . . . , vm . This graph has arcs (u, r), {(r, vi )}i∈[m] and
{(vi , u)}i∈[m]; each having unit capacity. Note that the min-cut between every vi –v j

pair is one, but if we set each εi = 1/
√

m flow, there is no way to choose
√

m of
these vertices and collect a total of �(

√
m) flow at these “leaders”. This shows that

the redistribution lemma (Lemma 5.5) is false for digraphs.
A similar example shows that that thresholded algorithms perform poorly for

k-robust directed min-cut, even for k = 1. Consider graph D with vertices r, u and
{vi }i∈[m] as above. Graph D has unit capacity arcs {(vi , r)}i∈[�], and

√
m capacity arcs

(u, r) and {(vi , u)}i∈[m]. The inflation factor is λ = √m. The optimal strategy is to
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delete the arc (u, r) in the first stage. Since k = 1, one of the terminals vi demands to
be separated from the root in the second stage, whence deleting the edge (vi , r) costs
λ · 1 = √m resulting in a total cost of 2

√
m. However, any threshold-based algorithm

would either choose none of the terminals (resulting in a recourse cost of λ
√

m = m),
or all of them (resulting in a first-stage cost of at least m).

6 k-robust multicut

Here we consider the k-robust multicut problem. The input is an undirected graph
G = (V, E) with edge-costs c : E → R+, m source–sink pairs {si , ti }mi=1, an inflation
factor λ ≥ 1 and bound k. Any subset of k source–sink pairs is a possible scenario.
The goal is to select edges in the first and second stages so that all pairs in the realized
scenario are separated, and the worst-case cost is minimized. The algorithm (given
below) is essentially the same as for minimum cut, however the analysis requires
different arguments.

Algorithm 5 Algorithm for k-robust multicut
1: input: k-robust multicut instance and threshold T .
2: let ρ := O(log n) be the approximation factor in Räcke’s oblivious routing scheme [35], ε ∈ (0, 1

2 ) any

constant, and β := ρ · 24 log n
ε log log n .

3: let S← {i ∈ [m] | min si –ti cut in G has cost at least β · T
k }.

4: output first stage solution 
T as the O(log n)-approximate multicut [22] for S.
5: define Aug({i} | 
T ) as edges in the min si − ti cut, for i ∈ [m] \ S; and Aug({i} | 
T ) = ∅ for i ∈ S.
6: output second stage solution where Aug(ω | 
T ) :=⋃

i∈ω Aug({i} | 
T ) for all ω ⊆ [m].

Claim 6.1 (Property A for multicut) For all T ≥ 0 and ω ⊆ [m], the edges

T

⋃
Aug(ω | 
T ) separate si and ti for all i ∈ ω; additionally if |ω| ≤ k then

the cost c(Aug(ω | 
T )) ≤ β T .

Proof Pairs in ω ∩ S are separated by 
T . By definition of Aug(, | 
T ) for each pair
i ∈ ω\S, the edges Aug({i} | 
T ) form an si − ti cut. Thus we have the first part of
the claim. For the second part, note that by definition of S, the cost of Aug({i} | 
T )

is at most β T/k for all i ∈ [m]. ��
Theorem 6.2 (Property B for multicut) Let 
∗ denote the optimal first stage solution
and T ∗ the optimal second stage cost. If T ≥ T ∗ then c(
T ) ≤ O(log n) · c(
∗) +
O(log2+ε n) · T ∗.

To prove the theorem, the high level approach is similar to that for k-robust min-
cut. We first show in Lemma 6.3 that the subset of pairs S̃ ⊆ S whose min-cut fell
substantially on deleting the edges in 
∗ can actually be completely separated at cost
O(1)·c(
∗). This is based on a careful charging argument on the Gomory–Hu tree and
generalizes Claim 5.3 from min-cut to multicut. Then in Lemma 6.6 we show that the
remaining pairs S\S̃ can be fractionally separated at cost O(log1+ε n) T ∗. This uses
the dual-rounding approach combined with Räcke’s oblivious routing scheme [35].
Finally, since the algorithm for multicut [22] is relative to the LP, this implies
Theorem 6.2.
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Let us begin by formally defining the cast of characters. Let H := G\
∗ and
M := β · T ∗

k . Define,

S̃ := {
i ∈ S | min cost si−ti cut in H is less than M

4

}

to be the set of pairs whose mincut in G was at least M , but has fallen to at most M/4
in H = G\
∗.
Lemma 6.3 If T ≥ T ∗, there is a multicut separating pairs S̃ in graph H which has
cost at most 2 c(
∗).

