
SPAD: Software Protection through Anti-debugging
Using Hardware Virtualization

Qian Lin, Mingyuan Xia, Miao Yu, Peijie Yu, Min Zhu, Shang Gao,
Zhengwei Qi, Kai Chen, Haibing Guan

Shanghai Jiao Tong University, Shanghai, P.R.China
{ linqian, kenmark, superymk, yupiwang, zhumin, chillygs, qizhwei, kchen, hbguan } @ sjtu.edu.cn

Abstract
Debugging could be a threat to system security when adopted
by malicious attackers. The major challenges of software-
only anti-debugging are compromised strategy and lack of
self-protection. Leveraging hardware virtualization, we pro-
poses a strategy of software protection through anti-debugging
which imperceptibly monitors the debug event on a higher
privilege level than the conventional kernel space. Our pro-
totype can effectively prohibit the debugging behavior from
selected popular debuggers in the replication experiment.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Security and Protection

General Terms
Design, Security

Keywords
Anti-debugging, Software protection, Virtualization

1. INTRODUCTION
The requirement for software protection has gained gen-

eral attention in the digital world. A great variety of copy-
protection strategies have been developed to prevent crack-
ing, tracing and reverse engineering. The majority of these
mechanisms provide a reasonable level of security against
static-only analysis. Nevertheless, most of them are vulner-
able to dynamic or hybrid static-dynamic attacks which are
commonly used by hackers. Although debugging is usually
employed in the software development to help find software
bugs or deficiencies, it also facilitates hackers to reverse com-
mercial software or steal private information [1]. Hackers
could utilize a generic debugger to set a breakpoint at the
password input function, scan the specific buffer and wait
for the debugger window to reveal the real password. Sim-
ilar scenarios may be applied to other private and sensitive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

account data acquirement. Some software may be packed
and protected by packers to fight against reverse engineer-
ing, but most packers suffer from the compatibility problem,
resulting in erroneous effects to the protected applications.

Virtual machine can be an effective environment to pre-
vent software from attacks and malicious behavior [2]. Un-
like conventional methods which rely on kernel space to
construct anti-debugging architecture, we leverage hardware
virtualization to occupy a higher privilege level so that not
a single debugging behavior can escape from our protection
shield. We implement the prototype of Software Protec-
tion through Anti-debugging (SPAD) and verify its effec-
tiveness.

2. BACKGROUND
To be effective, dynamic program analysis requires the

target to be executed with sufficient test inputs to produce
meaningful behavior. We classify all prevailing debuggers
into three categories based on the difference of debugging
mechanisms. User-mode debugger deploys the API to play
debugging tricks. Kernel debugger exploits kernel resources
to rule the debugging procedure. System-level debugger runs
underneath OS and exhibits a strong ability to suspend all
target operations.

3. DESIGN AND IMPLEMENTATION
Leveraging hardware virtualization, SPAD intercepts de-

bugging event in root mode where the guest OS could not
detect the procedure. Thus the transparency to the guest
OS is guaranteed and no modification is needed to the guest
application. We tailored BluePill as the base of SPAD im-
plementation. The thin hypervisor with hardware virtual-
ization support only monitors the sensitive behavior instead
of managing the whole guest OS.

3.1 Anti-debugging functionality
According to the debugging mechanism of Windows, a

process switching will happen if a debugger takes over the
target process within the debugging exception handler. By
configuring VMM, we can intercept the sensitive behavior
including INT3, INT1 exceptions, CPUID instruction and
CR3 register refreshing. SPAD monitors critical functions
by hooking their entry and exit, respectively. This is done
by replacing the function entry with a trampoline, which ex-
ecutes CPUID instruction before the original entry. Figure 1
illustrates that the system-level debugger’s behavior will be
detected as soon as it triggers the INT3 exception. Both

NO

System-level debugger

detected

YES

NONO

INT3 Critical Function

Debugging_Happen

= 1

If

Debugging_Happen

==1?