Proof We work with graph H = (V, F) with edge-costs c : F → R. A cluster
refers to any subset of vertices. A cut equivalent tree [38] P = (N (P), E(P)) is an
edge-weighted tree on clusters N (P) = {N j }rj=1 such that:

• the clusters {N j }rj=1 form a partition of V , and
• for any edge e ∈ E(P), if Ve and V \Ve are the vertex-sets on either side of e in

the tree P then the weight of edge e equals c(∂H (Ve)), the cost of cut (Ve, V \Ve).

The Gomory–Hu tree PG H = (V, E(PG H )) of H is a cut-equivalent tree where
the clusters are singleton vertices, and which has the additional property that for every
u, v ∈ V the minimum u–v cut in PG H equals the minimum u–v cut in H . We call
a cluster N ⊆ V active if there is some i ∈ S̃ such that |N ∩ {si , ti }| = 1; otherwise
the cluster N is called dead. We perform the following two modifications on the
Gomory–Hu tree PG H :

1. While there is an edge of weight greater than M
4 , merge the clusters corresponding

to its end points. Let Q′ denote the resulting cut-equivalent tree.
2. While there is a dead cluster, merge it with one of its neighboring clusters. Let Q

denote the final cut-equivalent tree.

Let D := ⋃
N∈N (Q) ∂H (N ). In the next two claims we show that D is a feasible

multicut for S̃ with cost at most 2 c(
∗), which suffices to prove the lemma.

Claim 6.4 D is a feasible multicut separating pairs S̃ in H.

Proof Fix any pair i ∈ S̃. Clearly, vertices si and ti are in distinct active clusters of the
Gomory–Hu tree PG H . By definition of S̃, the minimum si − ti cut in H is less than
M
4 and so there is some edge of weight less that M

4 on the si − ti path in PG H . Note
that in obtaining tree Q′ from PG H , we never contract an edge of weight less that M

4 .
Hence si and ti lie in distinct active clusters of the tree Q′. In the second modification
(from Q′ to Q), we never merge two active clusters. So si and ti lie in distinct active
clusters of tree Q as well. Since this holds for all i ∈ S̃, the claim follows by definition
of D. ��
Claim 6.5 The cost c(D) =∑

e∈D ce ≤ 2 c(
∗), if T ≥ T ∗.

Proof Consider any cluster N ∈ N (Q). Since all clusters in N (Q) are active, N
contains exactly one of {si , ti } for some i ∈ S̃. So the cut ∂G(N ) in graph G has cost
at least β · T

k ≥ β · T ∗
k = M , by definition of the set S ⊇ S̃.
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Let N2(Q) ⊆ N (Q) denote all clusters in Q having degree at most two in Q. Note
that |N2(Q)| ≥ 1

2 |N (Q)|. Using the above observation and the fact that clusters in
N2(Q) are disjoint, we have

|N2(Q)|M ≤
∑

N∈N2(Q)

c(∂G(N )) =
∑

N∈N2(Q)

(c(∂H (N ))+ c(∂
∗(N )))

≤
∑

N∈N2(Q)

c(∂H (N ))+ 2 · c(
∗). (6.1)

We now claim that for any N ∈ N2(Q), the cost c(∂H (N )) ≤ M
2 . Let e1 and e2

denote the two edges incident to cluster N in Q (the case of a single edge is easier).
Let (Ul , V \Ul) denote the cut corresponding to edge el (for l = 1, 2) where N ⊆ Ul .
Each of these cuts has cost c(∂H (Ul)) ≤ M

4 by property of the cut-equivalent tree
Q, and their union ∂H (U1)

⋃
∂H (U2) contains the cut ∂H (N ). Hence it follows that

c(∂H (N )) ≤ 2 · M
4 = M

2 . Using this in (6.1) and simplifying, we obtain |N (Q)|M ≤
2 · |N2(Q)|M ≤ 8 c(
∗).

For each edge e ∈ E(Q), let De ⊆ F denote the edges in graph H that go across
the two components of Q\{e}. By the property of cut-equivalent tree Q, we have
c(De) ≤ M

4 . Since D =⋃
e∈E(Q) De,

c(D) ≤
∑

e∈E(Q)

c(De) ≤ |E(Q)| M

4
≤ |N (Q)| M

4
≤ 2 · c(
∗)

This proves the claim. ��
Combining Claims 6.4 and 6.5, we complete the proof of Lemma 6.3. ��
Now we turn our attention to the remaining pairs S′ := S\S̃, and show that there is

a low cost multicut separating them in H . For this we use a dual-rounding argument,
based on Räcke’s oblivious routing scheme. Recall the parameters 0 < ε < 1

2 , ρ =
O(log n) (Räcke’s approximation factor), and β = ρ · 24 log n

ε log log n . Define α := eρ ·logε n.

Lemma 6.6 There exists a fractional multicut separating pairs S′ in the graph H
which has cost 8α · T ∗.
Proof For any demand vector d : S′ → R+, the optimal congestion of routing d in H ,
denoted Cong(d), is the smallest η ≥ 0 such that there is a flow routing di units of flow
between si and ti (for each i ∈ S′), using capacity at most η · ce on each edge e ∈ H .
Note that for every i ∈ S′, the si –ti min-cut in H has cost at least L := M

4 = β
4 · T ∗

k .
Hence for any i ∈ S′, the optimal congestion for a unit demand between si –ti (and
zero between all other pairs) is at most 1

L .
Now consider Räcke’s oblivious routing scheme [35] as applied to graph H . This

routing scheme, for each i ∈ S′, prescribes a unit flow Fi between si –ti such that for
every demand vector d : S′ → R+,

max
e∈H

∑
i∈S′ di · Fi (e)

ce
≤ ρ · Cong(d), where ρ = O(log n);
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i.e., the congestion achieved by using these oblivious templates to route the demand
d is at most ρ times the best congestion possible for that particular demand d.

Now consider a maximum multicommodity flow in H with source–sink pairs S′;
suppose that it sends yi · 2T ∗

k units between si and ti , for each i ∈ S′. For a contradiction,
suppose that

∑
i∈S′ yi > 4α · k. (Otherwise the maximum multicommodity flow, and

hence its dual, the minimum fractional multicut is at most 8αT ∗, and the lemma holds.)
By making copies of source–sink pairs, we may assume, without loss of generality,
that yi ∈ [0, 1] for all i ∈ S′; this modification does not change the k-robust multicut
instance. Define a (not necessarily feasible) multicommodity flowG :=∑

i∈S′ Xi · 2T ∗
k ·

Fi , where each Xi is an independent 0-1 random variable with Pr[Xi = 1] = yi
α

, and
Fi is the oblivious routing template between si and ti . The magnitude of flow G is the
sum of {0, 2T ∗

k }-valued random variables, with expectation at least
∑

i
yi
α

2T ∗
k ≥ 8T ∗.

So by a Chernoff bound,

Claim 6.7 With constant probability, the magnitude of flow G is at least 2 · T ∗.

Claim 6.8 The flow G is feasible with probability 1− o(1).

Proof Fix any edge e ∈ H , and let ui (e) := 2T ∗
k · Fi (e) for all i ∈ S′. Note that the

random choice of G above gives us a flow of
∑

i Xi ·ui (e) on the edge e. The feasibility
of the maximum multicommodity flow implies that Cong({yi · 2T ∗

k }i∈S′) ≤ 1. Since
oblivious routing loses only a ρ factor in the congestion,

∑

i∈S′
yi · ui (e) =

∑

i∈S′
yi · 2T ∗

k
· Fi (e) ≤ ρ · ce;

and the expected flow on edge e sent by the random flow G (defined above) is
∑

i∈S′
yi
α
·

ui (e) ≤ ρ
α

ce.
Now, since the min si –ti -cut is at least L for any i ∈ S′, a unit of flow can (non-

obliviously) be sent between si and ti at congestion at most 1
L . So the oblivious routing

template Fi incurs a congestion at most ρ
L , i.e.