Critical_Entry = 1

YES

If

Critical_Entry

==1?

YES

Kernel/User-mode

debugger detected

Non-root mode

Root mode

Critical Function Entry Critical Function Exit

Debugging_Happen=

Critical_Entry=0

Process Switching

happened

Process Switching

happened

If

Debugging_Happen

==1?

Before Critical

CPUID

happened

Exception

happened
CPUID

happened

Figure 1: Anti-debugging Approach. Hypervisor monitors the sensitive events and triggers mode switching

when certain events happen.

SPAD

Page Table

Kernel

Page Table

Pseudo

Memory Space

SPAD

Memory Space

CR3

Guest OS Kernel SPAD

PTE of SPAD PTE of SPAD

CR3

Figure 2: Construct Self-protection.

user-mode and kernel debuggers can be detected by check-
ing whether process switching to the debugger happens in
the critical function of KiDispatchException().

3.2 Self-protection
If a malware or rootkit attempts to invade SPAD’s mem-

ory space which is under the management of guest OS, it
just tampers with SPAD’s virtual memory space to deprive
it of its functionality. Therefore, SPAD takes advantage of
hardware virtualization and memory remapping techniques
to conceal itself so that the threat of external attack could be
eliminated. In order to implement self-protection, we mod-
ify the corresponding address mapping of guest OS’s page
table. Figure 2 depicts the steps of realizing this strategy,
involving copying a new private page table for SPAD, cre-
ating a pseudo memory space and modifying the mapping
of kernel page table. Consequently, VMM can use the pri-
vate page table for its memory space access. Furthermore,
the modification to the kernel page table is done in the root
mode, which shields the operations from being detected by
the guest OS.

4. EVALUATION
We choose 13 traditional anti-debugging methods to com-

pare with SPAD against 9 kinds of generic debuggers. For
user-mode debuggers, certain hiding plug-ins could facilitate
debuggers to conceal themselves. However, since user-mode
debuggers rely on APIs to communicate with system debug-

ging server, it is highly possible to be detected by kernel
modules. The result reveals that OllyDbg and OllyICE fail
in more than half of the tests without hiding plug-ins. As for
kernel debuggers, WinDbg features no anti anti-debugging
techniques and fails at all anti-debugging methods. System-
level debuggers pervade the operating system and attain
better stealth property, whereas they leave more or less de-
bugging interfaces in system and can be compromised once
exploited.

In comparison with software-only anti-debugging meth-
ods, SPAD is more effective because it holds an even higher
privilege level than the system-level debugger, and intercepts
the sensitive system behavior instead of interacting with sys-
tem components. Thus it can silently detect the debuggers
while remaining risk-free from being detected by interfaces
exposed to the system. Our experiments show that SPAD
can detect all debuggers we selected.

5. CONCLUSION
This paper presents a lightweight and transparent protec-

tion strategy based on the art of virtualization. Leveraging
hardware assisted virtual machine monitor, SPAD can de-
tect and intercept debugging behavior in a higher privilege
position than OS kernel’s, as well as make itself impercepti-
ble to debuggers.

6. ACKNOWLEDGEMENT
This work is supported by National Natural Science Foun-

dation of China (Grant No.60773093, 60873209, 60970107),
the Key Program for Basic Research of Shanghai (Grant
No.09JC1407900, 09510701600, 10511500100), the Opening
Project of Shanghai Key Lab of Advanced Manufacturing
Environment (No.KF200902), IBM SUR Funding and IBM
Research-China JP Funding, and supported by Key Lab of
Information Network Security, Ministry of Public Security.

7. REFERENCES
[1] M. N. Gagnon, S. Taylor, and A. K. Ghosh. Software

protection through anti-debugging. IEEE Security &
Privacy, 5(3):82–84, 2007.

[2] S. T. King and S. W. Smith. Virtualization and
security: Back to the future. IEEE Security & Privacy,
6(5):15, 2008.