ui (e) = 2T ∗

k
· Fi (e) ≤ 2T ∗

k
· ρ

L
· ce = 8ρ

β
· ce

We divide the individual contributions by the edge capacity and further scale up
by β

8ρ
by defining new [0, 1]-random variables Yi = Xi ·ui (e)

ce
· β

8ρ
. We get that μ :=

E[∑ Yi ] ≤ β
8α

. By a Chernoff bound for the sum of independent [0, 1]-valued random
variables Yi ,

Pr
[∑

Yi ≥ (1+ δ) · μ
]
≤

(
e

1+ δ

)μ(1+δ)

, ∀δ ≥ 0.
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Using this with μ(1+ δ) = β
8ρ

(hence δ + 1 ≥ α
ρ

) we get that

Pr

[
∑

i

Xi · ui (e) ≥ ce

]

= Pr

[
∑

i

Yi ≥ β

8ρ

]

≤
(eρ

α

)β/8ρ

= exp

(
−ε log log n · 3 log n

ε log log n

)
= 1

n3 ,

since α = eρ · logε n and β = ρ · 24 log n
ε log log n . Now a trivial union bound over all n2

edges gives the claim. ��
Using Claims 6.7 and 6.8 and union bound, it follows that there exists a feasible

multicommodity flow G that sends either zero or 2T ∗
k units for each pair i ∈ S′ so that

the total flow in G is at least 2 · T ∗. Hence there exists some k-set ω ⊆ S′ such that
the maximum multicommodity flow for ω on H is at least 2 · T ∗. This contradicts
the fact that every k-set has a multicut of cost at most T ∗ in H . Thus we must have∑

i∈S′ yi ≤ 4α · k, which implies Lemma 6.6. ��
Combining Lemmas 6.3 and 6.6, we obtain a fractional multicut for pairs S = S̃∪S′

in graph G, having cost O(1) · c(
∗) + O(log1+ε n) · T ∗. Since the Garg et al. [22]
algorithm for multicut achieves an O(log n)-approximation relative to the natural LP
relaxation, we obtain Theorem 6.2.

From Claim 6.1 and Theorem 6.2, it follows that this algorithm is O
(
log n, log2+ε n,

β)-discriminating for k-robust multicut. Since β = O(log2 n/ log log n), using
Lemma 2.2, we obtain an approximation ratio of:

max

{
log n,

log2 n

log log n
+ log2+ε n

λ

}
.

This is an O
(

log2 n
log log n

)
-approximation algorithm when λ ≥ log2ε n. On the other

hand, when λ ≤ log2ε n, we can use the trivial algorithm of choosing an entire mul-
ticut in the second stage (using the approximation algorithm [22]); this implies an

O(log1+2ε n)-approximation algorithm. Since log1+2ε n = o
(

log2 n
log log n

)
, we obtain:

Theorem 6.9 There is an O
(

log2 n
log log n

)
-approximation algorithm for k-robust multi-

cut.

The k-max–min multicut problem The above ideas also lead to a
(
c1 · log n, c2 · log2

n, c3 · log2 n
)

strongly discriminating algorithm for multicut, where c1, c2, c3 are
constants. The algorithm is exactly Algorithm 5 with parameter β := �(log n) · ρ
with an appropriate constant factor; recall that ρ = O(log n) is the approxi-
mation ratio for oblivious routing [35]. Lemma 6.6 shows that this algorithm is(
c1 · log n, c2 · log2 n, c3 · log2 n

)
discriminating (the parameters are only slightly dif-

ferent and an identical analysis applies). To establish the property in Definition 2.3,
consider the case λ = 1 (i.e. 
∗ = ∅) and c(
T ) > (c2 log2 n) · T . Since the [22]
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Thresholded covering algorithms 609

algorithm is O(log n)-approximate relative to the LP, this implies a feasible multi-
commodity flow on pairs S′ (since 
∗ = ∅ we also have S′ = S) of value at least
(c4 log n) · T for some constant c4. Then the randomized rounding (with oblivious
routing) can be used to produce a k-set ω ⊆ S′ and a feasible multicommodity flow on
ω of value more than T ; by weak duality it follows that the minimum multicut on ω is
greater than T and so Definition 2.3 holds. Thus by Lemma 2.4 we get a randomized
O(log2 n)-approximation algorithm for k-max–min multicut. This algorithm can also
be derandomized using conditional expectation and pessimistic estimators [36].

All-or-nothing multicommodity flow As a possible use of the oblivious routing and
randomized-rounding based approach, we state a result for the all-or-nothing multi-
commodity flow problem studied by Chekuri et al. [13]. In this problem, we are given
a capacitated undirected graph and source–sink pairs {si , ti } with demands di , and the
goal is to route the maximum number of source–sink pairs (if the i th pair is chosen
then all di units of flow must be sent between si and ti ). The results of this section
imply that if the min-cut(si , ti ) = �(log2 n)di for all pairs, then we can approximate
the maximum throughput to within an O(log n) factor without violating the edge-
capacities, even when dmax ≥ cmin. The results of Chekuri et al. [13,14] violated the
edge-capacities in this case by an additive dmax term. This capacity violation in the
previous all-or-nothing results is precisely the reason they can not be directly used in
our analysis of k-robust multicut.

Remark A possible approach for the k-max–min and k-robust Multicut problems, is
to directly use Räcke decomposition [29,35]. For k-max–min Multicut, we can indeed
use deterministic Räcke decomposition [29] that reduces to trees losing a factor of
O(log2 n·log log n); the problem on trees is simply an instance of k-max–min set cover,
for which we can use our O(log n)-approximation algorithm (Sect. 4); altogether this
implies an O(log3 n · log log n)-approximation algorithm for k-max–min Multicut.

• However, this reduction to trees is not valid in case of k-robust Multicut, since the
optimal first-stage solution in the graph may not correspond to a “multicut” (i.e.
minimal edge-set separating some vertex-pairs), and hence it is not approximately
preserved in the Räcke tree.
• Moreover, even for k-max–min Multicut, the randomized Räcke decomposi-

tion [35] does not apply directly since the final objective is maximization. This is
unlike k-Multicut [25,35] where the goal was to find k pairs of minimum multicut
value.

Our dual-rounding based approach uses randomized Räcke decomposition (in a less
direct manner), and obtains an approximation algorithm for k-robust Multicut, and a
better approximation ratio for k-max–min Multicut.

7 Summarizing properties from dual rounding

The proofs for k-robust set cover, minimum cut and multicut relied on certain dual
rounding arguments. We now summarize the resulting net-type properties in a self-
contained form.
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Theorem 7.1 Consider any instance of set cover; let B ∈ R+ and k ∈ Z+ be values
such that

• every set costs at least 36 ln m · B
k , and

• the minimum cost of covering any k-subset of elements is at most B.

Then the minimum cost of covering all elements is at most O(log n) · B.

Theorem 7.2 Consider any instance of minimum cut in an undirected graph with root
r and terminals X; let B ∈ R+ and k ∈ Z+ be values such that

• the minimum cut separating r and u costs at least 10 · B
k , for each terminal u ∈ X.

• the minimum cut separating r and S costs at most B, for every k-set S ∈
(

X
k

)
.

Then the minimum cut separating r and all terminals X costs at most O(1) · B.

Theorem 7.3 Consider any instance of multicut in an n-vertex undirected graph with
source–sink pairs {si , ti }i∈[m]; let B ∈ R+ and k ∈ Z+ be values such that

• the minimum si − ti cut costs at least c · log2 n · B
k , for each pair i ∈ [m].

• the minimum multicut separating pairs in P costs at most B, for every k-set

P ∈
( [m]

k

)
.

Then the minimum multicut separating all pairs [m] costs at most O(log2 n) · B. Here
c is a universal constant that is independent of the multicut instance.

Such properties rely crucially on the specific problem structure, and do not hold for
general covering problems. Consider for example, the Steiner-tree cost function on a
tree metric (which is in fact submodular). Consider a tree on vertices {r, u}⋃{vi }ni=1
with root r and terminals {vi }ni=1. The edges are: (r, u) with cost k, and for each
i ∈ [n], edge (u, vi ) with cost one. For parameter B = 2k, the cost for connecting any
single terminal to the root is k + 1 > B

2 , whereas the cost for connecting any k-set of
terminals is 2k = B. If a theorem like the ones above was true for Steiner tree then
the cost to connect all the n terminals would be Õ(B); instead the Steiner tree cost
is n + k > n

2k · B � B. This is also the reason why the algorithms for Steiner tree
(Sect. 3) and Steiner forest (next section) are slightly more involved, and their proofs
rely on a primal–dual argument instead of dual rounding.

8 k-robust Steiner forest

In the k-robust Steiner forest problem, we have a graph G = (V, E) with edge costs
c : E → R+, a set U ⊆ V × V of potential source–sink pairs, and an inflation factor
λ ≥ 1. Any set in

(U
k

)
is a valid scenario in the second stage. The goal is to choose

edges in both stages so that each source–sink pair in the realized scenario is connected,
and the worst-case cost is minimized.

For a set of pairs S ⊆ V × V , the graph G/S is obtained by identifying each pair
in S together; and dG/S : V × V → R+ denotes the shortest path distances in this
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“shrunk” graph. The algorithm (given below) is a bit more involved than the previous
ones, despite a similar general structure.

The source–sink pairs in Sr ⊆ U are those with a high incremental connection cost.
For technical reasons, the algorithm also maintains a set S f of “fake” pairs, which
may not belong to U . The set W consists of well-separated vertices from Sr , and is
used to lower bound the Steiner forest length of Sr (see Lemma 8.2). The following
analysis shows a constant-factor guarantee. Without lines 6–7, the algorithm is more
natural, but for that we can currently only show an O(log n)-approximation ratio;
it seems that proving an O(1)-approximation ratio for that version would imply an
O(log n)-competitiveness for online greedy Steiner forest.

Algorithm 6 Algorithm for k-robust steiner forest
1: input: k-robust Steiner forest instance and threshold T .
2: let β ← �(1), γ ← �(1) such that γ ≤ β/2.
3: let Sr , S f , W ← ∅
4: while there exists a pair (s, t) ∈ U with dG/(Sr∪S f )(s, t) > β · T

k do
5: let Sr ← Sr ∪ {(s, t)}
6: if dG (s, w) ≤ γ · T/k for some w ∈ W then S f ← S f ∪ {(s, w)} else W ← W ∪ {s}
7: if dG (t, w′) ≤ γ · T/k for some w′ ∈ W then S f ← S f ∪ {(t, w′)} else W ← W ∪ {t}
8: end while
9: output first stage solution 
T to be the 2-approximate Steiner forest [2,23] on pairs Sr along with

shortest-paths connecting every pair in S f .
10: define Aug({i} | 
T ) to be the edges on the si − ti shortest-path in G/(Sr ∪ S f ), for each pair i ∈ U .
11: output second stage solution where Aug(D | 
T ) :=⋃

i∈D Aug({i} | 
T ) for all D ⊆ U .

Claim 8.1 (Property A for Steiner forest) For all T ≥ 0 and D ∈ (U
k

)
, the edges


T
⋃

Aug(D | 
T ) connect every pair in D, and have cost c(Aug(D | 
T )) ≤ β T .

Proof The first part is immediate from the definition of Aug(D | 
T ) and the fact
that 
T connects every pair in Sr ∪ S f . The second part follows from the termination
condition dG/(Sr∪S f )(si , ti ) ≤ β · T

k for all pairs i ∈ U ; this implies c(Aug(D |

T )) ≤∑

i∈D c(Aug({i} | 
T )) ≤∑
i∈D dG/(Sr∪S f )(si , ti ) ≤ |D|k · β T . ��

Lemma 8.2 The optimal value of the Steiner forest on pairs Sr is at least |W | · γ
2

T
k .

Proof Consider the natural cut-based LP relaxation for Steiner forest on source–sink
pairs Sr , and its dual which is a packing LP. Note that for each pair i ∈ Sr , the distance
dG(si , ti ) ≥ β · T

k ≥ 2γ · T
k . So every ball of radius at most γ

2 · T
k around a vertex in

Sr separates some pair in Sr , and appears as a variable in the dual packing problem.
Observe that W only contains vertices from Sr , and each time we add a vertex to W , it
is at least γ T/k distant from any other vertex in W . Hence we can feasibly pack dual
balls of radius γ

2 · T
k around each W -vertex. This is a feasible dual to the Steiner forest

instance on Sr , of value |W |γ /2 · T/k. The lemma now follows by weak duality. ��
The next lemma relates the sets Sr , S f and W that are constructed by the algorithm,

and plays a key role in the subsequent analysis.

Lemma 8.3 The number of “witnesses” |W | is at least the number of “real” pairs
|Sr |, and |Sr | is at least the number of “fake” pairs |S f |.
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Proof Partition the set Sr as follows: S2 are the pairs where both end-points are added
to W, S1 are the pairs where exactly one end-point is added to W , and S0 are the pairs
where neither end-point is added to W . It follows that |Sr | = |S2| + |S1| + |S0| and
|W | = 2 · |S2| + |S1|.

Consider an auxiliary graph H = (W, E(W )) on the vertex set W which is con-
structed incrementally:

• When a pair (s, t) ∈ S2 is added, vertices s, t are added to W , and edge (s, t) is
added to E(W ).
• Suppose a pair (s, t) ∈ S1 is added, where s is added to W , but t is not because it

is “blocked” by w′ ∈ W . In this case, vertex s is added, and edge (s, w′) is added
to E(W ).
• Suppose a pair (s, t) ∈ S0 is added, where s and t are “blocked” by w and w′,

respectively. In this case, no vertex is added, but an edge (w,w′) is added to E(W ).

Claim 8.4 At any point in the algorithm, if x, y ∈ W lie in the same connected
component of the auxiliary graph H then dG/(S f ∪Sr )(x, y) = 0.

Proof By induction on the algorithm, and the construction of the graph H .

• Suppose pair (s, t) ∈ S2 is added, then the claim is immediate. H has one
new connected component {s, t} and others are unchanged. Since (s, t) ∈
Sr , dG/(S f ∪Sr )(s, t) = 0 and the invariant holds.
• Suppose pair (s, t) ∈ S1 is added, with s added to W and t blocked by w′ ∈ W .

In this case, the component of H containing w′ grows to also contain s; other
components are unchanged. Furthermore (t, w′) is added to S f and (s, t) to Sr ,
which implies dG/(S f ∪Sr )(s, w

′) = 0. So the invariant continues to hold.
• Suppose pair (s, t) ∈ S0 is added, with s and t blocked by w,w′ ∈ W , respectively.

In this case, the components containingw andw′ get merged; others are unchanged.
Also (s, w), (t, w′) are added to S f and (s, t) to Sr ; so dG/(S f ∪Sr )(w,w′) = 0,
and the invariant continues to hold.

Since these are the only three cases, this proves the claim. ��
Claim 8.5 The auxiliary graph H does not contain a cycle when γ ≤ β/2.

Proof For a contradiction, consider the first edge (x, y) that when added to H by the
process above creates a cycle. Let (s, t) be the pair that caused this edge to be added,
and consider the situation just before (s, t) is added to Sr . Since (x, y) causes a cycle,
x, y belong to the same component of H , and hence dG/(S f ∪Sr )(x, y) = 0 by the
claim above. But since x is either s or its “blocker” w, and y is either t or its blocker
w′, it follows that dG/(S f ∪Sr )(s, t) < 2γ · T

k ≤ β · T
k . However, this contradicts the

condition which would cause (s, t) to be chosen into Sr by the algorithm. ��
Now is time for some counting. Consider graph H at the end of the algorithm: W

denotes its vertices, and E its edges. From the construction of H , we obtain |W | =
2 · |S2| + |S1| and |E | = |S2| + |S1| + |S0| = |Sr |. Since H is acyclic, |Sr | = |E | ≤
|W | − 1. Also note that |S f | = 2 · |S0| + |S1| = 2 · |Sr | − |W | < |Sr |. Thus we
have |W | ≥ |Sr | ≥ |S f | as required in the lemma. This completes the proof of
Lemma 8.3. ��
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Theorem 8.6 (Property B for Steiner forest) Let F∗ and T ∗ denote the optimal first
and second stage costs, respectively. If T ≥ T ∗ then c(
T ) ≤ 4γ

γ−2 · (F∗ + T ∗).

Proof Let |Sr | = αk. Using Lemma 8.3, Lemma 8.2 and the property of the optimal
solution,

γ
2 · α · T ≤ |W | ·

γ

2

T

k
≤ Opt(Sr ) ≤ F∗ +

⌈ |Sr |
k

⌉
T ∗ ≤ F∗ + T ∗ + α · T ∗

≤ F∗ + T ∗ + α T (8.1)

Thus α ·T ≤ 2
γ−2 · (F∗ +T ∗) and Opt(Sr ) ≤ γ

γ−2 · (F∗ +T ∗). So the 2-approximate

Steiner forest on Sr has cost at most 2γ
γ−2 · (F∗ + T ∗). Note that the distance (in G)

between each pair of S f is at most γ · T
k ; so the total length of shortest-paths in S f is at

most |S f | · γ · T
k ≤ |Sr | · γ · T

k (again by Lemma 8.3). Thus the algorithm’s first-stage

cost is at most 2γ
γ−2 · (F∗ + T ∗)+ αγ · T ≤ 4γ

γ−2 · (F∗ + T ∗). ��
Theorem 8.7 There is a 10-approximation algorithm for k-robust Steiner forest.

Proof Using Claim 8.1 and Theorem 8.6, we obtain a (
4γ

γ−2 ,
4γ

γ−2 , β)-discriminating
algorithm (Definition 2.1) for k-robust Steiner forest. Setting β = 2γ and γ :=
2 + 2 · (1 − 1/λ), Lemma 2.2 implies an approximation ratio of max{ 4γ

γ−2 ,
4γ /λ
γ−2 +

2γ } ≤ 4+ 4
1−1/λ

. The trivial algorithm that just selects a 2-approximate Steiner forest
in the second stage, achieves a 2λ-approximation. Taking the better of the two, the
approximation ratio is min{2λ, 4+ 4

1−1/λ
} < 10. ��

The k-max–min Steiner forest problem We now extend the k-robust Steiner forest
algorithm to be (

4γ
γ−2 ,

4γ
γ−2 , 2γ ) strongly discriminating (when γ = 3). As shown

earlier, it is indeed discriminating. To show that Definition 2.3 holds, consider the
proof of Theorem 8.6 when λ = 1 (so F∗ = 0) and suppose c(
T ) >

4γ
γ−2 T ≥ 2γ T .

The algorithm to output the k-set Q has two cases.

1. If the number of “real” pairs |Sr | ≤ k then Q := Sr . We have:

c(
T ) ≤ 2 ·Opt(Sr )+ γ T

k
|S f | ≤ 2 ·Opt(Sr )+ γ T

k
|Sr | ≤ 2 ·Opt(Sr )+ γ T .

The first inequality is by definition of 
T and since the distance between each pair
in S f is at most γ · Tk , the second inequality is by Lemma 8.3, and the last inequality
uses |Sr | ≤ k. Since c(
T ) > 2γ T , it follows that Opt(Sr ) > γ T/2 ≥ T .

2. If |Sr | > k then the number of “witnesses” |W | ≥ |Sr | > k, by Lemma 8.3. Let
Q ⊆ Sr be any k-set of pairs such that for each i ∈ Q at least one of {si , ti } is in
W . By the construction of Sr , we can feasibly pack dual balls of radius γ

2
T
k around

each W -vertex, and so Opt(Q) > |Q| · γ
2

T
k = γ

2 T ≥ T .

Thus we obtain a constant-factor approximation algorithm for k-max–min Steiner
forest.
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9 Final remarks

In this paper, we presented a unified approach to directly solving k-robust covering
problems and k-max–min problems. The results for all problems except multicut are
fairly tight (and nearly match the best-possible for the offline versions). It would be
interesting to obtain an O(log n)-approximation algorithm for k-robust and k-max–
min multicut.

As mentioned earlier, approximating the value of any max–min problem reduces to
the corresponding robust problem, for any uncertainty set. We show in the companion
paper [27] that there is also a relation in the reverse direction—for any covering
problem that admits good offline and online approximation algorithms, an algorithm
for the max–min problem implies one for the robust version. This reduction can be
used to give algorithms for robust covering under matroid and knapsack constrained
uncertainty sets [27].

Acknowledgments We thank Chandra Chekuri, Ravishankar Krishnaswamy, Danny Segev and Maxim
Sviridenko for invaluable discussions.
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